
38th International Conference of the System Dynamics Society, Bergen, Norway, July 19-23, 2020

System Dynamics Modelling with Kotlin:

From Hierarchical Models to Interactive Simulators

Siniša Sovilj Darko Etinger Zlatko Sirotić Krešimir Pripužić

Juraj Dobrila University of Pula,
Faculty of Informatics

HR-52100 Pula, CROATIA
http://hr.linkedin.com/in/ssovilj

sinisa.sovilj@unipu.hr

Juraj Dobrila University of Pula,
Faculty of Informatics

HR-52100 Pula, CROATIA
darko.etinger@unipu.hr

Istra Tech d.o.o.
HR-52100 Pula, CROATIA
zlatko.sirotic@istratech.hr

University of Zagreb, Faculty of
Electrical Engineering and

Computing
HR-10000 Zagreb, CROATIA

kresimir.pripuzic@fer.hr

Keywords: system dynamics, kotlin, modelling, complex system, hierarchical model, simulator

Funding Source/Alternate Affiliations: This work has been supported in part by Croatian Science

Foundation under the project UIP-2017-05-9066.

Extended Abstract: System dynamics (SD) modelling is traditionally done by graphically using

mostly proprietary software or with couple of open and free software exceptions. Building large

hierarchical models with reusable SD modules is not supported well and building fast and customizable

simulators for interactive learning on multiple target platforms is not trivial.

There are couple of framework/toolkit solutions that fulfill that gap using general-purpose languages

(Java, Python, JavaScript) but they have their own limitations. We asked whether Kotlin, as a new,

modern, statically-typed, null-safe, object-oriented and functional language can do any better and

overcome limitations of other programming languages and frameworks/toolkits. Therefore, we started

to develop Kotlin SD Toolkit which does not exist so far at our best knowledge.

We found that Kotlin as a new, programming language and our Kotlin SD Toolkit as a new tool are

both suitable for modelling larger, hierarchical SD models that support modules (see Table 1) and for

easier development of interactive simulators for multiple target platforms: desktop, web or mobile (see

Figures 1, 2 and 3).

We also measured speed properties without any a priori code optimizations and for now Kotlin SD

Toolkit on our computer needs 7 seconds to numerically integrate simple testing SD model with 1E7

time steps, which is very fast in comparison with others and can be additionally improved.

We will continue to further expand capabilities of the Kotlin SD Toolkit as an open source project and

our contribution to SD community.

http://hr.linkedin.com/in/ssovilj
mailto:sinisa.sovilj@unipu.hr
mailto:darko.etinger@unipu.hr
mailto:zlatko.sirotic@istratech.hr
mailto:kresimir.pripuzic@fer.hr

38th International Conference of the System Dynamics Society, Bergen, Norway, July 19-23, 2020

Table 1. Kotlin code for Innovation/Product diffusion model (also known as Bass diffusion model).

Steps Kotlin code

0) Setup // Static properties (optional)

companion object {

 const val TOTAL_POPULATION_VALUE = 10000 // [customer]

 const val ADVERTISING_EFFECTIVENESS_VALUE = 0.011 // [1/year]

 const val CONTACT_RATE_VALUE = 100 // [1/year]

 const val ADOPTION_FRACTION_VALUE = 0.015 // []

 const val INITIAL_TIME_VALUE = 0 // [year]

 const val FINAL_TIME_VALUE = 10 // [year]

 const val TIME_STEP_VALUE = 0.25 // [year]

}

1) Model init {

 val model = Model()

 // Override default model properties

 model.initialTime = INITIAL_TIME_VALUE

 model.finalTime = FINAL_TIME_VALUE

 model.timeStep = TIME_STEP_VALUE

 model.integration = EulerIntegration()

 model.name = "Innovation/Product Diffusion Model" // optional

2) Entities

 - Constants val TOTAL_POPULATION = model.constant("TOTAL_POPULATION")

 val ADVERTISING_EFFECTIVENESS =

 model.constant("ADVERTISING_EFFECTIVENESS")

 val CONTACT_RATE = model.constant("CONTACT_RATE")

 val ADOPTION_FRACTION = model.constant("ADOPTION_FRACTION")

