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Abstract 
The link between structure and behavior is central to System Dynamics, but effective tools for 
understanding that relationship still elude us. The current state of the art in the field of loop 
dominance analysis relies on either practitioner intuition and experience or complex 
algorithmic manipulation in the form of eigenvalue analysis or pathway participation 
metrics.  This paper presents a new and distinct method to find the 'loops that matter' in 
generating model behavior. This is a numeric method capable of determining the impact for 
every loop in a model and identifying which dominate behavior at each point in time.  The 
method was inspired by observations on variable value changes during simulations and has 
been refined using empirical evaluation on a variety of different models. In addition to 
explaining behavior, the method shows promise for improving visualization and aggregation of 
simulation results. 
 
The problem 
The strong link between structure and behavior is fundamental to system dynamics (Sterman, 
2000).  A model uses parametric and structural assumptions to derive behavior.  A system 
dynamics practitioner at a general level must go through the following process: create a 
structure, understand how that structure works, and figure out how to improve that structure. 
The second step in that process is the focus of this paper and is the key to successfully 
performing the third step. By referring back to the model structure, the practitioner can explain 
the reasons why an observed behavior has been produced (Richardson, 1996).   Based on that 
understanding, the practitioner may also propose changes in input values or model structure 
that will cause a more favorable behavior to be produced.  
 
The current state of the art in the field relies on either practitioner intuition and experience 
(the art of modeling and model analysis) or complex algorithmic analysis. The former is taught 
as part of the methodology of model building, while the latter comes from 40 years of work on 
techniques to derive and explain model behavior based on the analysis of structure (see for 
example: Graham, 1977; Forrester 1982; Eberlein, 1984; Davidsen, 1991; Mojtahedzadeh, 1996; 
Ford, 1999; Saleh, 2002; Mojtahedzadeh et al., 2004; Goncalves, 2009; Saleh et al., 2010, 
Kampmann, 2012; Hayward and Boswell, 2014; Moxnes and Davidsen, 2016; Oliva, 2016 and 
Hayward and Roach, 2018.  
 
Ford (1999, p.4-5) clearly stated the needs of the system dynamics field as they apply to loop 
dominance analysis: 
 

“To rigorously analyze loop dominance in all but small and simple models 
and effectively apply analysis results, system dynamicists need at least two 
things: (1) automated analysis tools applicable to models with many loops 
and (2) a clear and unambiguous understanding of loop dominance and how 
it impacts system behavior.”   
 

In this paper we discuss a new loop dominance analysis method and demonstrate its 
performance on the two tests set out by Ford.  For the purposes of this paper, we define one 
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loop as dominant over the others if it is responsible for generating more of the behavior of the 
stocks in the model at a specific point in time relative to the other loops.  Often, there will be 
one singular dominant loop at each point in time for the model, but there are cases where no 
single loop will be solely dominant and multiple loops together will form a plurality and 
therefore together will describe the majority of the behavior of the stocks in a model.  This 
definition holds true for the cases where all stocks are connected to each other and themselves 
by the network of feedback loops in the model (well connected models).  For models where 
there are stocks which do not share feedback loop relationships, we consider each 
subcomponent of inter-related feedback loops separately and we refer to each partition of the 
model’s structure along those lines as a behavior origin feedback loop set that we explain in 
depth in the Defining Loop Scores section of this paper. 
 
Literature review 
The current state of the art in the use of mathematical methods for determining loop impact 
revolves around two methods.  The first one is based on eigenvalue elasticity analysis, the 
second one, uses the pathway participation metric and causal pathways. 
 
Eigenvalues and eigenvectors, specifically eigenvalue elasticity analysis (EEA) 
Forrester (1982) was the first to document that eigenvalue elasticities could be used to explain 
the relative contributions of different loops in models of linear systems.  Since then, the formal 
method of eigenvalue elasticity analysis (EEA) has been further developed and is used to 
determine how model structure produces the dynamic modes of behavior for the model, 
specifically those characterizing the state variables, (in SD called stocks) (Saleh, 2002), 
(Kampmann et al., 2006), (Saleh et al., 2010), (Oliva, 2016). Using EEA, the structure of a model 
is characterized by the eigenvalues and eigenvectors of that model.  It may be demonstrated 
that the dynamic behavior of a linear systems model may be expressed by a linear combination 
of behavior modes, each characterized by a specific eigenvalue and weighed by a factor that 
depends on the eigenvector and the initial state of the model (Saleh et. al., 2010). EEA is 
applied to examine both link and loop significance with regard to the dynamic behavior of the 
model. It does so by identifying the relationship, expressed in the form of the elasticity, 
between the parameters that altogether make up the gains of an individual feedback loop (or 
link) in the model’s structure and the eigenvalues (and eigenvectors) that characterizes the 
dynamic behavior of the model. The significance of a loop (or link) (relative to other loops (or 
links)) is expressed by the eigenvalue elasticity of its gain, i.e. how strongly a change in the gain 
impacts the eigenvalues. Note that this may not only be used to identify the root cause of a 
model´s behavior, but also the leverage points for controlling the system (policy entry points) if 
the model is an accurate representation of the system. Kampmann (2012) developed the 
concept of the independent loop set (ILS) which filters all of the loops in the model into a 
singular set of independent loops which represent the full behavior of the model so that the 
analysis can be effectively completed and interpreted. Oliva (2004) extended Kampmann’s 
work on the ILS by developing an ILS composed only of geodetic loops which he termed the 
shortest independent loop set (SILS) which is the de-facto standard for determining which loops 
to analyze with EEA. 
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The purpose of EEA is more encompassing than the other methods discussed in this paper 
(loops that matter, or the pathway participation metric).  EEA is a general method which 
describes the behavior state space of the model and speaks not only to what behavior the 
model is producing with a single set of input values, but what behavior modes are capable of 
being produced using any set of input values.  According to Oliva (2016) the EEA approach 
satisfies Checkland and Scholes (1990) three E’s criteria to assess performance.  It is efficacious, 
efficient, and effective.   
 
