
 1

HealthSim: A Management Flight Simulator to Support Resource
Collaborative Decision Making for Pandemic Preparedness

1. INTRODUCTION .. 1
2. MOTIVATION FOR HEALTHSIM .. 2
3. PANDEMIC MODEL ... 6
4. SOFTWARE DESIGN PROCESS .. 11
5. FUNCTIONAL REQUIREMENTS .. 13
6. NON-FUNCTIONAL REQUIREMENTS ... 15
7. THE GAME ... 19
8. NEXT STEPS AND CONCLUSIONS .. 24
9. REFERENCES .. 24

Abstract

With the convergence of risk factors driving disease emergence, the amplification and spread of pandemic
prone pathogens pose a significant threat to mankind. Public health professionals require tools to help
understand the dynamics of disease spread, and the impact resources and collaborative behaviour can have
in order to mitigate against potentially adverse outcomes. HealthSim is an interactive, distributed, role-
playing management flight simulator, which allows participants to explore key issues related to pandemic
preparedness. The system design was informed by a series of workshops with public health professionals,
and the implementation is based on open source visualisation and client/server technologies. The paper
presents the background and rationale for HealthSim, the underlying spatial simulation model, the system
architecture and initial tests and evaluation. Future work is discussed, whereby HealthSim can have a role
as (1) as interactive simulator to support public health professionals, and (2) as a experimental laboratory
to assess how decision makers perform in dynamic collaborative resource sharing scenarios.

1. Introduction

Decision making in complex systems is challenging, due to factors such as dynamic

complexity, time delays between taking a decision and observing its effects, and a lack of

awareness of the feedback implications, and side effects, of our actions (J. D. Sterman, 1994).

In order to enhance our learning in complex dynamic systems, management flight simulators

can provide an immersive learning experience, which encourages reflection and the potential

to develop new skills, attributes, and new ways of thinking. Although management flight

simulators provide unambiguous feedback about the consequences of diverse sets of policies,

this mere interaction does not warrant users to overcome the flaws in their mental models

(J. D. Sterman, 1994) . To achieve effective learning, it is necessary to complement the process

with a systematic, oriented and enjoyable sequence of activities that allows users to engage

in “reflective thought” whereby users not only evaluate policies’ performance but their

rationale as well. Namely, the management flight simulator needs to be evolved into a serious
game, where the main purpose is to convey experiential lessons which can be transferred to

the real-world system (Lane, 1995).

System dynamics has frequently worked closely with management teams to build transparent

and comprehensible simulation models (Lane, 1995), and has a rich tradition of role-playing

 2

flight simulators used to support learning in complex systems, including the beer distribution

game (J. Sterman, 1989), fisheries resource game based on tragedy of the commons (Hardin,

1968), world climate role-plays (J. Sterman et al., 2015), US automobile markets (Keith,

Naumov, & Sterman, 2017). In the public health sphere, system dynamics models have been

successfully deployed to understand the policy options for infectious disease mitigation, from

policy models targeting strategies for polio eradication (Thompson & Tebbens, 2008) , to

theoretical models of disease spread (Lamberson, 2018). However, to date, there has not

been an integrated learning flight simulator to support decision making for pandemic

preparedness. This paper describes HealthSim, a management flight simulator to support

public health professions to explore the impact of an unfolding pandemic, and how their

decisions related to resource deployment and sharing can impact the trajectory of an

outbreak.

2. Motivation for HealthSim

The context for the development of HealthSim was a collaborative European Union (EU)

funded project entitled PANDEM1, whose purpose was to identify viable innovative concepts

to strengthen capacity building for pandemic risk management in the EU (J. Duggan, Hayes,

Jilani, Wurmel, & Connolly, 2016). A pandemic is defined as an epidemic occurring worldwide,

or over a very wide area, crossing international boundaries and usually affecting a large

number of people (Last, Harris, Thuriaux, & Spasoff, 2001). While this definition can be

applied to many infectious diseases (e.g. cholera, HIV), the focus of the project was centred

on the rapid spread of an infectious agent over a shorter time period, which would place

significant stresses on the functioning of health and economic systems. The project was

organised across a number of integrated work packages2, including:

• Surveillance, which involved a comprehensive threat analysis and developed

pandemic scenarios to identify gaps. This work also assessed current systems for

surveillance and risk assessment at national, EU and global levels to identify good

practices for pandemic preparedness and response.

• Communications, which assessed best practice in communications that had previously

been used in preparing for, and responding to, earlier epidemics and pandemics.

• Governance, which examined the existing legal and policy frameworks at global,

European and national levels, with the aim of identifying commonalities, disconnects

and priority challenges for future research.

• Gaps, Needs and Solutions, which involved workshops to identify needs and

innovations to strengthen pandemic management, the development of a matrix to

examine current gaps and propose solutions to address these gaps, and the

1 PANDEM was coordinated by the National University of Ireland Galway, and the partners included: the London

School of Hygiene and Tropical Medicine, Université Catholique Louvain, World Health Organisation, Public

Health Agency of Sweden (Folkhälsomyndigheten), and the Swedish Defence Research Agency (FOI).
2 https://cordis.europa.eu/project/rcn/197272/factsheet/en

 3

consolidation of an integrated solution specification to chart the potential of ICT

technologies for supporting pandemic preparedness.

Expert workshops formed a key part in the identification and validation of requirements. The

first of these was held at the Metropole Hotel, Brussels, on February 17-18th, 2016.

