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Modeling Obesity Trends among U.S. Children: A Preliminary 

Estimation of Energy Imbalance Gap 
Abstract 

Childhood obesity is a serious public health problem and a major cause of morbidity among 

children in the United States. At its core, obesity results from the imbalance of energy intake and 

energy expenditure, i.e., energy imbalance gap (EIG). The EIG captures the average daily 

difference between energy intake and expenditure. Understanding the dynamics of EIG can help 

us explain the magnitude of changes required in energy intake and physical activity to reverse 

the childhood obesity epidemic. In this paper, we use a novel method in system dynamics and 

quantify the dynamics of EIG over time for US children age 7 and above. Overall, children 

whose BMI percentile are higher than 85 percent (i.e., overweight, obese, and severely obese 

children) showed higher estimated EIG compared to underweight or normal weight children. 

Over time, children across all weight groups showed an increase in their estimated EIG as they 

aged from 7 to 9 years old and then a drop until age 13 which is followed by a major increase 

until age 17.  
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1. Introduction 

In the past four decades, the prevalence of obesity among American children has increased 

significantly. Childhood obesity has been a serious public health problem and a major cause of 

morbidity among children in the US. According to the data from 2016 National Health and 

Nutrition Examination Survey (NHANES), the obesity prevalence was 18.5%, affecting about 

13.7 million children and adolescents aged 2-19 years [1]. Childhood obesity is a major risk 

factor for health complications such as diabetes, gallbladder disease, and obstructive sleep apnea 

[2]. Various factors such as biological, psychosocial, cultural, environmental (food, physical and 

cultural environment), and economic drivers [3] contribute to the prevalence of obesity. The 

dynamics and mechanisms that influence obesity require a systems approach to analyze the 

problem and assess interventions [4].  
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At its core, obesity results from the imbalance of energy intake and energy expenditure in the 

body [5]. Such imbalance can be quantified by the energy imbalance gap (EIG). The EIG 

captures the average daily difference between energy intake and expenditure [5]. Understanding 

the dynamics of EIG can help explain the magnitude of changes required in energy intake and 

physical activity to reverse the childhood obesity epidemic. It can also help policy makers to 

define intervention targets and to estimate the contribution of different obesity interventions on 

future prevalence of childhood obesity. This understanding not only helps in reversing the 

obesity trend but also in the prioritization and allocation of resources to obesity prevention and 

control policies. However, except Fallah-Fini et al. [5], most of the studies in the literature have 

developed the estimates of EIG for the entire population averaged over a long period of time [6, 

7]. Moreover, almost all studies in the literature have focused on estimating EIG for adults.  

In this paper, we use a novel method in system dynamics [8] and quantify the dynamics of EIG 

over time for US children age 7 and above across different sex/ethnicity/weight groups. Correct 

specification of such dynamics across different subpopulations is essential because individuals of 

different ethnicity/sex/weight group may have different obesity trends and may respond 

differently to interventions [5]. 

 

2. Methods 

This study captures the dynamics of childhood obesity among US children over time. The system 

dynamics model developed in this paper is multi-level in the sense that it builds on the 

individual-level model of body weight dynamics for children developed by Hall et al. (2013) [9] 

and it replicates such model to estimate population level trends.  

Our modeling framework is accomplished in four main steps. In the first step, we introduce the 

individual level model of body weight dynamics for children [9] and how such model captures 

the dynamics of body mass index (BMI) in children over time as they are exposed to some levels 

of energy intake and physical activity. In the second step, the energy imbalance gap (EIG) is 

modeled. In the third step, the individual-level model is replicated to develop population level 

measures associated with the distribution of BMI. Lastly, we use the data from NHANES to 

calibrate our model and estimate the dynamics of EIG that can explain the changes in the 
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distributions of BMI among US children across six different subpopulations defined based on 

their sex (male or female) and ethnicity (Non-Hispanic White, Non-Hispanic Black, Mexican-

American). The details of the four steps performed for each subpopulation are below:  

 

Step 1: Individual-level model of body weight dynamics in children 

We modeled the dynamics of weight gain and loss for children using the Hall et al. (2013)’ s 

model of children metabolism and body-weight change [9]. Body weight (BW) in Hall et al. 