The downsides of the EEA method are that it is mathematically complex, requires a deep 
understanding of linear algebra, and may be applied effectively to only a very small subset of 
models unless they are modified (Saleh et al., 2010).  Specifically, models must be linearized to 
make them well suited for such an analysis, a process that is hard to automate (though that is a 
problem actively being worked on) and which may change the simulation results.  Oliva (2016) 
when analyzing his service quality model had to, among other changes, remove a stock in order 
to produce a full rank system matrix which was necessary to perform an EEA analysis and 
change model equations to ensure the model was continuously differentiable which did have 
an impact on simulation results.   
 
Pathway participation metric (PPM) and other causal pathway techniques 
The pathway participation metric (PPM) approach does not use eigenvalues to describe model 
structure. Rather, it focuses on the links between variables (Mojtahedzadeh et al, 2004).   The 
starting point in the PPM approach is the behavior of a single variable, typically a stock.  The 
behavior of that single variable is partitioned in time, based on phases where the variable 
maintains slope and convexity across time with the first and second time derivatives not 
changing sign (Mojtahedzadeh et al, 2004).  This then limits the behavior of the variable at each 
of these phases to 7 patterns enumerated by Mojtahedzadeh et al, (2004).  The PPM approach 
then determines dominance by tracing along the causal pathways between the stock under 
study and its ancestor stocks to determine which structure is most influential in explaining the 
pattern of behavior exhibited by that stock during the selected phase.  Mojtahedzadeh et al., 
(2004) explains that it does this by determining the magnitude of the change in the net flow of 
the stock under study by making minute changes to that stock.  The method then compares 
these changes in the net flow to determine the change with the largest magnitude in the same 
direction as the stock under study thereby identifying the most important (dominant) pathway 
governing the behavior of that stock during that phase.  
 
Relative to the general EEA that yields results covering the entire behavior space (all modes of 
behavior that may potentially be produced by the model structure), PPM is considerably more 
specific.  PPM, like the loops that matter method, is not aimed at analyzing the entire 
behavioral space of a model.  PPM relies on the specific input currently impacting the model 
and the specific parameter values characterizing the model structure being analyzed. Using this 
method, therefore, we can only determine the impact of causal pathways based on the given 
set of values for inputs and parameters.  The only way to determine what behavior modes a 
model is capable of producing using PPM is to specifically generate each of them (potentially 
via a Monte Carlo sensitivity analysis) and analyze each one independently. 
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Among the benefits of the PPM approach, relative to the EEA approach is that, for it to work, it 
does not require manipulation of the model (in theory), nor is there a need for linearization. 
Moreover, according to the research by Mojtahedzadeh (1996), repeated applications of the 
PPM method will cause a convergence on a unique piece of structure as the one most 
influential with regard to the behavior phase under study.  Kampmann and Oliva (2009) state 
that one of the key benefits to the PPM method is its direct connection between behavior and 
structure. 
 
Kampmann and Oliva (2009) have criticized PPM for its inability to clearly explain oscillatory 
systems and also because PPM can fail to identify structure when there are two pathways of 
similar importance (Kampmann and Oliva, 2009). Hayward and Boswell (2014) have responded 
to those criticisms by simplifying PPM via the loop impact method.  The loop impact method 
can be implemented in a standard system dynamics model (and software) without any change 
in the underlying software by adding equations to the model.  The key differences of the loop 
impact method as compared to PPM is that it does not look for dominant pathways, but instead 
focuses on the direct impacts that one stock has on another (Hayward and Boswell 2014).  In 
addition, the loop impact method identifies instances where multiple loops are required to 
explain the behavior of a stock.  
 
Expanding on the work done by Hayward and Boswell (2014), Hayward and Roach (2018) have 
developed a framework around the loop impact method couched in the mathematics of 
Newtonian physics to explain the model as a series of interacting forces.  The stated purpose of 
this work is to provide a more intuitive and complete understanding of loop dominance in 
system dynamics models. 
 