Participants included the PANDEM consortium and 26 invited experts from the EU and USA

from a range of related backgrounds including public health, microbiology, law, defence,

security, insurance and crisis management. Three working groups were established:

surveillance, communications, and governance. The surveillance working group explored

issues such as the identification of pandemic threats, the preparedness phase, the detection

phase, and the pandemic phase, where the focus was on good practice, gaps and needs and

research and innovations. The communications working group focused on communication

between governing bodies and professionals, as well as communication with the general

public. It also explored gaps and needs at the policy level (e.g. finding the right level of warning

messages to the public), and at a user level (e.g. how to establish trust with highly resistant

communities exhibiting “vaccine hesitancy”). The governance working group focused on four

priority thematic areas: communication; surveillance; isolation, quarantine, border control

and social distancing; and equity and prioritisation of healthcare. Overall, this initial workshop

provided a valuable opportunity for the consortium to engage with a wide range of experts,

and it led to the identification of a number of key gaps, improvement needs and potential

solutions in the three areas of surveillance, communications and governance. This output was

then documented, and further input through phone-based interviews with public health

experts was conducted, and this information was then made available for the second expert

workshop.

The second PANDEM workshop – Integrated Solutions for Pandemic Management - was held

at the Fondation Universitaire in Brussels on the 21st-22nd September 2016. This workshop

systematically reviewed and evaluated the findings from the project’s integrated gap analysis
and solution specification, and engaged with 20 experts from nine EU member states in areas

including microbiology, information technology, defence, emergency management and

serious games sectors, as well as representatives from the Directorate General of Migration

and Home Affairs (DG-HOME), Directorate General for Health and Food Safety (DG-SANTE),

and the European Centre for Disease Prevention and Control (ECDC). The workshop took the

form of a “living lab” environment, based on a novel influenza virus scenario, which created

a common backdrop in which potential new tools, processes and systems could be discussed

within a real-world context. Participants were divided into three multi-disciplinary groups,

and six topics were presented (informed by the earlier workshop) as research priorities,

including: (1) Surveillance and Information Management, (2) Communications (3)

Governance, (4) Training and Capacity Building, (5) Logistics, and (6) Diagnostics. A structured

discussion was facilitated for each of these areas through a summary that included a

description of current gaps, possible solutions, potential impact and ideal situation within 5

years. For example, table 1 shows a summary from topic (1), surveillance and information

management, and the overall analysis of gaps and solutions for new predictive modelling

tools to assist as part of a pandemic response.

 4

Current Gaps Analysis of possible development of an epidemic is based on information

from traditional sources (sentinel, laboratory). Predictive information is

often missing or showing a wide variation of possible outcomes.

Possible
Solutions

Transdisciplinary collaborative research used to identify multiple data

sources to produce likely scenarios for unfolding pandemic/high impact

epidemic.

Potential
Impact

Provision of information to implement countermeasures in an efficient

way during a pandemic, and flatten the epidemic curve. Give a baseline

to enable identification of the most efficient measures.

Ideal Solution
within 5-10
years

Predictive analytics that can quickly deliver useful predictive data during

an outbreak. Informed by “big data” encompassing a wide spectrum of

information feeds, including demographics, environmental data, vector

data, individual and traditional data sources.

Table 1: Predictive modelling tool incorporating One Health perspectives

While the workshop and subsequent recommendations focused on six research priorities, the

theme that focused on training and capacity building formed the motivating context for the

HealthSim solution. Under topic four, it was acknowledged that pandemic management

depends on core capacities to prepare and respond to infectious disease threats, and that a

knowledgeable skilled workforce is essential. The key role of training, game-based learning,

and cross sectoral networking and simulation exercises for pandemic readiness was

emphasised. As part of this, a priority challenge was to develop, test and validate a game

based learning tool for pandemic preparedness, aimed at pandemic responders and decision

makers, where the game replicated the transmission dynamics of a fast moving pathogen,

and allowed for the dispensing of resources to mitigate the progression (i.e. “flatten the

curve”). The overall process for the HealthSim project is shown in figure 1, where the

feedback from expert workshops, literature reviews, and from the design of a resource-based

simulator informed the overall design.

Figure 1: The process of identifying requirements for HealthSim

PANDEM
Expert

Workshop #1

PANDEM
Expert

Workshop #2

Initial
Simulator

Requirements

PANDEMCap
Simulator

Refined
Simulator

Requirements

HealthSim
Beta Version

HealthSim
Evaluation

HealthSim
Release

 5

The initial requirements were further validated through a proof of concept interactive

simulator (Yañez, Duggan, Hayes, Jilani, & Connolly, 2017), which built on existing resource-

based models for pandemic preparedness (Stein et al., 2012). These requirements encompass

a number of features for the flight simulator, namely:

• The game should support public health training aimed at an interdisciplinary team of

pandemic responders and decision makers.

• The game should be based on a scenario of a rapid outbreak of a virus, most likely to

be a novel form of influenza.

• The game should be team-based, with different roles taken on by each member of a

multidisciplinary team.

• The game should record all decisions by participants, in order to facilitate a thorough

debriefing session to discuss the decision making logic of each team.

• The game should be based on a spatial transmission model, with a mechanism to

model the spread of the virus from one area to another.

• The game should have resource constraints which impact on the burden of disease.

For influenza, resources required included vaccines, antivirals and ventilators.

• The game should allow for teams to share resources, in order to counteract the

pathogen.