(2013)’ s model is represented by two stocks capturing Fat Mass (FM) and Fat Free Mass (FFM) 

associated with individuals. The change in body weight (i.e., fat mass and fat free mass) is 

modeled as the result of an imbalance between energy intake (EI) and energy expenditure (EE). 

Energy expenditure is composed of several components: 1) the Resting Metabolic Rate (RMR) 

which is the energy required to perform vital body functions while body is at rest. RMR mainly 

depends on FM and FFM; 2) the energy needed for physical activity; 3) the energy required for 

digesting food and nutrients consumed (thermic effect of food); 4) the energy required for 

developing new mass or digesting existing mass; and 5) the changes in energy expenditure due to 

perturbation ∆𝐼 away from the reference energy intake associated with normal growth in 

children.  

Equation (1) shows the formula associated with energy expenditure in children adopted from 

Hall et al. (2013) [9], where 𝛾$= 22.4 kcal/(kg.day), 𝛾% = 4.5 kcal/(kg.day), β = 0.24, 𝜂% = 180 

kcal/kg, 𝜂$ = 230 kcal/kg, 𝜌%(=9.4 kcal/g, and 𝜌)%%( = 4.3 ∗ 𝐹𝐹𝑀 + 837 kcal/g. K is a constant 

determined by the initial energy balance condition and takes value of 800 kcal/day for males and 

700 kcal/day for females. 𝛿 is a function of time. 

𝐸𝐸 =
𝐾 + 𝛾%%(𝐹𝐹𝑀 + 𝛾%(𝐹𝑀 + 	𝛿𝐵𝑊 + 𝛽∆𝐼 + ;𝜂%%(𝜌)%%(

𝑝 + 𝜂%(𝜌%(
(1 − 𝑝)A 𝐸𝐼 + 𝑔 ;𝜂%%(𝜌)%%(

− 𝜂%(𝜌%(
A

1 + 𝜂%%(𝜌)%%(
𝑝 + 𝜂%(𝜌%(

(1 − 𝑝)
 (1) 

∆𝐼 in Equation (1) captures the perturbation from the reference energy intake (𝐼CDE)	associated 

with normal growth in children that is calculated as shown in Equation (2), where 𝐸𝐵CDE is the 

reference energy imbalance gap during normal growth in males and females, and 𝐹𝐹𝑀CDE and 
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𝐹𝑀CDE are reference body composition data associated with children who are on trajectory of 

normal growth.  

𝐼CDE = 𝐸𝐵CDE + 	𝐾 + 𝛾%%(𝐹𝐹𝑀CDE + 𝛾%(𝐹𝑀CDE + 	𝛿𝐵𝑊 + FGH
IGH

[(1 − 𝑝)𝐸𝐵CDE −

𝑔] + FGGH
ILGGH

[𝑝𝐸𝐵CDE + 𝑔]  
(2) 

At any time step in the simulation model, the imbalance between energy intake and energy 

expenditure (EI-EE) of individuals is then partitioned into/out of FM and FFM using Forbes’ 

partitioning equation (3) [10]. The partitioning function p for children is defined as below: 

𝑝 = M
MN%(

		,				𝐶 = 10.4	𝑘𝑔 ∗ 𝜌)𝐹𝐹𝑀
IGH

  (3) 

Therefore, the time course of weight loss and gain can be obtained by solving the differential 

equations related to change in FM and FFM as shown in Equation (4). 