The loops that matter method 
In this paper, we present the LTM (Loops That Matter) method which determines loop 
dominance for models of any size, complexity, or dimensionality. LTM is computed using values 
realized during a simulation and can therefore be used on continuous and discontinuous 
models without requiring linearization. We compute loop scores at each time in the simulation. 
The analysis of the relative scores at a particular time identifies which loops are dominating 
behavior at that time (dependent upon the model input values), and the display of the scores 
over time builds understanding of why the model behaves the way it does. Loop scores are 
computed as the product of the link scores for all the links involved in the loop. Because of this, 
and the definition of link scores, the amount of detail used in defining a model does not change 
the loop scores. There can be many variables included with simple equations, or a small 
number of variables with complex equations and the results will be the same. 
 
We use the standard definition of a loop as a set of interconnections between variables in a 
model that form a closed path from a variable back to itself. The interconnections we refer to 
as links. Loop scores are computed as products of link scores, and the definition of a link score 
is tailored to this specific use. In particular, links from variables with unchanging input such as 
constants, are given a link score of 0 because change in the precedent variable does not 
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contribute to the change in the antecedent variable. Thus, both loop and link scores are 
completely focused on realized rather than potential influence, and we will return to this point 
in the conclusion.  
 
The link score computation has been designed for the purpose of determining loop dominance, 
specifically to be used in the loop power and loop score calculations described later.  Link 
scores are not a general metric to describe the strength or importance of any specific link.  The 
most obvious manifestation of the lack of generality is that a link from an unchanging variable, 
such as a constant (or even a variable which is temporarily constant), has a score that is 
definitionally 0 over the time periods where the variable is constant.  This is so because the 
when links in loops do not change, the loop is inactive and therefore not currently of 
consequence.  This is not to say parameters are unimportant. Even though the link score for all 
links from parameters to variables are 0, the parameter values determine link and loop scores 
throughout the model.  This impact is discussed in depth during the discussion of the inventory 
workforce model.  
 
We compute link scores for the influence of flows on stocks over time as well as the direct 
(instantaneous) algebraic influence of a variable on an auxiliary value. Conceptually these will 
be treated as the same, both being factors (i.e. multiplied) in the determination of a loop score, 
but they do require a slightly different computation as discussed below.  
 
Defining link scores for auxiliary variables 
To simplify the presentation, we will define the link score assuming there are two inputs (x and 
y) to the dependent variable z characterized by the equation 𝑧 = 𝑓(𝑥, 𝑦). 
 
This easily generalizes to the case where there are more (or fewer) inputs to, i.e.  links 
associated with, z.  
 
The link score for the link x → z is: 
 

𝐿𝑆+, = - ./
Δ+𝑧
Δz / ∙ 𝑠𝑖𝑔𝑛 7

Δ+𝑧
Δx 9: ,

0, Δz = 0	or	Δx = 0
 

(1) 
Where Δz is the change in z from the previous time to the current time, Δx is the change in x, 
and  Δ+𝑧 is the amount z would have changed, conditionally, if x had changed the amount it did, 
but y had not changed.  The first term in this equation represents the magnitude of the 
contribution, the second is an expression of the polarity. 
 
The exceptions for no change in x or z are included for completeness, but are not important to 
the end goal of calculating a loop score. In the case of x, the magnitude goes to 0 and the sign, 
though not computable, is not relevant. In the case of z, any link using z will not be influenced 
by z, and so any loop going through z will have a loop score of 0.  
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The magnitude of the effect (force is a good analogy) that x has on z is relative to all of the 
effects on z. This is a dimensionless quantity, and if all of the effects are in the same direction, it 
is the fraction of the change in z that originates in a change in x.  If the formulation of z is linear, 
then the values are restricted to the range between 0 and 1. When there are opposing forces, 
this number may be very large, but this does not harm the overall analysis of loop dominance 
as we will show below. The absolute value is used because the change in z could be in either 
direction due to the forces from other variables, regardless of the magnitude of the effect that 
x has, implying that the polarity can and would be wrong as demonstrated in Table 2. 
 
The polarity of a link is defined as the sign of the partial difference at time t.  This formulation is 
the same as the one used in Richardson 1995, though the formulation there was as a partial 
derivative, not difference.  The polarity numerator is the same as it is for the magnitude, but 
the denominator is the change in x. When x does not change, the score is definitionally 0, 
though the magnitude would be 0 in any case.  As noted earlier, scores for links emanating from 
constants will be 0. Nevertheless, the value of the constant may determine other link scores in 
the model.  
 
We also define the link score to be 0 when z does not change (independent of cases where x 
does not change). This is both a strength and a weakness of our approach when exhibiting 
which loops matter. It is a strength because we typically struggle to understand what makes 
things change. Balancing forces, which would keep a value unchanging, may usually be 
understood from the steady state characteristics of a model. It is a weakness, because it hides 
dynamics that might manifest itself, but have not done so in our particular model run. For 
example, if a model is in an unstable equilibrium, all the link and loop scores would be 0, even 
though any perturbation would cause dynamics. This is discussed further in the final section of 
our paper. 
 