• The game should provide a mechanism to separate those who are severely ill from

those who have a mild or moderate infection.

• The game should have an economic cost measure to allow for determining the success

of the interventions for each team.

These requirements have formed the basis for the system design and implementation of

HealthSim, which is shown as the beta version in figure 1. This version, which is close to

completion and will be described in more detail in the following sections, will be evaluated

on a test group, and feedback will also be gained from public health professionals in relation

to the learning outcomes, and the ease of use of the software. Based on these information

gathering processes, final changes to the software will be made, and the first release made

available. The multiplayer flight simulator will also be supported by comprehensive

documentation, similar to the LearningEdge set of simulators (J. Sterman, 2014), including (1)

a description of the strategic issue addressed, and the problem area focus, (2) an

accompanying case study, which will include a pandemic scenario (E. Vynnycky & Edmunds,

2008), and a summary of how resource modelling can be integrated with transmission models

(Stein et al., 2012), and (3) the simulators application areas in terms of training (i.e. public

health professionals), and courses, which would include health sciences, resource economics,

decision making, and system dynamics.

 6

3. Pandemic Model

The overall structure of the pandemic model is shown in figure 2, and it consists of a number

of interrelated model sectors, including: (1) a transmission model, which is based on the SIR

model of disease transmission; (2) a number of resource acquisition models that capture

decision ordering decisions and also the supply chain dynamics of orders flowing through the

different stages, and, (3) a financial model that represents the monetary flows through a

country.

Figure 2: Overall structure of the pandemic preparedness model

This model structure is replicated for each country in the simulation, and each country is

allocated a spatial location in terms of an x-location and y-location, as this information can

be used to model infectious contacts between different areas. The transmission model is

shown in figure 3, and is an extension of the classic Susceptibe-Infected-Recovered (SIR) model

from epidemiology (Anderson & May, 1992), with a number of infectious compartments to

cover the different scenarios and medical outcomes. These include: Infected Non-Severe,
Infected in Quarantine, Infected Severe and Infected Antivirals. All of these stocks contribute

to the calculation of the force of infection for each region, where the force of infection,

lambda (λ), is defined as the rate at which susceptible individuals become infected per unit

time (Emilia Vynnycky & White, 2010).

HealthSim
Model

Transmission
Model

Financial
Model

Resource
Model

Vaccine
Supply Chain

Model

Ventilator
Supply Chain

Model

Antiviral
Supply Chain

Model

 7

Figure 3: Transmission Model

 8

The spatial contact structure for the model is based on the whom acquires infection from
whom (WAIFM) matrix structure (E. Vynnycky & Edmunds, 2008), and is captured by the

parameter bij, which represents the effective per capita contacts between infectious

individuals in region j with susceptible individuals in region i. These values are moderated by

a distancing factor, so that the effective contacts depend on the proximity of countries (1),

where a power law equation is used to dampen the effective contact rates, based on the

euclidean distance between the two regions (2), where ! ≥ 0.

%&'(= 	 %&'' 	× 	,-'(+ 10
12

(1)

-'(= 	3,4' − 4(0
6
+ ,7' −	7(0

6

(2)

The force of infection (λ) for each region involves a weighted sum of each contributing region

(3), for each of the infectious cohorts (I, IQ, IAV and IS) specified. The WAIFW matrix (4) is

evaluated based on the effective contact matrix from (1), and the population of the

susceptible region. A weighting factor 8'is used as a multiplier to moderate the contact rates

for each infectious group, which could be based on reduced interactions (e.g. patients in

hospital who are isolated, or patients remaining at home because of quarantine), or based on

a reduced viral load, in the case of patients taking antivirals.

9
:;
⋮
:=
> = 	 9

?;; … ?;=
⋮ ⋮ ⋮
?;= … ?==

> 	×		A8; 	9
B;
⋮
B=
> +		86 	9

BC;
⋮
BC=

> + 8D 	9
BEF;
⋮

BEF=
> + 8G 	9

BH;
⋮
BH=

>I

(3)

?'(= 	
%&'(
J'

 (4)

In addition to the infection rate flows (IR and IRS), there are two other flow types in the

transmission model:

• First order delays that model recovery from infection, and eventually flow into the

recovered set of stocks (including long term morbidity for those who are severely

infected and do not receive enhanced medical service due to lack of resource

availability.

• Resource constrained flows (e.g. VR, IRAV, ISR) which are governed by resource

availability. In turn resources acquisition is constrained by financial resources, and the

supply line delays governing shipments.

 9

The resource constrained flows are specified in the supply chain sub-models, one of which is

shown in figure 4. The model is based on the stock management structure (J. Sterman, 2000),

but is simplified as the ordering heuristic is exogenous as it will be determined by each team

in the flight simulator game. Player orders flow into the supply line, which then are delivered

using a pipeline delay (to support a realistic decision environment for players where it would

be expected that all orders will arrive together). Players also control a number of additional

flows, including antivirals dispensed to infected patients, and antivirals shared with other

countries. Donations also change the antiviral stockpile, and a spoilage fraction also reduces

the amount of resources available.

Figure 4: Resource Model

The fraction of patients treated with antivirals is formulated using a first order control

structure, expressed in a fractional decrease variable. This was done to simplify the

transmission model, and delegate the calculation to the resources submodel. The theoretical

maximum resources dispensed is a first order structure (5), and the maximum is then

expressed using the min function (6). Finally, this is reformulated as a fractional decrease rate

through (7).

