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ABSTRACT  

 

A nested logit model was estimated from a survey carried out among European car 

owners. For the purpose of improving choice assumptions, this model was embedded 

within the Powertrain Technology Transition Market Agent Model. This system 

dynamics model focuses on vehicle powertrain uptake in the European Union. This 

paper describes the modeling process and shows its application to German car sales 

market shares until 2025. In conclusion, the integration of discrete choice frameworks 

based on stated preference surveys into system dynamics models remains a useful 

approach to explore empirically-grounded factors of technology adoption and feedback 

processes. 
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1. INTRODUCTION 

 

In 2015, the transport sector emitted 1,048 megatonnes of CO2 equivalent (MtCO2eq) in 

the European Union (EU). By 2050, EU transport emissions should not exceed 333 

MtCO2eq (EEA, 2019). The EU vehicle market plays a crucial role in achieving that 

goal. The uptake of low- and zero-emission vehicle (in particular electric vehicles 

(EVs)) technologies is being facilitated mainly by CO2 emissions performance 

standards (EU, 2009, 2017b), deployment of alternative fuels infrastructure (EU, 2014) 

and financial incentives (ACEA, 2018) (EEA, 2018b). 

To simulate the impact of these policy measures on the EU passenger car and light 

commercial vehicle markets over time, the Powertrain Technology Transition Market 

Agent Model (PTTMAM) was developed1. This is a system dynamics (SD) model 

representing feedback structures and capturing the interactions of four agent groups: 

users, manufacturers, infrastructure providers and authorities (Harrison, Thiel, & Jones, 

2016). At the core of the model lies a key assumption, namely users’ powertrain choice.  

Harrison and Thiel (2017) used PTTMAM to construct policy scenarios for the 

Netherlands and the United Kingdom (UK). The authors acknowledged that “in future 

development the choice model will be further refined to obtain more specific preference 

parameters” (p. 37). Hence PTTMAM developers settled for integrating the utility 

coefficients of a discrete choice (DC) model into the SD model. The needs of 

PTTMAM could, to a certain extent, be accommodated from the outset in the survey 

that underpins the DC model. To our knowledge, this is the first attempt to date at 

designing and conducting a survey tailored to the requirements of an SD model focusing 

on EV market uptake. The objective of this paper is to describe this modeling process 

and the corresponding results. The focus of this study is on the car market. 

The structure of the paper is as follows: section 2 provides a concise overview of the 

literature, the survey and the resulting DC model are briefly described in section 3, in 

section 4 the process through which the DC model was integrated into the SD model is 

described, section 5 shows the results, and in section 6 conclusions are drawn. 

                                                           
1  PTTMAM is available at: https://ec.europa.eu/jrc/en/pttmam. The model used for this paper is a 

simplified version with updated data. 

https://ec.europa.eu/jrc/en/pttmam
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2. LITERATURE REVIEW 

 

Consumer choice can be modeled using different methods with the most common ones 

being, in the context of electric car deployment, diffusion of innovation theory, agent-

based modeling and discrete choice (DC) analysis. An overview of the former can be 

found in Al-Alawi and Bradley (2013). Applied examples of the last two methods are 

Gnann (2015) and Hackbarth and Madlener (2013), respectively. A multi-method 

approach can also be identified in the literature: for example, whereas Kieckhäfer et al. 

(2014) used German data to link agent-based modeling with SD, Jensen et al. (2016) 

used Norwegian data to combine the diffusion and DC methods.  

Embedding a DC model into an SD model is not entirely new (for the pioneering work 

and a more recent example, see respectively Ford (1995) and Shepherd et al. (2012)). 

From a review of this body of literature (see Gómez Vilchez and Jochem [under 

review]), it can be concluded that in previous studies the development of the logit model 

preceded the conceptualisation of the SD model, with the latter sometimes requiring 

adaptations to accommodate the set of alternatives and/or attributes included in the 

choice set of the former. In some cases, operations to reconcile both models (for an 

example related to the units of measurement, see section 5.4.5 in Meyer (2009)) had to 

be carried out. In contrast, in this work PTTMAM preceded the DC analysis.  

 

3. STATED PREFERENCE SURVEY AND LOGIT MODEL 

 

The survey sought to answer the following research question: which powertrain 

technologies are EU consumers willing to adopt and how do they trade-off between 

important attributes of electric and other cars? To this end, a stated preference (SP) 

survey was designed and conducted in mid-2017 using an existing online panel by 

computer-assisted web interviewing. The sample comprised a total of 1,248 car owners 

from six EU countries: France, Germany, Italy, Poland, Spain and the United Kingdom. 