Defining link scores for stocks 
Stocks change only over time and, more importantly, they change as a result of flows, not 
changes in flows. This makes the computation of link scores for links going into stocks simpler. 
Assume the stock equation 𝑠 = ∫(𝑖 − 𝑜)  where s is the stock, i is the inflow, and o is the 
outflow. We assume a single inflow and outflow for simplicity of presentation, the 
generalization to multiple inflows and outflows is straightforward. 
 

𝐼𝑛𝑓𝑙𝑜𝑤:	𝐿𝑆FG = 7/
𝑖

𝑖 − 𝑜/ ∗ 19				𝑂𝑢𝑡𝑓𝑙𝑜𝑤:	𝐿𝑆M
G = NO

𝑜
𝑖 − 𝑜O ∗ −1P 

(2) 
We use the same form as we do in previous link score for clarity, and again assume that the link 
score is 0 if the net flow (𝑖 − 𝑜) is 0.  
 
In this case a 0 inflow or outflow will result in a 0 link score. The link scores when a stock has 
only a small change because the inflow and outflow are nearly balanced will be large, and close 
in magnitude. 
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For models in which inflows and outflows are not explicit, but implicitly represented by an 
equation such as 𝑎𝑣𝑔 = ∫((𝑖𝑛𝑝𝑢𝑡 − 𝑎𝑣𝑔)/𝑠𝑡) for a smooth, we decompose the expression 
into an explicitly net flow such as ((𝑖𝑛𝑝𝑢𝑡 − 𝑎𝑣𝑔)/𝑠𝑡). The link score for this expression then 
ends up being the link score that matters, since the stock portion is 1 by definition.  
 
Computational considerations 
It is important to remember that link scores are being calculated with the intent of determining 
loop impact.  If the LTM method detects a variable which does not change, the exercise of 
determining a link score for any link that has that variable as its dependent variable is irrelevant 
because the next link in the loop will yield a link score of 0, which means any loop that this link 
is a part of, is inactive for that particular time.  
 
We make our computations as time progresses in the model. The first computation can be 
made only after the model has been initialized and moved forward in time. In the results we 
present, we use the model’s dt or time step to determine how often to compute link and loop 
scores, this is most straightforward using the Euler integration method.  Conceptually the 
computation could proceed at a longer or shorter sampling interval allowing it to work with a 
non-fixed time step integration methods such as Runge-Kutta. 
 
Computing link score magnitudes 
To calculate the link score magnitude for an auxiliary (non-stock) variable, 𝑧 , we decompose its 
equation to identify its various inputs. For each of the inputs, e.g. 𝑥, we calculate Δ+𝑧, assuming 
all the other inputs have not changed their values. Only this single input, 𝑥, is assumed to take 
its new value at the current time. If there is only one input, the link score is plus or minus 1 
depending on the sign of UV

UW
. If there are multiple inputs, the equation is recomputed using this 

one input value from the current time and the other input values from the previous time to 
yield Δ+𝑧. 
 
An implication of this is that the equation for z will be computed not just once, but once for 
every input at every time. This is a proportionally large computational burden, but is not that 
significant relative to other manipulations such as linearization and dynamics matrix decompo-
sition.   
 
Because the calculation uses only already computed values, the LTM method works on 
discontinuous as well as on continuous models. 
 
For the example, in equation C=A+B there are two link score magnitudes that must be calcu-
lated, one for each link A→C and B→C.  To calculate the link score magnitude, two Δ+𝑧 values 
must be calculated, ΔX𝐶and ΔZ𝐶.  The calculation of these can be seen in Table 1: 
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Table 1: Components necessary to calculate the link score magnitude for the links A→C and B→C based on the equation C = 
A+B. 

Variable Time 1 Time 2 𝚫𝐳 𝚫𝒙𝒛 
𝚫𝒙𝒛
𝚫𝐳  

A 5 7  2 2/3 
B 5 6  1 1/3 
C 10 13 3   

 
The absolute value is used in this calculation limiting this calculation’s ability to determine 
polarity.  This is done because the sign generated does not accurately report polarity in all 
cases.  An example of this error can be seen in Table 2 where, without the absolute value, the 
link scores calculated have exactly opposite polarities from what is correct due to the 
aforementioned effects of the other variables on Δz or in the context of the equation in Table 
2, ΔD. 
 
Table 2: Demonstration of wrong polarity when calculating the link score magnitude for the links A→D, B→D, and C→D based 
on the equation D = (A+B)/C. 