Kℎ&MN&OP%QR	SQ4PTUT	EVOPWPNQRX	YPXZ&VX&-
= 	 BV[&%O&-1 EVOPWPNQR	YPXZ&VXPV\	Y&RQ7⁄

(5)

SQ4PTUT	EVOPWPNQRX	YPXZ&VX&-
= min	(Kℎ&MN&OP%QR	SQ4PTUT	EVOPWPNQRX	YPXZ&VX&-, EVOPWPNQR	HOM%cZPR&)

(6)

E%OUQR	EVOPWPNQR	eNQ%OPMV
= fP-f(SQ4PTUT	EVOPWPNQRX	YPXZ&VX&-, BV[&%O&-1)

(7)

Antiviral
Supply Line Antiviral Stockpile

Antiviral Orders Antiviral Orders
Arriving

Total Antivirals
Dispensed

Antivirals
Shared

Antivirals
Spoiled

Antivirals
Dispensed

Antiviral
Shipment Delay

Actual Antiviral
Fraction

Antiviral
Dispensing Delay

Theoretical Maximum
Antivirals Dispensed

Antivirals
Spoilage Fraction

Maximum Antivirals
Dispensed

Maximum Antivirals
Purchases Possible

Total
Required
Antiviral
Orders

<Resources for
Antivirals>

<Antiviral Cost
Per Unit>

<Infected1>

<IRAV>

Total Antivirals
Ordered

AVO

Antivirals
Received

Total Antivirals
Spoiled

Init Antiviral
Supply Line

Init Antiviral
Stockpile

Total Antivirals
Received

ITAVR

Total Antivirals
Shared

 10

The third sector type is the financial model, shown in figure 5, which is a simple stock and

flow model to keep track of financial resource flows. There is one inflow to the main stock

(Financial Resources), and this is donations received from other countries. The outflows

include resources donated (to other countries), and the stock is also depleted by spends on

the three types of resources (vaccines, antivirals and ventilators). In the game user interface,

players are not permitted to spend more than they have accumulated, therefore a mechanism

for first order control is maintained for financial resources throughout the game.

Figure 5: Financial Model

An additional set of equations are required to calculate how well a country performs during

the simulation run. This economic measure is based on the stocks in the transmission model

that represent those in the population who are unable to work due to illness, or have a

reduced capacity for work, because of the long term impact of a severe illness. The equation

for cumulative days lost is represented as an integral (8), with the flow a sum of the stocks

that impact worker availability (9, 10).

gUTURQOPW&	YQ7X	hMXO = BJKijkEh(YQ7X	hMXO, 0)

(8)

YQ7X	hMXO = 	BV[&%O&-	JMVH&W&N& + BV[&%O&-	EVOPFPNQRX
+ BV[&%O&-	PV	CUQNQVOPV& + BV[&%O&-	H&W&N&
+ k&XMUN%&	EP-&-	k&%MW&N7 + JMV	k&XMUN%&	k&%MW&N7
+ hMV\	K&NT	SMNlP-PO7	 × 	YQ7X	hMXO	eNQ%OPMV

(9)

YQ7X	hMXO	eNQ%OPMV = 0.75

(10)

 11

A cost is assigned to the cumulative days lost (11), through a multiplier for average worker

productivity. The total cost then uses (11), and factors in all spend on resources (vaccines,

antivirals and ventilators), total donations in terms of financial resources, and also any

financial resources received. This ensures a zero sum game dynamic, where donations will

increase the cost base of the donor, and reduce the cost calculation for the recipient.

gMXO	M[YQ7X	hMXO = gUTURQOPW&	YQ7X	hMXO	 ×	
																																																			EW&NQ\&	oMNc&N	pNM-U%OPWPO7

(11)

KMOQR	gMXO = gMXO	M[YQ7X	hMXO + KMOQR	ePVQV%PQR	k&XMUN%&X	YMVQO&- +
KMOQR	HZ&V-	MV	FQ%%PV&X + KMOQR	HZ&V-	MV	EVOPWPNQRX +
KMOQR	HZ&V-	MV	F&VOPRQOMNX − KMOQR	ePVQV%QR	k&XMUN%&X	k&%&PW&-

(12)

4. Software Design Process

As discussed in the introduction section, although management flight simulators provide

unambiguous feedback about the consequences of diverse sets of policies, this mere

interaction does not warrant users to overcome the flaws in their mental models (J. D.

Sterman, 1994). To achieve effective learning, it is necessary to complement the process with

a systematic, oriented and enjoyable sequence of activities that allows users to engage in

“reflective thought” whereby users not only evaluate policies’ performance but their

rationale as well. Namely, the management flight needs to be evolved into a ‘serious game’.

A serious game is an entertaining game whose main purpose is to convey experiential lessons

which can be transferred to the real-world system (Lane, 1995). The implementation of this

kind of games may be done with or without the aid of computers. In fact, there exists a board

version of the well-known Beer Game which involves virtual crates of beer being moved

around a board (J. Sterman, 1989). Notwithstanding this flexibility, the implementation of a

game that couples pandemic dynamics with supply chain management renders the task of

implementing a physical game impractical. It is even more inappropriate given the number of

technological resources available. As a consequence, serious game development is essentially

a software development activity.

Because serious games are intended for use by someone apart from the developers (or

modellers), crafting these applications require more than writing code haphazardly or

creating self-validated interfaces product of the amalgamation of a few time-series, knobs

and switches. On the contrary, it involves a structured and step-by-step process to address

key aspects of personal software (Sommerville, 2015), including:

• Acceptability: Software should deliver the product envisioned by stakeholders.

