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In initial stages of modeling (‘conceptualization’), to decide about the direction of causal effects, 
System Dynamics modelers generally use a priori knowledge (real-life experience or scientific 
literature), rather than automated data analysis (Sterman 2000; Barlas, 2002). This study investigates to 
what extent it is possible to derive initial model construction from real data, since model construction 
time and model subjectivity can be both reduced by the automated analysis of historical data.  

We assume that we have real-life (non-experimental) dynamic field data about multiple system 
variables influencing a given effect variable. In this case, automated polarity discovery becomes a 
nontrivial, sometimes impossible problem. Our research purpose is to find whether the links are positive 
or negative between variables by using historical field data under the assumption that we assume/know 
all the cause variables that have a significant influence on the effect variable (see Figure 1). We also 
assume that all the causal relations (functions) are either monotonically increasing or decreasing, which 
is typically an accepted best practice in SD formulations (see Sterman 2000 for instance). 

 
Figure 1: Discovering the Polarity of Relations 

In the literature, correlation analysis or a correlation-based analysis such as structural equation 
modeling (SEM) and generalized additive models (GAM) can be used to extract polarities, since these 
methods are commonly used to calculate strength and direction of the association between variables 
(Tarka, 2018; Hauke & Kossowski, 2011). When it comes to the applicability of these methods in SD 
causal analysis, the assumptions of the methods raise several difficulties: The correlation analysis may 
fail when there is multicollinearity among variables (Farrar, 1967), strong non-linearities and 
multiplicative effect relations. Thus, there are no effective approaches to derive the direction of 
nonlinear causal effects from data, even when the causal variables are assumed to be known. 

To solve the problem, we developed a two-phased algorithm that we call discoverpolarity. We 
implemented the algorithm in R programming language and tested it with different datasets that satisfy 
the data assumptions. Synthetic datasets are generated in R language. Firstly, we specify an underlying 
structure for each experiment and generate a dataset by using that structure. Then, we assume that we 
do not have the information about the link polarities. By means of known causal relations and generated 
dataset, we try to (re)discover the unknown link polarities with the developed algorithm. We used two 
‘benchmark’ methods that require minimum additional information and return the most reliable results 
in our tests: Shape Constrained Additive Model (SCAM), and Pearson’s partial correlation analysis. To 
apply SCAM, the monotonic shape restrictions (increasing or decreasing) of effect functions must be 
given. Therefore, we fit 2(cause variables) SCAM models having different shape restrictions to our datasets, 
then, we compare models to each other by two performance measures which are root mean square error 
and mean absolute percentage error.  to obtain monotonic shape restrictions of the best model. We 
assume that the scope of the variables, the boundary of the system, is well-chosen for the problem and 
data is noise-eliminated and has no missing values We also assume that we know the range of cause 
variables (Xi) in which 𝑑𝑓𝑖(𝑋𝑖) 𝑑𝑋!⁄  is significantly different than 0.  
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The first phase of the algorithm works with proof by contradiction. It compares changes in the effect 
variable (Y) while moving among observed data points in the causal domain. Then, it eliminates the 
corner points that cannot have the maximum value of Y. The algorithm takes the "causal variable" and 
respective "effect variable" values as main inputs. Then, it compares the differences in causal variables 
and checks the signs of each difference. Finally, it eliminates the impossible cases from all the possible 
polarities list (given by each corner in the causal domain) which has 2(cause variables) possibilities. For 
example, the list has 4 values when there are two cause variables: (+, +), (+, -), (-, +), (-, -).  The basic 
process of the algorithm eliminates the corner with the same polarity of the causal variable movement 
while Y value is decreasing, and it eliminates the corner with the opposite polarities of the causal 
variable movement while Y value is increasing. Therefore, we analyze all of the paired combinations of 
the data points. In total, we check the sign of changes in n*(n-1)/2 points for a dataset composed of n 
points.  

If we end up with multiple options at the end of the first phase, the algorithm moves into the second 
phase. At this point, the algorithm has a default assumption: in the range of the given limits of the 
variables, the maximum ceteris paribus changes created by all Xi’s on Y are (approximately) the same. 
In other words, influence importance weights of Xi’s on Y are the same. However, if the modeler knows 
the maximum ceteris paribus impact of each variable which is significantly different than each other, 
then she must give these impact levels (importance weights) as an input, varImp.  