 - Converters val adoptionFromAdvertising =

 model.converter("adoptionFromAdvertising")

 val adoptionFromWordOfMouth =

 model.converter("adoptionFromWordOfMouth")

 - Stocks val Potential_Adopters = model.stock("Potential_Adopters")

 val Adopters = model.stock("Adopters")

 - Flows val adoptionRate = model.flow("adoptionRate")

 - Modules

3) Initial values

 - Stocks Potential_Adopters.initialValue = { TOTAL_POPULATION }

 Adopters.initialValue = { 0.0 }

4) Equations

 - Constants TOTAL_POPULATION.equation = { TOTAL_POPULATION_VALUE }

 ADVERTISING_EFFECTIVENESS.equation =

 { ADVERTISING_EFFECTIVENESS_VALUE }

 CONTACT_RATE.equation = { CONTACT_RATE_VALUE }

 ADOPTION_FRACTION.equation = { ADOPTION_FRACTION_VALUE }

 - Converters adoptionFromAdvertising.equation =

 { Potential_Adopters * ADVERTISING_EFFECTIVENESS }

38th International Conference of the System Dynamics Society, Bergen, Norway, July 19-23, 2020

 adoptionFromWordOfMouth.equation =

 { CONTACT_RATE * ADOPTION_FRACTION *

 Potential_Adopters * Adopters / TOTAL_POPULATION }

 - Stocks Potential_Adopters.equation = { - adoptionRate }

 Adopters.equation = { adoptionRate }

 - Flows adoptionRate.equation =

 { adoptionFromAdvertising + adoptionFromWordOfMouth }

 - Modules

5) Simulation val simulation = Simulation(model)

6) Outputs simulation.outputs {

 - Text CsvExporter("output.csv", ";"))

 - Image PngExporter("chart.png"))

 - Desktop WinSimulator()

 - Web WebSimulator()

 - Mobile MobSimulator()

 }

7) Run simulation.run()

 }

Figure 1. Desktop Simulator – an interactive simulation environment of the Bass diffusion model. The

interactive simulation environment is a desktop application window and is automatically generated based

on entities’ type (we can change constants interactively, and we can enable or disable plots of any model’s

entities).

38th International Conference of the System Dynamics Society, Bergen, Norway, July 19-23, 2020

Figure 2. Web Simulator – an interactive simulation environment of the Bass diffusion model. The

interactive simulation environment is a web application rendered in any Internet browser and is

automatically generated based on entities’ type. We can change model constants, simulation settings and

display the model diagram as an option.

Figure 3. Mobile Simulator – automatically generated interactive simulation environment for Bass

diffusion model. The interactive simulation environment is an Android mobile application. We can change

model constants and re-run the simulation on a mobile phone.

38th International Conference of the System Dynamics Society, Bergen, Norway, July 19-23, 2020

References

[1] Simantics Team, February 2018. [Online]. Available:

https://www.simantics.org/end_user_wiki/index.php/Simantics_System_Dynamics#Installation_Instructions.

[2] F. Lardinois, "Kotlin is now Google's preferred language for Android app development," May 2019. [Online].

[3] S. Drost and M. Stein, "System Dynamics Java-Framework," February 2017. [Online]. Available:

https://github.com/matthiasstein/SystemDynamics-Framework.

[4] D. Schroeck, "Business Prototyping Toolkit for Python (BPTK-Py)," January 2020. [Online]. Available:

https://pypi.org/project/BPTK-Py/.

[5] B. Powers, "sd.js. open source SD," Spetember 2019. [Online]. Available: https://sdlabs.io/.

[6] B. Powers, "Simulation Speed: Fast," September 2019. [Online]. Available: https://sdlabs.io/speed/.