• Dependable and security: Software should not cause physical or economic damage

in the event of failure and has to be secure so that malicious users cannot access or

damage the system.

• Efficiency: Software should not make wasteful use of system resources.

 12

• Maintainability: Software should be written in such a way that it can evolve to

meet the changing needs of customers.

Software engineering is the discipline that is concerned with these aspects from the early

stages of system specification through to maintaining the system after it has been

implemented. By adopting a systematic and organised approach, quality software can be

produced within schedule and budget (Sommerville, 2015). It has to be noted however, there

is no one-size-fits-all method for software development. It is the nature of the expected

product and the specific context that determine the appropriate approach to tackle the

development endeavour.

It is commonplace that at the start of any project, stakeholders do not clearly envision the

goals to achieve, or that halfway down the road, priorities vary due to the ever-changing

environment in which they operate. Fortunately, unlike civil engineering where all activities

must be thoroughly planned and specified prior to the actual building, software construction

permits incremental development through prototyping. By doing so, it is cheaper and easier

to make changes in the software as it is being developed (Sommerville, 2015). Any method

that adapts swiftly to changes in the environment is known as Agile (Beck et al., 2001).

Figure 6. Activities in AMDD

Amongst the many Agile methodologies, the Agile Model Driven Development (AMDD) is

deemed pertinent for the management flight simulator development. AMDD focuses on early

identification of what the game will do and what technology will support the game

development and implementation. This timely envisioning allows the development team to

Iteration 0: Envisioning

Initial
Requirements
Envisioning

(days)

Initial
Architectural
Envisioning

(days)

Iteration 1: Development

Iteration 2: Development

Iteration n: Development

Test Driven Development
(TDD)

(hours)

Model Storming
(minutes)

Iteration Modelling
(hours)

 13

foresee technical risks, allocate efforts efficiently and engage stakeholders throughout the

process.

Figure 6 (Ambler, 2007) depicts the sequence of activities throughout the lifecycle of a

project. An agile project begins with an initial vision of the product which subsequently takes

shape into a working application through several iterations. At the onset, stakeholders meet

to identify the project’s high-level scope, draw initial requirements and outline the

technology that fits such requirements. This initial envisioning leads the development team

to set a task backlog and complete it (sprint) in a period of 1-2 weeks. After this sprint,

stakeholders and the development team gather again to observe the produced results. Based

on such output, the product vision is refined which translates into additions or removals to

the task backlog. Sprints are repeated until the software satisfies or fits its intended use (fulfils

requirements – software validation-).

In System Dynamics terms, shown in figure 7, agile development could be represented as a

goal-seeking structure. In the absence of floating goals (fluctuations in the ‘software vision’

stock), the behaviour is dominated by the simple balancing loop on the right (B1), and the

software built matches the initial envisioning. However, that scenario is all but unrealistic. As

it has been stated, stakeholders continuously modify their expectations and requirements,

resulting in increases or decreases to the task backlog (B2 and B3). Consequently, the

developer team modifies the software to adjust to these new demands. In other words, the

gap between the updated state of expectations and the actual development is dynamically

closed.

Figure 7. Qualitative diagram of Agile development

5. Functional requirements

Backlog

Software	vision

Software

Decrease

Sprints

Periodical	meetings

Development

Stakeholders	goals

Increase

Changes	in

vision

desired	backlog

B1

B2

B3

 14

According to AMDD, building an application may take several iterations. Implementing

HealthSim was no exception, and it demanded various adjustments that range from high-level

scope changes to shifts in technological components, in this paper the crafting is presented

as a single iteration to illustrate the output from each procedure.

Bearing in mind the goal set for the application – to facilitate the understating of key issues

related to pandemic preparedness -, the initial task of any software project is to envision what

the product will do to accomplished the defined goal or in software jargon, specify functional

requirements. Use case methodology fits properly in this task due to it serves to communicate

from one person to another, often to people with no special training, the system’s behaviour

under various conditions as it responds to a request from one of the stakeholders in a simple

text or diagram. They are popular largely because they tell coherent stories about how the

system will behave in use (Cockburn, 2000).

In this case, HealthSim interacts primarily with two stakeholders: an instructor and a set of

players (Figure 8). Both need to validate their credentials to gain access to the system’s

functionalities. Instructors create sessions by the configuring game’s conditions and teams’

characteristics. Once sessions have been configured, players join teams. After both actors

complete the game setting, the system displays a tailored interface to each individual

depending on the role and team (if he or she is a player). In these interfaces, players make

decisions to fix a problematic situation. Subsequently, the instructor collects players’ policies

to feed them as an input to the system dynamics model. Afterward, the application simulates

the model and presents the results on the interfaces. Moreover, while players deliberate their

course of action, they interact with fellow users via chat.

Figure 8. Use case diagram

 15

6. Non-functional requirements

Thus far, the main requirements do not yet impose technological restrictions. Any tool that

fulfils these specifications is a candidate to serve as the implementation means. For making

such a crucial choice, it is imperative to think about the "quality attributes" of the software.

In other words, how each use case is executed. These attributes are also known as non-

functional requirements.

SD Simulation

As it has been stated, users are intended to recognise the complexity in pandemic risk and

emergency management through the interaction with System Dynamics models. It follows

that the software must run these microworlds. However, the constraint is not limited only to

run simulations; the application must allow ‘discrete steps’ to feed the model with inputs

from the players.