Variable Time 1 Time 2 𝚫𝐳 𝚫𝒙𝒛 
𝚫𝒙𝒛
𝚫𝐳  

A 7 10  1 -5 
B 2 4  0.67 -3.33 
C 3 5  -1.2 6 
D 3 2.8 -0.2   

 
 
Computing link score polarities 
The link score polarity for an auxiliary (non-stock) variable is calculated in the same fashion as 
the magnitude.  We decompose the equation of the variable we are studying to identify the 
different inputs. For each of the inputs we calculate Δ+𝑧 by assuming all the other inputs had 
the values of the previous time, and only the input 𝑥 has the value at the current time.  The 
difference between the polarity and magnitude calculations is that for polarity we calculate the 
partial difference as Richardson (1995) does which means instead of putting Δz in the 
denominator, we put Δx.  Table 3 demonstrates how to calculate a link score polarity for the 
example equation D = (A+B)/C.  
 
Table 3: Demonstration of how to calculate the polarity term of the link score for the links A→D, B→D, and C→D based the 
equation D = (A+B)/C. 

Variable Time 1 Time 2 𝚫𝐱 𝚫𝒙𝒛 𝒔𝒊𝒈𝒏7
𝚫𝒙𝒛
𝚫𝐱 9 

A 7 10 3 1 +1 
B 2 2    
C 3 5 2 -1.2 -1 



 10 

D 3 2.4    
 
 
The calculation is continued for the above example shown in Table 3, in Table 4 where we show 
how this method for determining polarity can capture the shift in polarity when, in this case C 
goes negative. 
 
Table 4: Continuation from Table 3, a demonstration of how to calculate the polarity term of the link score showing that the 
technique captures changes in polarity for the links A→D, B→D, and C→D based the equation D = (A+B)/C. 

Variable Time 2 Time 3 𝚫𝐱 𝚫𝒙𝒛 𝒔𝒊𝒈𝒏7
𝚫𝒙𝒛
𝚫𝐱 9 

A 10 13 3 1 +1 
B 2 2    
C 5 -1 -1 -16 +1 
D 2.4 -15    

 
 
Defining loop scores 
The loop score is a normalized measure taking on a value between -1 and 1.  It reports the 
polarity and instantaneous percentage contribution of a feedback loop to the behavior of all 
stocks in its behavior origin feedback loop set relative to the other feedback loops in that same 
subset of the SILS.  By comparing loop scores we can determine which loops are dominant in 
the behavior origin feedback loop set under study.   
 
A behavior origin feedback loop set is the collection of feedback loops where each feedback 
loop in the set affects at least one stock in a set of stocks where each stock in the set affects 
itself and all other stocks in that same set. A behavior origin feedback loop set represents a 
tightly coupled subset of the SILS.  Often times there is only a single behavior origin feedback 
loop set for an entire model and the SILS does not need to be further partitioned (well 
connected models), but as shown in the inventory workforce case below that is not always true.  
Behavior origin feedback loop sets are necessary to make sure that we compare loops which 
affect stocks where the determinants of behavior for those stocks are shared.  This is what 
allows the loop score to describe the percentange contribution of a feedback loop across 
multiple stocks. 
 
Loop power is the product of all of the link scores in the loop.  Note that this multiplies both the 
magnitude and the sign of the different link scores, with an odd number of negative links 
yielding a negative loop. The product is used following the chain rule and this also accurately 
represents the effects of a dead link in an otherwise ‘active’ loop.  This has the consequence of 
assigning any loop with a dead link a loop power (and consequently a loop score) of 0.  The 
magnitude of loop power represents the force that a loop is exerting to change stock behavior 
across all stocks in its loop set. A loop score is the result of normalizing loop power values 
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across all loops in a feedback loop subset.  The sign of a loop score or a loop power represents 
the polarity of the feedback loop. 
 
This normalization process is critical to maintaining scores that are easy to work with. Because 
of the definitions of link scores, loop power values can become very large as an equilibrium is 
approached. This is shown below for the bass diffusion model. In this case, even though the 
power of the loops effectively approaches infinity, the transition from positive to negative loop 
dominance is smooth and clearly visible when using the loop score because it is normalized.  
The concept of the loop set is important only for this normalization process and ensures that 
loop power values are safely compared.  An example of incomparable loop power values is 
shown below in the case of the inventory workforce model where the feedback loop B3 is not 
comparable with the others since it does not share stocks with B1 or B2.  Both the loop score 
and loop power concepts are rigorously defined below in equations (3a and 3b). 
 

																						𝐿𝑜𝑜𝑝	𝑃𝑜𝑤𝑒𝑟(𝐿+) = N𝐿𝑆Fh
ih ∙ 𝐿𝑆Fj

ij 	…	∙ 𝐿𝑆Fl
ilP																			(3b) 

 
															𝐿𝑜𝑜𝑝	𝑆𝑐𝑜𝑟𝑒no = pnMMq	rMstu(no,) ∑ |nMMq	rMstu(nx)|l

xyz⁄ |          (3b) 
 
 
Applications of the LTM method to the bass diffusion model 
 
A good model to demonstrate the LTM process is the bass diffusion model depicted in Figure 1 
below. 