𝜌%(
𝑑𝐹𝑀
𝑑𝑡 = (1 − 𝑝)(𝐸𝐼 − 𝐸𝐸) − 𝑔(𝑡) 

𝜌)%%(
𝑑𝐹𝐹𝑀
𝑑𝑡 = 𝑝(𝐸𝐼 − 𝐸𝐸) + 𝑔(𝑡) 

(4) 

where g(t) is a function of time alone and as time increases with progression to adulthood, g(t) 

approaches zero. The rate of change of FM and FFM are then translated into changes in FM 

index (FMI) and FFM index (FFMI) using the data of height trajectory of children and finally the 

rate of change in BMI of individuals is calculated (i.e., dBMI/dt). 

 

Step 2: Modeling the Energy Imbalance Gap (EIG) 

The energy imbalance gap associated with each individual j (represented by 𝐸𝐼𝐺V(𝑡)) was 

modeled as a function of the equilibrium energy expenditure 𝐸𝐸𝐸V∗(𝑡) of individual j (the energy 

required for normal activity, maintenance, and normal growth of the body) and an ‘energy gap 

multiplier’ (represented by 𝜇V(𝑡))—see Equation (5).  
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 𝐸𝐼𝐺V(𝑡) = 𝐸𝐼V(𝑡) − 𝐸𝐸𝐸V∗(𝑡) = 𝜇V(𝑡) ∗ 𝐸𝐸𝐸V∗(𝑡)   (5) 

Energy intake for each representative individual (𝐸𝐼V(𝑡)) was then calculated by adding the 

energy gap to the equilibrium energy expenditure for that individual (𝐸𝐼V(𝑡) = 𝐸𝐸𝐸V∗(𝑡) +

𝐸𝐼𝐺V(𝑡)). A positive (negative) energy imbalance gap multiplier will lead to an increase 

(decrease) in BMI for that group on top of the changes in BMI that have already been made due 

to presence of growth in children.  

The energy gap multiplier 𝜇V(𝑡) was defined as a function of BMI of individual j, age of 

individual j, time, interaction between BMI and age, and interaction between BMI and time, as 

represented in Equation (6). 

𝜇V(𝑡) = Time effect+ BMI effectV +	Age effectV+	Age&BMI Interaction EffectV+	

BMI&Time Interaction EffectV  

where     Time	effect = βc+βd𝑇𝑖𝑚𝑒 + βi(𝑇𝑖𝑚𝑒)d + βj(𝑇𝑖𝑚𝑒)i 

               BMI effectV = βk𝐵𝑀𝐼V + βl(𝐵𝑀𝐼V)mno 

																	Age effectV = βp𝐴𝑔𝑒V + βr(𝐴𝑔𝑒V)msto 

               BMI&Time Interaction EffectV= βcc𝑇𝑖𝑚𝑒𝐵𝑀𝐼V 

               Age&BMI Interaction EffectV= βcd𝐴𝑔𝑒𝐵𝑀𝐼V 

  (6) 

 

Step 3: Modeling population 

To develop the population level model, we replicated the individual level model described in 

Step 1 to develop population level characteristics such as average BMI of the population, 

standard deviation, and different percentiles. All individuals in our model begin at the same age 

(i.e., age 7 in this study) but have unique fat mass and fat free mass at the start of the simulation. 

Given the initial values for fat mass and fat free mass of each individual j and the trajectory of 

energy intake of each individual j (i.e., 𝐸𝐼V(𝑡)), as estimated in steps 1 and 2, the trajectory of 
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BMI of each individual j in the simulation model is generated, and consequently the distribution 

of BMI of the population under analysis is simulated over time.  

In this preliminary study, we assume that all children have the same normal level of physical 

activity over time as specified in the Hall et al. (2013)’s model. Moreover, we assume that initial 

fat mass and fat free mass as well as energy intake trajectory are the only factors that capture 

differences between individuals. We do not consider individual differences due to genetics, 

environmental factors, or how different bodies process nutrients differently. Figure 1 shows a 

simplified representation of our individual-level model and the replication of N=1000 individuals 

to develop a population-level model. 