The questionnaire and a description of the survey respondents can be found in Gómez 

Vilchez et al. (2017). The survey built upon another survey that had been carried out in 

2012 (Thiel et al. 2012). In contrast to the latter, the 2017 survey included two choice 
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experiments, from which a statistical model was estimated after pooling the data 

(further details on the design and analysis can be found in Rohr et al. (2019)). The five 

powertrain options offered in the second choice experiment (see Figure A1 in the 

Appendix) were: petrol, diesel, hybrid (with conventional or plug-in hybrid electric 

vehicle (PHEV) as a variable), battery electric vehicles (BEVs) and fuel cell electric 

vehicles (FCEVs). 

Relying on random utility theory (refer to e.g. Ben-Akiva & Lerman (1985)), the model 

that was estimated using the survey data was a special case of the Generalized Extreme 

Value (GEV) model, namely the Nested Multinomial Logit (NMNL) model. The 

formulation of the Multinomial Logit (MNL) model is improved by introducing a 

nesting structure, thereby mitigating the undesirable impact of the Independence of 

Irrelevant Alternatives (IIA) property. Whereas the error terms of the alternatives are 

independent and identically distributed (IID) within a nest, they are not across nests. 

The nesting structure was empirically tested, finding higher elasticities between hybrids 

and zero emission vehicles (ZEVs: BEVs and FCEVs) (‘low emissions’ nest) compared 

to internal combustion engine vehicles (ICEVs: petrol and diesel). In other words, 

respondents perceive low emissions (hybrids) and ZEVs to be more “similar” to each 

other and thus they are more likely to switch between these alternatives compared to the 

petrol and diesel cars. The preferred nesting structure of the model can be seen in Fig. 1. 

A statistically significant (at the 90% confidence level) 𝜃 value of 0.613 was estimated 

for the low emissions nest (see Fig. 1). By lying between zero and one, this value is 

consistent with the assumption of utility maximization. A value of one would mean that 

the NMNL collapses into the MNL model. As it approaches zero the degree of 

independence within a nest reduces, leading to increasing substitution within each nest. 

 

Figure 1. Preferred nesting structure of the logit model 
Source: own work 
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The model was specified with nine car attributes (see Table A1 in the Appendix): 

purchase price, hire purchase (HP) option, personal contract purchase (PCP) option, 

operating cost, retained value (i.e. depreciation), range, re-fuelling/-charging time, level 

of emissions and low emission car incentive. The estimated utility coefficients for each 

of these attributes can be found in Table 2 in Rohr et al. (2019). 

 

4. MODELING APPROACH 

 

4.1 Reduction of subscript range 

PTTMAM is a comprehensive model that disaggregates car technology demand by 

country (28 Member States), vehicle category (passenger cars, light commercial 

vehicles), user (private, public, fleet), geography (urban, non-urban), size (small, 

medium, large) and powertrain (16 technologies). In addition, several vehicle attributes 

are taken into account (see Harrison et al. (2016)). This leads to a complex formulation 

of powertrain choice, which entered into conflict with the need to reduce the cognitive 

burden to survey respondents.  

 

Figure 2. Powertrain options, by model 
*This powertrain is further disaggregated into gasoline, diesel, biodiesel and ethanol. Source: own work 
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Figure 2 shows how the ‘powertrain’ subscript array was simplified. The most 

important changes in PTTMAM are the deletion of cars powered by biodiesel and the 

substitution of bioethanol cars by flexible fuel vehicles (FFV: ethanol 85). 

4.2 Extension of feedback loops related to battery attributes 

One of the attributes included in the NMNL model is re-charging time for electric cars 

(re-fuelling for the rest). This variable, however, was not explicitly considered in the 

original version of PTTMAM. The possibility of simply creating an exogenous variable 

was considered less satisfactory than the inclusion of an endogenous variable, as the 

potential for representing additional feedback processes would in this way be exploited. 

Specifically, three new variables were created (battery capacity [kWh/component], 

electric range [km] and recharging time [minute]) and three new feedback loops 

represented (see Fig. 3). This approach had been previously implemented in the model 

by Gómez Vilchez (2019). For the component cost, the unit of measurement of the 

battery component was modified from [euro/component] to [euro/kWh].  