Back-end server

 The game in its simplest form consists of an instructor and a player who share information

between themselves. In a more regular setup, the number of players may exceed half a dozen

and each player makes more than one decision per round. This situation entails a need for

the instructor to collect tens of inputs in just one round. Without computer aid, the instructor

would manually organise and transform all the information pieces in the specific format

required by the application. Besides being a cumbersome task, any potential mistype

jeopardises the integrity of the results. To avoid such a pitfall, the application must

automatically collect data from the players, format the information and feed it into the

simulation model. Therefore, the application must include a communication system working

through several workstations supported by a server or back-end application.

Web

In addition to the gameplay, the setup stage must be as seamless as possible. Since the game

ought to be an enjoyable experience, lengthy software installations may frustrate players and

decrease their interest in the exercise. Hence, the application must require little to none

installation procedures. Notwithstanding that the variety of operating systems (Windows,

Mac, Linux, Android, iOS) and devices (laptop, desktop, smartphone, tablet) put an apparent

strain on application’s adaptability; thanks to web-standard technologies, applications can be

used by anyone through a recent web browser.

Visual design

Amongst the reasons (Sterman, 1994; Lane, 1995) that hinder microworlds’ effectiveness,

visual design is frequently overlooked or considered merely in an aesthetic fashion, rather

than a feature that may obscure the insights from a useful model by communication

shortcomings. In serious games, developers strive for mimicking real-life dashboards that

inform decisions. A dashboard is a visual vehicle that conveys the most important information

needed to achieve one or more objectives. It is often consolidated on a single computer

 16

screen so it can be monitored at glance. Surprisingly, most information dashboards that are

used in organisations fall far short in their potential (Few, 2013). Few also contends that:

“The root of the problem is not technology, at least not primarily – but poor visual design. To
serve their purpose and fulfill their potential, dashboards must display a dense array of
information in a small amount of space and in a manner that communicates clearly and
immediately. This requires design that taps into and leverages the power of visual perception,
which enables us to sense and process large chunks of information rapidly. This power can
only be utilized when the visual design of dashboards is central to the development process
and is informed by a solid understanding of visual perception.”

In short, visual design involves a thoughtful reflection on what works, and why, regarding

perception. Such an understanding facilitates the communication of dynamic behaviours

through small, concise, direct and clear display media. Moreover, to serve its purpose,

dashboards must be adapted to the requirements of a person or a group of people (language,

conventions, and so on). Taking into account that effective communication and customisation

play important roles in the application’s success, it thus follows that the development tool

must support the creation of flexible data visualisations grounded on sounded visual design

principles.

Databases

Serious games’ learning opportunities are not exclusive to players; each game session

provides rich amounts of data from which developers and modellers can enhance the product

(software and the underlying SD model). To facilitate this process, the application must store

the information generated from players’ decisions information in one or more databases.

Version control

The process of developing an application should be an enjoyable experience for developers

as well. Given that requirements vary more often than not, during the development phase

and even after the implementation phase, each component is modified, dropped, or even

recovered due to stakeholders’ second thoughts. These fluctuations may wreak havoc on the

building process should an appropriate version control method is not integrated. Version

control means the management of any changes to the application. A well-functioning version

control system allows a developer to keep track of every single change in an application since

its inception and restore previous versions seamlessly. Nevertheless, change management

should mirror on every developer's computer the complete codebase - including its full

history. Hence, the application must support distributed version control.

Code

A corollary that stems naturally from the previous requirement is that the application must

be built entirely in programming code, instead of point-and-click or Graphical User Interfaces

– GUI-. Besides enabling version control, well-written code is reproducible: it describes

unambiguously each step that produces a certain result.

 17

Furthermore, GUIs do not provide the necessary flexibility to tailor an application to the

distinct challenges that each effort demands. On the contrary, pre-built components delimit

what the software can and cannot do (as any good software). However, serious game

development requires an ample and eclectic set of tools that a single GUI cannot provide. In

some situations, those tools may not even exist. Therefore, the creation of new functionalities

is almost inescapable.

Open-source

At the beginning of this section, it was mentioned that any tool that meets the functional

requirements could serve as the implementation tool. After introducing non-functional

requirements the number is significantly reduced, to none. There is indeed no single

proprietary development software that adheres to such a description. As a consequence, one

must resort to a quest of components that perform one or various requirements, and equally

important, that seamlessly integrate. Yet again, commercial software’s cost precludes this

course of action.

Fortunately, during the last decades, there has been an explosive growth of open-source

technology, ranging from interface design to esoteric databases. This type of software allows

any person to inspect, modify, and enhance the source code. It is not surprising that many

companies nowadays build their businesses around this community-based and free3

technology. In addition to lower costs, open source software benefits development by

preventing the chaos generated by vendors when they stop producing or supporting a

product. Source code availability fosters a culture of collaboration, offers a great degree of

customisation, exposes vulnerabilities for all to see, to the extent that users may fix errors or

even improve functionalities by themselves. These features have shaped a rich and variegated

ecosystem of specialised tools that share communication standards, resulting in an

unbounded development catalogue from which programmers may choose.

3 The term “free” is conceived in terms of accessibility, not in terms of price. However, almost all free software

is gratis.

 18

Figure 8. Architecture diagram

The architectural envisioning is consolidated by conflating all non-functional requirements

into a diagram (figure 8) that describes the application’s high-level structures and the

associated technologies.