 
Figure 1: The stock and flow structure of the bass diffusion model analyzed 

This version of the bass diffusion model runs from Time 0 to Time 15 with the inflection point 
reached between time 9.5625 and 9.625.  It contains two loops, one balancing and one 
reinforcing. 
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• Balancing (B1) 
o probability of contact with potentials 
o potentials contacts with adopters 
o adoption from word of mouth 
o adopting 
o potential adopters  

 
• Reinforcing (R1) 

o adopter contacts 
o potentials contacts with adopters 
o adoptions from word of mouth 
o adopting 
o adopters 

 
In Table 5, the calculation of the loop power of B1 at specific points in time is demonstrated 
and compared to the loop power of R1. 
 

Table 5: Loop power in the bass diffusion model calculated to 4 significant digits 

Link T1 T9.5 T9.5625 T9.625 T15 
Probability of 
contact with 
potentials → 

potentials contacts 
with adopters 

 

0.000 9.958 
 

9358 10.91 
 

1.000 
 

Potentials contacts 
with adopters → 
adoption from 
word of mouth 

 

1.000 1.000 1.000 1.000 1.000 

Adoption from 
word of mouth → 

adopting 
 

1.000 1.000 1.000 1.000 1.000 

Adopting → 
potential adopters 

 

-1.000 -1.000 -1.000 -1.000 -1.000 

Potential adopters 
→ probability of 

contact with 
potentials 

1.000 1.000 1.000 1.000 1.000 

B1 Loop Power 0.000 -9.958 -9358 -10.91 -1.000 
R1 Loop Power 1.000  11.46  9806  10.41  0.000 

 
 
The only link score which shows a change (the active link), in the loop B1, is the first one listed, 
located at the point of the non-linearity, the junction between the reinforcing and balancing 
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feedback loop.  Plotting out the loop scores for this model yields the graph portrayed in Figure 
2 which demonstrates the common knowledge about the shifting feedback loop dominance in 
the bass diffusion model. 
 

 
Figure 2: Bass diffusion loop scores plotted over time against Adopters. 

 
Another interesting insight from performing these calculations is that the loop power values of 
these two feedback loops are highly variable providing a justification for the normalization to 
loop scores.  Figure 3 plots on a logarithmic scale how each of the feedback loops gains and 
loses power relative to the other over time, producing the shifting feedback loop dominance. 
 

 
Figure 3: Bass diffusion loop power values 
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Understanding the yeast alcohol model 
 
The yeast alcohol model has been widely studied using EEA and PPM in spite of the fact that the 
model contains a conceptual flaw (see below). Therefore it is a good candidate to use to 
demonstrate the efficacy of the LTM method, to show how it compares to previous research 
(Saleh, 2002; Güneralp, 2006; Phaff et al., 2006; Mojtahedzadeh, 2008; Hayward and Boswell, 
2014), and to reveal flaws in model formulations.   
 

 
Figure 4: Yeast alcohol model 

 
Figure 4 shows the structure of the model as analyzed which was done so using a DT of .5.  The 
model structure; B = C*(1.1-0.1*A)/b1, D=C*EXP(A-11)/d1, sAdt= p * C , is initialized as such; 
A=0, B=1, b1=16, d1=30, and p=0.01. It contains 4 loops, all in a single feedback loop subset.  
Loop R, represents the birth of the cells C, characterized by the fertility, b1.  Notice that there is 
a flaw in the formulation of B in this model causing B to take negative values and the polarity of 
R to change so that it acts as an additional “deaths loop” under conditions of high levels of 
alcohol A.  Loop B1 represents the natural death of the cells.  The main link in Loop B2 
represents the slowing of the birth of cells due to the presence of alcohol.  The main link in 
Loop B3 represents the increasing death of cells due to the presence of alcohol.  This model 
produces the overshoot and collapse behavior seen in Figure 5 which matches the behavior 
generated by Phaff et al. (2006) and Mojtahedzadeh (2008).  Hayward and Boswell (2014) use 
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the same parameterization as us and the others, but appears to have used a Stella version of 
this model in which uniflows were applied for B and D which hides the formulation flaw and 
causes their results to differ. 
 

 
Figure 5: Yeast Alcohol loop scores plotted against C1 

Table 6: Dominant loops in yeast alcohol model.  

