

Business dynamics of flexibility aggregators: Managing prosumer participation and steering clear of being "too small to bid"

Dr. Merla Kubli

Research conducted at Zurich University of Applied Sciences, Switzerland

Now working at University of St. Gallen, Switzerland

ROMANDE E N E R G I E

In collaboration with Romande Energie (electric utility company)

Zürcher Hochschule für Angewandte Wissenschafte

The rise of the prosumer

School of Engineering INE Institut für Nachhaltige Entwicklung

The diffusion of prosumers and its regional impacts: The case of Romande Energie

wanote Wissenschaften

School of Engineering INE Institut für Nachhaltige Entwicklung

Romande Energie in the year 2035:

Consumers with PV: 28.9% PV share in the electricity mix: 19.3% PV electricity fed into the grid: 156 GWh/year (7.9% of total demand) Increase of the grid tariff due to self-consumption: 10.5% (compared to 2009)

Zürcher Hochschule für Angewandte Wissenschafter

Need and search for flexibility in energy systems

School of Engineering INE Institut für Nachhaltige Entwicklung

Trend towards **rooftop solar** and **home batteries** Increasing **need for flexibility**

On-going search for **new** flexibility solutions

Unused **flexibility potential** from decentralized energy systems.

Battery swarm as one potential solution.

Zürcher Hochschule für Angewandte Wissenschafter

The battery swarm concept

School of Engineering INE Institut für Nachhaltige Entwicklung

Investigating the battery swarm business case with Romande Energie

School of Engineering

INE Institut für

Nachhaltige Entwicklung

What are viable business models for battery swarms that attract customers to participate?

What is the long-term value creation of a battery swarm?

- How can we overcome the **«too-small**to-join» problem?
- From when on do we run into the problem of the **«cannibalization effect»**?

Zürcher Hochschule für Angewandte Wissenschaften

Research approach

- School of Engineering INE Institut für Nachhaltige Entwicklung
- 1. Reference simulation of PV plants and home batteries for the supply area of Romande Energie with the TREES model (Kubli & Ulli-Beer, 2016; Kubli, 2018)
- 2. Model development to capture the business dynamics of a battery swarm

ROMANDE

- Integrate empirical data on customer preferences from a choice experiment for prosumers' willingness to co-create flexibility (Kubli, Loock & Wüstenhagen (2018))
- 4. Simulation analysis of business strategies

All steps were conducted in close collaboration with the SmartLab team of Romande Energie.

The model's core: Pathways to participate on the battery swarm

Zürcher Hochschule für Angewandte Wissenschafte

> School of Engineering INE Institut für Nachhaltige Entwicklung

Key features of the battery swarm (business) model

Zürcher Hochschule für Angewandte Wissenschafte

Revenue streams for flexibility

Profit redistribution across battery swarm participants

Prosumer preferences' to co-create flexibility

- Choice experiment (n=301, current and future solar prosumers) to test different electricity contract that include providing flexibility.
- The contracts were characterized by the following attributes:
 - Monthly electricity costs
 - Use/impact of flexibility
 - Electricity mix for residual demand
 - Contract duration

Stromkosten pro Monat	50 CHF	110 CHF	90 CHF	70 CHF
Nutzung der Flexibilität	No Flex 75% Selbstversorgung mit PV-Strom; Keine Daten werden übermittelt	Flex Medium 45% Selbstversorgung mit PV-Strom; Verbrauchsdaten werden übermittelt	Flex Light 60% Selbstversorgung mit PV-Strom; Nur der Batterie- Ladezustand wird übermittelt	Super Flex 30% Selbstversorgung mil PV-Strom; Verbrauchsdaten werden übermittelt und für Voraussagen genutzt
Strommix (für den Reststrom)	100% Solarstrom	100% Unzertifizierter Graustrom	100% Wasserstrom	100% Atomstrom
Vertragsdauer	4 Jahre	1 Jahr	2 Jahre	Jederzeit kündbar
	0	0	0	0

Published in: Kubli, Loock & Wüstenhagen (2018)

Prosumer preferences' for co-creating flexibility

15.24 CHF/month

Published in: Kubli, Loock & Wüstenhagen (2018)

Battery swarm is a viable, robust business model that attracts participants, when...

- ... profit is redistributed among the participants of the battery swarm,
- ... local and regional revenues streams are added to bridge the «too-small-to join» problem,
- And combining the revenue streams triggers the re-inforcing feedback loop and accelerated participation.
 Financial balance battery swarm

Only BPM = Only revenues from Balancing Power Markets

Battery swarm is a viable, robust business model that attracts participants, when...

 ... additional participants are attracted only as long as additional revenues seem feasible, to avoid the «cannibalization effect».

Battery swarms help to smoothly **integrate decentral**, **renewable energies** into the electricity system, supporting the energy transition.

Only BPM = Only revenues from Balancing Power Markets

Circher Hochschule Tir Angewandte Wasenschaften

Dr. Merla Kubli

Institute for Economy and the Environment University of St. Gallen <u>merla.kubli@unisg.ch</u>