On the front end, a user (either player or instructor) interacts with the application through a

web-browser interface whose visual design is supported by Bootstrap and D3. On the one

hand, Bootstrap is an open source toolkit for developing with HTML, CSS, and Javascript. It

boosts web design thanks to its catalogue of pre-built blocks of code. On the other hand, D3

is a JavaScript library for producing dynamic, interactive data visualizations (Murray, 2017),

for example:

The abbreviation D3 references the tool’s full name, Data-Driven Documents. The data
is provided by you, and the documents are web-based documents, meaning any- thing
that can be rendered by a web browser, such as HTML and SVG. D3 does the driving,
in the sense that it connects the data to the documents.

Of course, the name also functions as a clever allusion to the network of technologies
underlying the tool itself: the W3, or World Wide Web, or, today, simply “the web.”

Hence, by the use of the widely implemented SVG, HTML, and CSS standards, D3 allows great

control over the final visual result. This entails an unconstrained design in which effective

visual principles can be applied.

On the back end, a server component handles requests from users sent through a bi-

directional communication channel (WebSocket) created by Socket IO, a JavaScript library.

Each request consists of an instruction and an optional payload. Based on the instruction, the

server component performs a specific process to meet users’ demands. Such a component is

implemented in Node JS, an open source development platform for executing JavaScript code

server-side. Node is often used for real-time applications given that it provides a persistent

connection from the browser to the server.

 19

Although Node itself provides a wide array of capabilities, it does not include model

simulation. It can, however, assign such a task to a more competent delegate and act as an

intermediary between users and that delegate: R. It is a programming language and free

software environment for statistical computing and graphics. Due to the vast community of

developers which have built over 10.000 libraries, System Dynamics simulation is part of R’s

toolkit (Jim Duggan, 2018) thanks to the deSolve library. In conjunction with the packages

Tidyverse and Jsonlite, results can navigate all the way from the server through the user’s

browser given that all the parts along the streamline share a communication standard (JSON).

Finally, Git and Github work in tandem to manage changes in the codebase. By doing so, it is

possible to compare files, identify differences, and merge the changes if needed prior to

committing any code. Moreover, it allows developers to keep track of application builds by

being able to identify which version is currently in development, testing, and production.

Likewise, when new developers join the team, they can easily download the current version

of the application. During development, if necessary, developers may work in different

independent code versions (branches). When ready, Git and GitHub merge those branches to

create a final working version.

The synergy of the above open-source components morphs into a framework that facilitates

the development of an enjoyable, didactic and serious game experience.

7. The game

Once the requirements have been set out, the ensuing step is to implement such concepts in

a working prototype. The game consists of a group of players who join teams to take actions

that cope with an infectious outbreak. Each team represents a country and starts with a pre-

determined number of resources (antivirals, vaccines, ventilators, and financial resources). In

every simulation round, each country must decide the number of resources to deploy within

its jurisdiction and how many resources they donate to other countries. The primary goal of

the game is to minimise the economic loss.

In this section, the developed game is presented through an event sequence, starting from

user authentication and ending with the last round of simulation.

 20

i. Login

Figure 9. Social network authentication

On the welcome screen (figure 9), the interface prompts users to log in by means of social

networks.

ii. Create/join game

(a) (b)

Figure 10. Choose roles

After users have logged in, they may choose one of two courses of action: a) Select the role

of ‘instructor’ and create a new game session which other users may join, or b) Select the

role of ‘player’, and join a team in a session created by an instructor.

 21

iii. Instructor: Configure the game

Figure 11. Instructor's setup screen

Following the creation of a game session, the application displays a setup interface to

instructors (figure 11). In this screen, instructors can determine the characteristics of each

team (population size and income); which teams have infected individuals; the number of

rounds; and the severity of the virus. Additionally, the interface notifies the instructor each

time a player joins the game.

iv. Players: Make decisions

Figure 12. Player’s dashboard

 22

On each player screen, a tailored dashboard appears as soon as the instructor starts the

gameplay. This dashboard consists of three sections. First, a decision board, in which players

decide how many resources deploy within their jurisdiction, resource purchasing, and the

number of resources to donate to other teams. Second, an information board that displays

team characteristics, key performance indicators, epidemiological curves and resources’

behaviour over time (through classical time series and unfamiliar sparklines). Lastly, a chat

board, a communication system among players and the instructor.

It is important to note that the information about infected individuals is deliberately lagged

to players. The magnitude of such a delay is proportional to the team’s income size. The

introduction of this feature entails that players make decisions based on delayed pieces of

data.

v. Instructor: Simulate and initiate each round

Figure 13. Instructor's dashboard

On the other hand, while players think of strategies, the instructor waits for all players to send

their decisions. The application allows the instructor the check whether a team has sent the

required information. As well as with players’ dashboard, instructor’s interface includes a

chat, information and decisions boards. The latter consists of two buttons: to simulate the

model and to start a new round.

 23

vi. Players: Simulation results

Figure 14. Player results

In each round, the application updates players’ dashboard based on the simulation results.

Figure 14 shows team Theta’s dashboard in round 19.

vii. Instructor: Simulation results

Figure 15. Global results

Likewise, the application updates the instructor’s dashboard. From the graphical artefacts

(heatmap, chord diagram, and bar chart) on the information board, the instructor can conduct

a debrief about the dynamic reasons that lead to the obtained behaviour.