 

Figure 3. New feedback loops in PTTMAM 
Note that this is a highly simplified CLD: various variables are usually present along the causal links 

displayed here. Source: own work using Vensim® 
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4.3 Embedment of the discrete choice model within the system dynamics model 

Next, the results of NMNL model were embedded within PTTMAM following 

Equations 1-5 (see also Figure A2 in the Appendix). 

For the NMNL model, the probability function can be written as two parts (logits):  

𝑃𝑖 = 𝑃𝑖¦𝐵𝑃𝐵   (Eq. 1) 

Among them, the conditional probability of choosing alternative i given that an 

alternative in nest Bk is chosen is defined as below: 

𝑃𝑖¦𝐵 =  
𝑒𝑉𝑖

∑ 𝑒
𝑉𝑗

𝑗∈𝐵

  (Eq. 2) 

The marginal probability of choosing an alternative in nest Bk is determined by:  

𝑃𝐵 =  
𝑒𝜃𝑘.𝐼𝑘

∑ 𝑒𝜃𝑙.𝐼𝑙
𝑙∈𝐾

  (Eq. 3) 

Then the “logsum” term, which brings information from the lower nest model to the 

upper model is: 

𝐼𝑘 = ln (∑ 𝑒𝑌𝑗
𝑗∈𝐵 )  (Eq. 4) 

The observable part of the utility function 𝑉𝑖 for each powertrain/fuel type alternative is 

written as: 

𝑉𝑆𝑃𝑖 =  ∑ 𝛽_𝑆𝑃𝑖𝑘𝑠𝑋𝑖𝑘 +𝑘 𝛽𝐴𝑆𝐶 (Eq. 5) 

There are two components of the systematic utility coefficient: the coefficients from the 

SP models, 𝛽_𝑆𝑃𝑖𝑘, that multiply the observed ‘k’ attribute values, i.e. 𝑋𝑖𝑘. It is noted 

that some of the coefficients vary across different segments. Specifically, purchase price 

and operating cost coefficients vary by vehicle size. Range varies by vehicle type (one 

term for ICEVs and diesel cars, one for low emission vehicles). Information on both is 

required to run the model. We dropped the coefficient for left-choice bias, which is not 

required for implementation of the model (it is included in the estimation of the model 

to ensure that the resulting coefficients are not biased by such behaviour).  

The concept of willingness-to-consider (WtC) a platform (i.e. powertrain), which was 

present in PTTMAM as a model variable, was also dropped. The reason for this being 
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that the WtC term, which represents “the formation of a driver’s consideration set” 

(Struben & Sterman, 2008: 1077), is incorporated implicitly in the DC approach though 

the attribute weights and alternative-specific constants (ASCs). The advantage of this is 

that the policy analyst does not need to predict that variable, but rather can focus on car 

attributes. 

The utility equation for each vehicle type also requires an ASC, which reflects the 

additional utility required for the utility for each car type to ensure that the model 

incorporates attributes not measured in the choice experiment and replicates observed 

market shares. We estimated ASCs from the SC data and these were found to vary by 

age, education level and country. However, it is not appropriate to use constants from 

SP exercises in forecasting for a number of reasons, including: 

- These reflect the choices that were presented in the choice experiments, which may 

not reflect real-world conditions (e.g. costs varied substantially in the experiments); 

- The SP approach assumes that each respondent has perfect knowledge of all 

alternatives and captures stated (not observed) choices; 

- Not all alternatives were able to be included in the choice experiments, e.g. FFVs. 

It was therefore necessary to calculate these constants from real-world data. 

4.4 Calibration to historical data 

The calibration of the model presupposes the availability of an up-to-date dataset with 

the country-specific historical market shares. Given the aggregate nature of the available 

real-world data, we adopted the following sequential approach: 

- Step 1: PTTMAM’s database was updated with time series on car sales. For this 

purpose, data from EAFO (2018), EEA (2018a), Eurostat (2017) and OICA (2017) 

was collected. However, historical car sales market shares disaggregated by country, 

size and powertrain were available for all the countries only until 2015. The 

categorisation of car size was primarily made based on engine size and, for electric 

cars, on segment (e.g. B for small cars or C for medium; see CEC (1999)); 

- Step 2: The values of the car attributes were simulated in PTTMAM to derive the 