 

Figure 1: Simplified stock and flow diagram of body weight dynamics   

 

Step 4: Model calibration and estimation of Energy Imbalance Gap (EIG) 

We used nationally representative data of the National Health and Nutrition Examination Survey 

(NHANES) over six waves (1999-2000, 2001-2002, 2002-2003, 2003-2004, 2004-2005, 2005-

2006) to calculate the population distributions of BMI for children. We focused on children age 7 
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and above for six different subpopulations identified by their sex and ethnicities. We used the 

data of the first wave (i.e., 1999-2000) to obtain the BMI distribution of 7 years old children, 

which is also the age that simulation starts at. Consequently, we used the data for the next five 

waves to obtain the BMI distributions at age 9, 11, 13, 15, and 17, respectively. We also chose 

the initial values for FM and FFM of individuals in the simulation such that the distribution of 

BMI of individuals in the model is the same as the distribution of BMI for 7 years old children 

obtained from data of 1999-2000 survey.  

We ran the simulation for 10 years and let each individual j in the model grow and the trajectory 

of their BMI be generated as they are exposed to energy intake 𝐸𝐼V(𝑡). Consequently, our model 

generates the trajectories of BMI distributions from age 7 to 17. We used the Method of 

Simulated Moments (MSM) [8, 11] to estimate parameters βc-βcd in equation (6) by matching 

two sets of moments of BMI distributions: simulated moments generated by the model and 

empirical moments obtained from NHANES. We defined the distributional moments to be mean, 

standard deviation, and the 5th, 50th, 85th, and 95th percentiles of the BMI distributions (in total 30 

moments; 6 moments per two-year intervals from age 9 to 17). This estimation results in 

simulating the trajectories of energy imbalance gap for each individual j (i.e., 𝐸𝐼𝐺V(𝑡)) and, 

consequently, the trajectory of energy intake of each individual j (i.e., 𝐸𝐼V(𝑡)).  

 

3. Results 

The algorithm described in the Methods section was implemented in Vensim software and the 

estimations and analysis of data were done in MATLAB. Following the procedure described in 

the calibration section, Table 1 shows the estimated values for the unknown parameters (βcto 

βcd) and captures the effects and interactions of time, BMI, and age of individuals on the 

estimated energy imbalance gap for non-Hispanic White male children, as preliminary results. In 

the next version of this article, we report the results for all subpopulations. 
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Table 1: Estimated values for parameters associated with energy imbalance gap multiplier 

 Parameter Estimation 

Time Effect 

βc -0.0130 
βd 0.0031 
βi -0.0048 
βj 0.0005 

BMI Effect 
βk 0.0039 
βl -0.0150 
βu 0.0195 

Age Effect 
βp -0.0052 
βr -0.0131 
βcv -0.0045 

Interaction between BMI and Time βcc -0.0015 
Interaction between BMI and Age βcd 0.0005 

 

Figure 2 shows the estimated EIG (Kcal/day) for male non-Hispanic White children age 7 to 17 

for ten different population percentiles (from 5th to 95th percentiles in intervals of 10). For 

example, a 7 years old non-Hispanic White male whose BMI is in the 85th percentile of the 

population has eaten about 58 Kcal/day more than what he needed for normal maintenance and 

growth of his body. Overall, children whose BMI percentile are higher than 85 percent (i.e., 

overweight, obese, and severely obese children) showed higher estimated EIG compared to 

underweight (children with BMI percentile less than 5%) or normal weight (children with BMI 

percentile between 5% and 85%) individuals at each wave.  