Time range Phase 1: 0-51.5 Phase 2: 52-66 Phase 3: 66.5-75 Phase 4: 75.5-100 
Dominant loop R B2 B31 B1 

 
In Table 6 the dominant loops for each phase of the model’s behavior have been recorded. 
Comparing these results with Ford’s (1999) behavioral approach as applied by Phaff et al. 
(2006), we identify the same exact 4 phases and agree with the analysis in principal, but as 
Hayward and Boswell (2014) and Mojtahedzadeh (2008) also point out, Phase 3 is dominated 
by B3 rather than B2 and B3 together as Phaff et al.’s implementation of Ford’s analysis would 
suggest.  From this we can conclude that our analysis of this model matches Ford’s behavioral 
approach with the noted discrepancy.  Our results match exactly those of Mojtahedzadeh’s 
2008 application of the PPM method. 
                                                
1 At time 74 no single feedback loop is dominant because this is the point where R is at its 
strongest as a balancing feedback loop.  After time 70 when the birth rate is negative R is acting 
in a similar fashion as B1.  At Time 74 summing the strength of R & B1 yields a loop score which 
is stronger than B3, but still not over 50%, B3 is the single strongest feedback loop at that exact 
moment and we therefore consider it alone to be dominant across phase 3. 
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When we compare our results to Hayward and Boswell’s (2014) PPM based loop impact 
method, we agree in principal (to the extent their analysis matches the others), but a true 
match cannot be confirmed because of problems that arise due to the differences in the 
models that we now compare.  We posit that their shifts between phases happen at different 
times because of their use of uniflows.  For instance, they note that the shift between B2 and 
B3 occurs before the peak in C which does not match any of the other analyses. We posit that 
this is not due to an inherent flaw in their analysis technique, but rather in application because 
they are using uniflows in their model which changes both structure and behavior.  Their 
analysis does not include the series of complex hidden links and potential feedback loops that 
in effect dictate C due to the fact that, in Stella, the inclusion of those uniflows creates hidden 
links between the flows and their stocks.  In addition, the use of a uniflow for B does not allow 
R to switch from a reinforcing to a balancing feedback loop as A increases which does occur 
with this parameterization during Phases 3 and 4.  Though on a macro level, our analyses do 
agree about the dominance in the four phases, but it is not clear if we agree about the timing of 
those shifts relative to the changes in behavior of C, and we do not show a combined 
dominance of B1, B2, and B3 at the inflection point of the growth in C as they report.  
 
Our results in Figure 5 and Table 6 match the EEA analysis of this model performed by Phaff et 
al. (2006).  Phaff et al. conclude that the behavior of Phase 1 is dominated by R with B2 
restraining the growth of C.  In phase 2 they remark that B2 is now dominant, but R is still a 
significant factor in explaining C which can be seen in Figure 5 because B2 has a loop score less 
then -.5 and R is the only other active loop until time ~60 where B3 starts becoming active in 
preparation for phase 3.  In phase 3, they point to B1 and B3 together as describing the 
behavior of C which is true according to our analysis, but our analysis finds that B31 is dominant 
throughout that time period.  They then find that during phase 4 B1 is dominant over B3 which 
can be seen in Figure 5 as B1 starts growing quickly at the end of phase 3 reaching a loop score 
of nearly -1 shortly after the start of phase 4. 
 
 
Using LTM to understand oscillations 
 
Identifying proper oscillatory behavior as the outcome of a negative feedback loop rather than 
shifting feedback loop dominance is an important benchmark for determining the utility LTM.  A  
model that illustrates our analysis well is the inventory workforce model which appears in 
Figure 4. 
. 
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Figure 6: Inventory workforce model 

 
This model runs from Time 0 to Time 60 and has only three balancing feedback loops that 
appear in two different behavior origin feedback loop sets.  The graphical function inside of the 
‘demand’ variable acts like a step function, triggering a single increase in demand between 
times 1 and 2 which sets off a dampened oscillation in both Workers and Inventory. 
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§ Expected Demand 
§ changing expected 

 
The two loops in this model that contain the stocks with the oscillatory behavior are B1 and B2 
of Loop Set 1.  As seen in Figure 7 B2 is responsible for the oscillation, the longer it is active the 
more pronounced the oscillations are. That tells us that by increasing the delay in time to hire 
or fire, we increase the cumulative power of the B2 loop causing the oscillations to be more 
pronounced and to last longer.   The loop score of B1 tells us that the dominant mode of 
behavior in this model is to find a stable equilibrium.  These results diverge significantly from 
those of Mojtahedzadeh (2008) and Hayward and Roach (2018) who explains the behavior of 
similar inventory workforce models as the shifting feedback loop dominance of B1 and B2.  Also 
of note in Figure 7 is the time period before the shock in demand: Then this model is in 
equilibrium and, therefore, LTM cannot inform our analyze the model as all link scores are 
considered 0. 
 

 
 

 
 

Figure 7: Results of LTM analysis of the Inventory Workforce model showing the effect of time to hire or fire on loop impact and 
Workers. 
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Conclusions 
 
As demonstrated, the LTM method provides an easy way to understand and identify, through 
computation, which feedback loops in a model dominate or in other words describe more of 
the behavior at each point in time. Dominance is loop set wide, based on the effect on all 
variables, and is typically driven by the stocks that are changing proportionally most quickly, 
and the feedback acting in support of that movement.  As we have seen in the examples, this 
measure of dominance correlates well with our structure-based understanding of relatively 
simple systems. The LTM method has several considerable advantages outlined here:   
 
Most importantly, this method is generally applicable to all models without any manipulation or 
modification and the format of the results of the analysis are simple, easily interpretable graphs 
of behavior over time. LTM makes use of the existing skillsets of all modelers and most model 
consumers and is thus easily accessible.   As for its general applicability, at present the current 
implementation of the LTM method works with any non-arrayed XMILE compliant model 
containing the most common built in functions and graphical nonlinear relationships. Since the 
method uses only values calculated by the model as it runs, the structure of the model never 
needs to change to accommodate LTM analyses.  Finally, since the field is so used to mapping 
out and analyzing behavior over time, it is very beneficial that we conduct our analysis over 
time in the same format so that it is easier to parse, compare, and understand loop dominance 
results. 
 