‘utility sum of attributes’ by country, size and powertrain (see Fig. A2), which 

represents the systematic utility coefficient in Eq. 5; 
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- Step 3: The term 𝛽𝐴𝑆𝐶 (‘ASC SP’ in Fig. A2) was set equal to -50 if a particular powertrain 

was not available in the market for a given size, otherwise equal to -zero; 

- Step 4: The term 𝛽𝐴𝑆𝐶𝑅𝑃𝑖  (‘INITIAL ASC RP’ in Fig. A2) was calibrated from the 

collected market information; 

- Step 5: In addition to the ASCs, the lambda scale term (λ) would ideally be 

calibrated to ensure that the models reflect real-world car type choices. For 

simplicity, we assumed that this value is by default 1, i.e. that the scale of choices in 

the real world derived from revealed preference (RP) data are equal to the scale of 

the SC choices. Although it may also be possible to incorporate other attributes into 

the RP utility equations (e.g. number of brands), which could provide an indication 

of the supply side of the market and may improve the quality of the choice models, 

high-quality market information on this was not available at the time this analysis 

was conducted.  

- Step 6: For the calculation of the car type probabilities, adjustments in the ASCs as 

per Eq. 6 to ensure that the model replicates observed market shares; 

𝜀 =  𝑙𝑛(
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠ℎ𝑎𝑟𝑒

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠ℎ𝑎𝑟𝑒
)  (Eq. 6) 

- Step 7: The calibrated utility (‘V from RP’ in Fig. A2)  is determined following Eq. 7: 

𝑉𝑅𝑃𝑖 =  ∑ 𝜆(𝑉𝑆𝑃𝑖)𝑘 + 𝛽𝐴𝑆𝐶𝑅𝑃𝑖 (Eq. 7) 

- Step 8: Finally, the nesting structure and 𝜃 parameter (recall section 3 and Eq. 2-4) 

are used to simulate the market shares by country, powertrain and size (see Fig. A2). 

To render information exchange between methods feasible, an Excel template was 

created thereby reconciling the PTTMAM assumptions for each attribute and the DC 

model output. Those assumptions are considered in section 4.6. 

Finally, simulation errors were found for these three subscripted elements in the 

variable ‘exp V from RP low emission nest’: in 2009 for [France,BEV,Large] and in 

2011 for [Bulgaria, FFV,Medium] and [Bulgaria,HEV,Medium]. This was caused by 

very low registration values and solved by setting them to zero. 
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4.5 Transferability to the remaining powertrains and countries 

As can be suspected from Fig. 1 and 2, the five powertrain options considered in the 

discrete choice analysis needed to be re-mapped into the adapted version of PTTMAM. 

We assumed that HEVs, PHEVs, BEVs, and FCEVs belong to the low emissions nest. 

Conversely, the remaining powertrains were assumed to be outside of this nest (i.e. are 

part of the ICEV nest).  

Concerning the transferability of results to the remaining EU countries, the generic 

operating cost coefficient was used for all the countries, except for France or Italy. 

Since we had estimated lower price sensitivity to operating cost for these two countries, 

we used their specific coefficients.  

4.6 Numerical assumptions of powertrain attributes 

Once the choice structure was updated, the future values of the attributes of each 

powertrain (and size, as relevant) were required to run PTTMAM. From Fig. 3, electric 

range and recharging time are expected to play an important role in BEV choice. 

Though not shown in Fig. 3, average recharging time is also affected by the proportion 

of normal power and high power (i.e. fast) recharging infrastructure availability. The 

assumed dynamic behaviour of these variables is shown in the next three figures. In this 

paper, the model time horizon considered extends until 2025. 

Fig. 4 shows the simulated (sim) growth in BEV electric range, from ca. 160 km in 2012 

to over 600 in 2025. As a reference, data based on the New European Driving Cycle 

(NEDC) from three specific BEVs is shown: Renault Zoe (small), Nissan Leaf 

(medium) and Tesla S (large). The assumed increase in range is due to higher battery 

energy density over time and, especially, to a step increase in battery capacity in 2019. 
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Figure 4. Dynamic behaviour of BEV range, by size: data vs. simulation 

Source: own work based on data from Wikipedia (2019) own simulations 
 

Fig. 5 shows the evolution of recharging points in the EU, distinguishing between 

normal and high power (or fast, with >22 kW following EU (2014)). The 2020 target 

corresponds to the value determined in EU (2017a). For simplicity, no growth in 

recharging infrastructure is assumed between 2020 and 2025 in this paper. At the 

country level, the proportion of normal versus (vs.) rapid recharging infrastructure 

varies, which influences country-specific average recharging times. For fast recharging, 

a value of 100 kW is assumed.  