Over time, children across all weight groups showed an increase in their estimated EIG from 

1999-00 to 2001-02 as they aged from 7 to 9 years old and then a drop till year 2005-06 when 

they got to age 13, followed by an increase till year 2009-10 as they got to age 17. The 

magnitudes of the EIG at age17 (year 2009-10) proved much higher than other years across all 

weight groups. Moreover, positive values of EIG across all weight groups at age 17 (year 2009-

10) imply prevalence of obesity in the cohort under analysis will increase as children transition 

to age 18.   
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Figure 2: Estimated energy imbalance gap (Kcal/day) for non-Hispanic White males, 7 to 17 

years old 

 

To validate our findings, we compared the distributional moments obtained from survey data 

with the ones obtained from the simulation model across five waves from year 2001-02 to 2009-

10 (See Table 2). Overall, our estimated model was able to generate simulated moments that are 

fairly close to the moments from data. It should be noted that this fit will never be perfect given 

the limitations and assumptions in modeling as discussed earlier. 

 

Table 2: Comparing distributional moments obtained from NHANES data and simulation model 

 

1999-00 2001-02 2003-04 2005-06 2007-08 2009-10
Age 7 Age 9 Age 11 Age 13 Age 15 Age 17

5 13 16 -33 -80 -68 79
15 21 26 -24 -72 -56 117
25 25 32 -17 -65 -46 142
35 30 38 -11 -59 -38 162
45 35 46 -3 -51 -26 189
55 40 53 4 -44 -15 212
65 45 61 12 -35 -2 240
75 51 69 22 -24 14 272
85 58 81 36 -8 36 319
95 76 109 70 31 94 439
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2001-02 2003-04 2005-06 2007-08 2009-10
Age 9 Age 11 Age 13 Age 15 Age 17

NHANES 18.1 20.8 20.3 21.6 25.2
Model 19.7 20.9 20.9 21.1 25.0
NHANES 4.8 4.2 3.8 4.0 6.3
Model 2.6 3.1 3.9 5.0 6.2
NHANES 14.7 15.6 14.1 18.0 17.7
Model 15.9 16.5 15.4 13.5 16.1
NHANES 16.9 20.9 20.5 20.4 23.6
Model 19.5 20.6 20.5 20.8 24.4
NHANES 20.4 26.8 23.9 26.0 29.5
Model 22.4 24.0 24.7 26.0 30.9
NHANES 28.9 27.7 28.8 31.1 37.7
Model 24.6 26.7 28.1 30.3 36.595
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Discussion and Limitations 

Our model is the first in the literature that is capable of estimating the energy imbalance gap 

(average daily difference between energy intake and expenditure) of US children for different 

weight groups, sex, and ethnicities. No such analysis exists in the public health literature. We 

adopted the Method of Simulated Moments to replicate the individual-level model of body 

weight dynamics and develop the population-level distributional moments with respect to their 

BMI values.  

Our preliminary results showed the EIG for non-Hispanic White males age 7 to 17 across six 

waves from 1999-2000 to 2009-2010. The estimated EIG quantifies the amount of energy 

(Kcal/day) that children have consumed above (if positive) or below (if negative) of their 

equilibrium energy expenditure. 

Using our estimated model parameters, we can project future trajectories of EIG in children and 

consequently project future childhood obesity trends. We can also use our estimated model to 

evaluate the effects of various interventions on future prevalence of obesity as long as we can 

translate the effects of those interventions to changes in energy intake and/or physical activity of 

individuals. Finally, we can use the estimated past trajectories of EIG to estimate the contribution 

of different drivers of obesity. 

Our research has several limitations. We have assumed initial body weight and energy intake 

trajectories as the sole sources of difference among individuals. We do not capture any 

heterogeneity among individuals in the simulation due to genetics or environment. Moreover, to 

capture the effect of time, age, and BMI in defining the energy imbalance gap multiplier, we  

specified a general model that allows very flexible, nonlinear relationships with time, age, and 

BMI in the model. To enhance this analysis, we can try other functional forms and compare their 

quality of fit to the NHANES data. Additionally, we can perform required tests to check the 

robustness of our model to extreme conditions. 
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