All in all, the result is an open source and cloud-based application in which public health

stakeholders can interact with System Dynamics models of infectious diseases through a user-

friendly environment. In doing so, stakeholders gain in-depth understanding of the processes

that lead to the transmission of infectious diseases and test the likely effects of control

strategies in order to identify, design and guide the implementation of policies that ensure

 24

that the right health product arrives for the right person at the right time, an application also

known as HealthSim.

8. Conclusions and Next Steps

The usefulness of management flight simulators has long been discussed in the System

Dynamics community. The paper presents the background and rationale for HealthSim, the

underlying spatial simulation model, the system architecture and initial tests and evaluation.

HealthSim’s development account shows that crafting a management flight simulator is a

significant software software endeavour. Future work will further develop HealthSim can

have a role as (1) as interactive simulator to support public health professionals, and (2) as a

experimental laboratory to assess how decision makers perform in dynamic collaborative

resource sharing scenarios.

9. References

Ambler, S. W. (2007). Agile software development at scale. Paper presented at the IFIP

Central and East European Conference on Software Engineering Techniques.

Anderson, R. M., & May, R. M. (1992). Infectious Diseases of Humans: Dynamics and Control:
Oxford University Press.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., . . .

Jeffries, R. (2001). Manifesto for agile software development.

Cockburn, A. (2000). Writing effective use cases: Addison-Wesley Professional.

Duggan, J. (2018). Input and output data analysis for system dynamics modelling using the

tidyverse libraries of R. System Dynamics Review, 34(3), 438-461.

doi:doi:10.1002/sdr.1600

Duggan, J., Hayes, C., Jilani, M., Wurmel, J., & Connolly, M. (2016). A Multisectoral Approach

to Identify Innovative Solutions to Strengthen Capacity Building for Pandemic Risk

Management. International Journal of Infectious Diseases, 53, 112-113.

doi:10.1016/j.ijid.2016.11.282

Few, S. (2013). Information Dashboard Design: Displaying data for at-a-glance monitoring

(Vol. 5): Analytics Press Burlingame, CA.

Hardin, G. (1968). The Tragedy of the Commons. Science, 162(3859), 1243-1248.

doi:10.1126/science.162.3859.1243

Keith, D. R., Naumov, S., & Sterman, J. (2017). Driving the Future: A Management Flight

Simulator of the US Automobile Market. Simulation & Gaming, 48(6), 735-769.

doi:10.1177/1046878117737807

Lamberson, P. J. (2018). Approximating individual interactions in compartmental system

dynamics models. System Dynamics Review, 34(1-2), 284-326.

doi:doi:10.1002/sdr.1599

Lane, D. C. (1995). On a Resurgence of Management Simulations and Games. Journal of the
Operational Research Society, 46(5), 604-625. doi:10.1057/jors.1995.86

Last, J. M., Harris, S. S., Thuriaux, M. C., & Spasoff, R. A. (2001). A dictionary of epidemiology:

International Epidemiological Association, Inc.

 25

Murray, S. (2017). Interactive data visualization for the web: an introduction to designing
with: " O'Reilly Media, Inc.".

Sommerville, I. (2015). Software Engineering (10th Edition): Pearson.

Stein, M. L., Rudge, J. W., Coker, R., Van Der Weijden, C., Krumkamp, R., Hanvoravongchai,

P., . . . Adisasmito, W. (2012). Development of a resource modelling tool to support

decision makers in pandemic influenza preparedness: The AsiaFluCap Simulator.

BMC public health, 12(1), 870.

Sterman, J. (1989). Modeling Managerial Behavior: Misperceptions of Feedback in a

Dynamic Decision Making Experiment. Management Science, 35(3), 321-339.

doi:10.1287/mnsc.35.3.321

Sterman, J. (2000). Business dynamics: systems thinking and modeling for a complex world:

McGraw-Hill.

Sterman, J. (2014). Interactive web-based simulations for strategy and sustainability: The

MIT Sloan LearningEdge management flight simulators, Part I. System Dynamics
Review, 30(1-2), 89-121. doi:doi:10.1002/sdr.1513

Sterman, J., Franck, T., Fiddaman, T., Jones, A., McCauley, S., Rice, P., . . . Rooney-Varga, J. N.

(2015). WORLD CLIMATE:A Role-Play Simulation of Climate Negotiations. Simulation
& Gaming, 46(3-4), 348-382. doi:10.1177/1046878113514935

Sterman, J. D. (1994). Learning in and about complex systems. System Dynamics Review,
10(2-3), 291-330. doi:doi:10.1002/sdr.4260100214

Thompson, K. M., & Tebbens, R. J. D. (2008). Using system dynamics to develop policies that

matter: global management of poliomyelitis and beyond. System Dynamics Review,
24(4), 433-449. doi:doi:10.1002/sdr.419

Vynnycky, E., & Edmunds, W. J. (2008). Analyses of the 1957 (Asian) influenza pandemic in

the United Kingdom and the impact of school closures. . Epidemiology and infection,
136(02), 166-179.

Vynnycky, E., & White, R. (2010). An introduction to infectious disease modelling. : Oxford

University Press.

Yañez, A., Duggan, J., Hayes, C., Jilani, M., & Connolly, M. (2017, 1-1 Oct. 2017). PandemCap:
Decision support tool for epidemic management. Paper presented at the 2017 IEEE

Workshop on Visual Analytics in Healthcare (VAHC).