 

Figure 5. Deployment of normal vs. high power recharging points in the EU 
Source: own work based on data from EU (2017a) and EAFO (2018) and own simulations 
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Fig. 6 shows the average simulated recharging time for medium-sized BEVs in five 

major European car markets that were covered in the aforementioned survey. By 

increasing the proportion of fast recharging, Italy achieves a noticeable reduction in 

recharging time between 2013 and 2019. The assumed increase in battery capacity in 

2019 adversely impacts average recharging times. As the proportion of normal vs. fast 

recharging remains constant post-2020, no changes in recharging times are simulated in 

the last five years of the model time horizon. 

 

Figure 6. Dynamic behaviour of medium BEV recharging time in five countries 
Source: own simulations using Vensim® 

 

 

5. RESULTS 

 

The results of executing the approach described in section 4 are reported for the largest 

car market in the EU: Germany. Fig. 7 shows the historical observations vis-à-vis 

simulated values of petrol and diesel car sales market shares. These powertrain options 

clearly dominated the German market for new cars over the period. As can be seen, the 

data could be replicated, via year-by-year adjustments of the ASCs, with the NMNL 

framework embedded in PTTMAM.  
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Figure 7. ICEV car sales market share [%] in Germany (2005-2016): data vs. simulation 
Source: data from EAFO (2018) own simulations 

 

In this market, alternative powertrain options exhibited very low sales market shares 

during the calibration period considered. Because of the potential of electric cars to 

replace ICEVs, annual sales of PHEVs and BEVs were calculated. The results for 

Germany are shown in Fig. 8. As can be seen, the fit to data worsens, particularly in 

2015 (the last year for which disaggregated historical data was considered in the 

calibration). Although the simulation matches the data in 2017, it exhibits a more 

sluggish behaviour than the 2018 value and current real-world policy developments 

suggest. 

 

Figure 8. Electric car annual sales in Germany (2005-2025): data vs. simulation 
Source: data from EAFO (2018) own simulations 
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6. CONCLUSIONS AND OUTLOOK 

 

We conclude that the linkage between DC and SD remains useful in this field of 

application because the results of the former can be tested in the presence of feedback 

loops while the latter benefits from an empirically grounded representation of choice. 

The main contribution of this paper is the presentation of how the responses of an SP 

survey designed with an SD model in mind may be incorporated into simulated 

aggregate market shares in the EU car powertrain system.  

A series of limitations related to this work can be pointed out. First, since PTTMAM 

does not disaggregate the users market agent by demographic and socio-economic 

characteristics, the presence of this information in the DC model could not be exploited 

in the simulation part. Second, the modeling assumptions concerning the transferability 

of the estimated utility coefficients into other powertrain alternatives and countries can 

be challenged as e.g. the attributes of FFVs were not considered in the choice 

experiments. This points to a third limitation, namely the need to devote greater 

resources to ensure that: (i) a larger sample and more representative by including 

respondents from other EU countries can be secured; (ii) the scope of the survey widens 

by extending the duration of the survey, so that additional powertrain alternatives can be 

inserted in the choice experiments; (iii) more sophisticated DC models such as cross-

nested (Hess et al., 2012), mixed logit and latent-class (Shen, 2009) are estimated and 

their relative superiority tested; and (iv) the survey can be replicated in the future, so 

that preference stability can be gauged, and be complemented with RP data. 

The survey undertaken in 2017 was, by nature, static. Placing the resulting DC model in 

a dynamic context raises intriguing questions: how can the aggregation problem be in 

practice successfully addressed? Do ASCs become by necessity dynamic when framed 

in a time-varying context? These need to be addressed in future research. 

Further work along the following lines is required: (i) updating the database to a more 

recent year and re-calibrating the model for that period; (ii) assessing the accuracy of 

the new formulation by performing e.g. Theil’s inequality tests; (iii) analysing different 

policy measures and constructing scenarios at the EU level with an extended model time 

horizon; and (iv) scaling these choice assumptions into other users and vehicle types. 
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Appendix  

Figure A1 shows one of the choice scenarios respondents were presented.  

Figure A1. Scenario in the second choice experiment 

Source: Rohr et al. (2019) 

 

Figure A2 shows an excerpt of the module where powertrain choice takes place in the updated version of PTTMAM. 