In the second phase, the algorithm takes the increasing or decreasing amounts of change of cause and 
effect variables into account. We already know that a significant change of a cause variable must 
produce a change (ceteris paribus) in the effect variable. Therefore, when a cause variable Xi does not 
change much but other cause variables Xj, j¹i change significantly, then we can say that the change in 
the effect variable results from Xj, j¹i. In this step, the algorithm subtracts the minimum of the variable 
from the variable value and then divides the variables by their observed ranges (maximum-minimum 
values).  By doing so, it obtains relative changes over a range of (0, 1). Then, if variable importance 
weights are different, the algorithm multiplies the relative weights (minimum is set as 1) with the 
difference values. In the new causal domain, the algorithm takes the absolute of the differences of each 
data point to obtain the relative absolute difference values for each causal variable. Then, the algorithm 
searches for points close to each other with respect to each cause variable. The points that have relative 
difference values smaller than threshold1 (default value is set as 0.15) are considered as ‘close’ 
according to a cause variable and are considered in first candidate indexes. Then, for each first 
candidate index, the algorithm checks the absolute difference values of other cause variables. If the 
ratio of “the absolute difference value of candidate cause variable/sum of the absolute difference value 
of all causal variables in the candidate index” is smaller than threshold2 (default value is set as 
threshold1), then the algorithm sets the difference value of the candidate cause variable at that point to 
zero. In other words, it concludes that the change in Y results from the other cause variables. By doing 
so, the algorithm eliminates more corners which do not include the maximum Y value.  

When the algorithm is applied, the modeler must decide on the threshold values used in the algorithm. 
This is the trickiest part of the algorithm since the proper values of the thresholds may differ from one 
dataset to another. Threshold1 is used to select first candidate indexes for each cause variable to set 
them to zero. Threshold2 is used to select indexes from the first candidate indexes list to set their values 
to 0. Threshold3 is used to select indexes for the effect variable to set the effect variable to zero. The 
default threshold values are 0.15. varImp is a variable importance list (weights of impact of each cause 
variable). varImp of all the variables is 1 as default. 

We generated 7680 synthetic datasets to test the algorithm. The number of data points is 100 in all 
datasets. In total, 12 different formulation structures (additive or multiplicative formulations with two, 
three, or four cause variables) are used to generate the datasets. We classified the results according to 
two questions: “In what fraction of the results, is there the correct polarity in the returned results?” and 
“In what fraction of the results, the algorithm returned only (uniquely) the correct result?”. The answer 
to these two questions is the same for the benchmark methods since they only return one solution -
correct or wrong. In Table 1, the overall results are given. In Table 2, the proportion of correctly returned 
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results among datasets with the different number of cause variables are given. The histogram of 
discoverpolarity results for the datasets with 3 and 4 cause variables are given in Figure 2.  

Table 1: Proportion of Correctly Returned Results in All Datasets  

 Fraction of Correct Results Fraction of Correct & Unique Results 
Discover Polarity  0.986 0.862 
Pearson’s Correlation 0.590 0.590 
SCAM 0.865 0.865 

Table 2: Proportion of Correctly Returned Results in All Datasets  

  
Pearson SCAM 

discoverpolarity 
  All Results Unique Results 

2 cause variables 0.980 0.991 0.999 0.997 
3 cause variables 0.442 0.876 0.980 0.864 
4 cause variables 0.281 0.689 0.978 0.685 

 
Figure 2: Histogram of discoverpolarity results in the datasets with 3 (a) and 4 (b) cause variables 

The results show that discoverpolarity outperforms partial correlation analysis in terms of “returning 
correct result” and “returning correct & unique result” when there is collinearity and/or many cause 
variables in the dataset. Our algorithm outperforms SCAM in datasets with underlying multiplicative 
structures (see Table 3). This is expected since SCAM does not have a monotonic structure for most of 
the multiplicative formulations.   

Table 3: Proportion of Correctly Returned Results of Datasets with Multiplicative Structure  

 Fraction of Correct Results Fraction of Correct & Unique Results 
Discover Polarity  0.975 0.840 
Pearson’s Correlation 0.587 0.587 
SCAM 0.799 0.799 

In cases where the algorithm returns multiple possible polarities, the modeler must choose the most 
plausible of the returned polarities. In addition, the modeler may need to check the link polarities that 
are eliminated in the second phase of algorithm if the number of the observed differences to support 
these eliminations are only a few. Another limitation of discoverpolarity is that the modeler must decide 
on the threshold values used in the algorithm. For some datasets, the default values of the thresholds 
may eliminate all possible polarities, including the true polarity. This may happen if the thresholds used 
in discoverpolarity are high relative to the nature of the data. In such cases, the modeler must decrease 
the threshold values to obtain a reasonable result. On the other hand, if discoverpolarity returns multiple 
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possible polarities, the modeler may prefer to increase the threshold values. However, usage of too high 
thresholds can cause the elimination of true polarity because of high non-linearity in the relations.  

In further research, we plan to focus on decreasing the sensitivity of discoverpolarity to its threshold 
values and other input parameters to make it more robust. It may also be possible to combine the 
strengths of discoverpolarity and SCAM methods to come up with a method stronger than each. Finally, 
by using not only the signs of the differences but also the magnitudes of these differences, one may be 
able to estimate the mathematical forms (additive, multiplicative, or hybrid) of the causal relations. 
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