The second key advantage to the LTM method is its relative simplicity.  The method as currently 
developed does not use complex mathematical constructs which are not already in use by the 
majority of practitioners.  From a mathematical perspective the concept of the Δ+𝑧 is the most 
difficult part of the method because of its unfamiliar terminology, and not necessarily because 
of any inherent complexity in the idea itself.  The advantage of a simpler method is that it can 
be understood by all practitioners so that when it comes time to apply the method, 
practitioners can know ‘what it is doing’ due to the transparency of the method. 
 
The third key advantage is that this method is relatively easy to implement in existing 
simulation engines, especially those that the authors have taken part in constructing. This 
means its uptake should be relatively painless by software vendors in the field if they so choose. 
In addition to the key advantages listed above, the LTM method allows for the development of 
new and exciting visualization tools including animated stock-and-flow diagrams where the 
links and flows change color and size due to changes in polarity or link strength, - in response to 
Sterman in Business Dynamics (2000).  Going even further, the LTM method allows for the 
possibility of automated CLD generation and animation.  Because the LTM method is able to say 
on a link-by-link basis which are the key (dynamic) links in the model, it is possible, using the 
method, to automatically generate a CLD collapsing all of the ‘unimportant’ static links with 
scores of 0, +1.0, or -1.0 into links which are conveying a change, which exist at the junction 
points of the loops.  This will allow for the automated generation of structurally correct, 
minimal CLDs that accurately portray the stuctural components that predominantly produce 
the dynamics of the model, - laid out according to best practices. 
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While using only computed variable values is a strength of LTM, it also means that only realized, 
and never latent, model behavior can be analyzed. Thus, unlike EEA techniques, LTM on its own 
is unable to provide a general model level of understanding.  Some of this understanding, 
including behavioral sensitivity to parametric changes, can be gained through a combination of 
sensitivity and LTM analysis such as suggested below. 
 
Additionally, the LTM method is not able to determine loop impact without a change in the 
model state.  As models approach equilibrium, we can see the loop scores balance one another 
even as they become unbounded, but when a model is in equilibrium all loop scores are 0. 
Therefore, models in  equilibrium cannot be analyzed using LTM.  An example of this is a simple 
“bathtub” population model where the birth fraction equals the death fraction.  The limitations 
of the link score definitionally define the loop power for both loops to be 0 because there is no 
change across a timestep, dt.   A potential solution to this problem from a purely 
methodological perspective is to start introducing minute changes in these situations in order 
to measure their impact on loop dominance, but the authors are wary of this approach because 
of the impacts thas has on discrete and discontinuous models.  This is an area which requires 
future study.  Currently, models in equilibrium are much better analyzed using EEA methods 
like those suggested by Oliva (2016).  An alternative approach would be for the model author to 
offset the model state from its equilibrium using a STEP function or other modeling construct 
for making constants vary due to exogenous forces. 
 
An additional strength and weakness of the LTM method is that it focuses exclusively on 
endogenously generated behavior. Such a focus is a hallmark of System Dynamics, but is 
problematic for models where behavior is driven through external forcing functions that 
dominate the effects of feedback in the model.  Loop score dominance, in this case, may have 
little to do with behavior generated. Models of this sort are currently much better analyzed 
using the loop impact method of Hayward and Boswell (2014).  
 
There are a variety of interesting extensions to LTM that combine it with other analysis 
techniques. The most obvious one is to combine it with sensitivity analysis so that the realized 
behavior sets encompass the potential behavior sets. For example, using extreme condition 
testing could, combined with LTM, be used to show that the model is producing the right 
results for the right reasons.  LTM could also be combined with optimization, for example using 
optimizers to maximize/minimize loop scores.  This would allow practitioners to maximize the 
impact of favorable loops while minimizing the impact of unfavorable loops in order to 
automatically generate better, more robust policy recommendations.  Another area of study 
would include loop scores in the outputs of Monte-Carlo sensitivity analyses which would allow 
us to measure the robustness of loop impact to policy or parameter changes. Monte Carlo 
analysis could also be used to measure the sensitivity of loop power to changes in parameter 
values.   
 
Finally, it is necessary to testing and analyse larger and more varied models id we are to 
increase our confidence in the general utility of the LTM method.  In general, though, the 
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authors are hopeful that the techniques laid out in this paper, will offer a significant utility  and 
enhance our analysis and understanding of models for years to come. 
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