Hybrid vehicles

Fuel Type Petrol Diesel Plug - in Electric battery Hydrogen fuel cell

Purchase price (outright price) £15,000 £15,000 £40,000 £25,000 £15,000

Personal Contract Plan (monthly price for 36 month)*
£290 per month with a final 

payment of £5,000

£290 per month with a final 

payment of £5,000

£830 per month with a final 

payment of £13,200

£510 per month with a final 

payment of £8,250

£290 per month with a final 

payment of £5,000

O perating cost (pence/ mile) 24p/ mile 22p/ mile 18p/ mile 6p/ mile 12p/ mile

Working or living in an urban 

area: £12.00

Working or living in an urban 

area: £12.00

Working or living in an urban 

area: £9.00

Working or living in an urban 

area: £2.40

Working or living in an urban 

area: £0.00

Other areas: £2.00 Other areas: £2.00 Other areas: £1.50 Other areas: £0.40 Other areas: £0.00

Vehicle value (after 3 years) £3,750 £5,250 £10,000 £6,250 £5,250

Range on a full tank/ charge (miles) 400 miles 520 miles 400 miles 300 miles 400 miles

Refuel /  Recharge time at a service station (for electric vehicles, 

time to recharge the battery to at least half its capacity)
5 mins 5 mins 5 mins, if Electric: 4 hours 4 hours 5 mins

* with a £1000 deposit

Low Emission Vehicle Incentive (daily charge £/ day)

Internal combustion engine Zero emission
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Figure A2. NMNL model embedded within PTTMAM 

Source: own work using Vensim®
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Table A1 shows a description of the eight attributes and their associated coefficient 

terms used in the NMNL model. 

Table A1. Attributes and coefficients in the systematic utility equation for 

implementation of the model 

 Attribute values in the utility equation (Xik) Coefficients in utility (β) 

Attribute Attribute description 

(inputs to the model) 
Units Coefficient terms Description 

Purchase price Purchase price in euros, it is 

expected that these will vary 
by vehicle type, vehicle size 

and across EU countries 

1,000s of euros purpr_sm, 

purpr_md, 
purpr_lg 

Coefficient is generic (the same) 

across all vehicle-type alternatives, 
but varies by size of vehicle 

HP Proportion of vehicles 

purchased by HP multiplied 

by the price of vehicle 

(assumed HP proportion 

likely to vary by country, 
price varies as above)  

HP proportion x 

purchase price 

(1,000s of 

euros) 

HP_ct Coefficient is generic across all 

vehicle-type alternatives, size of 

vehicle and country 

PCP Proportion of vehicles 

purchased by PCP multiplied 
by the price of vehicle 

(assumed PCP proportion 

likely to vary by country, 
price varies as above). 

PCP x purchase 

price 

PCP_ct Coefficient is generic across all 

vehicle-type alternatives, size of 
vehicle and country 

Operating cost Operating cost, in euros per 

km, assume that these will 

vary by vehicle type, vehicle 
size and country 

Cents/km oper_ct (all 

vehicles),  

oper_FR (France, 
additive), oper_IT 

(Italy, additive) 

Coefficient is generic across all 

vehicle-type alternatives, but varies 

across countries for France and 
Italy 

Retained vehicle 
value (i.e. 

depreciation) 

Retained value of vehicle, in 
euros, assumed that these 

will vary by vehicle type, 

vehicle size(?) and country 

1,000s of euros depr_ct Coefficient is generic across all 
vehicle-type alternatives, size of 

vehicle and country 

Range Range vehicle can travel, in 
km, assumed that these will 

vary by vehicle type and 
vehicle size (?) 

km eff_range, eff_rLo Separate values for low emission 
and other vehicles, but the same 

across countries and size of vehicle 

Re-fueling /  

re-charging time 

Time to refuel, these will 

vary by vehicle type (and 

perhaps vehicle size) 

Mins refuel Coefficient is generic across all 

vehicle-type alternatives, size of 

vehicle and country 

Emissions Emission level for vehicle, 

will vary by vehicle type 

(and perhaps vehicle size) 

Categorical 

variables 

ZeroEmiss, 

LowEmiss, 

MedEmiss, 
HighEmiss (set as 

reference = 0) 

Coefficients are generic across all 

vehicle-type alternatives, size of 

vehicle and country 

Note: a ninth attribute (low emission car incentive) was included in the second experiment only. 

Source: own work 

 

 


