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Abstract 

The theory of bifurcations and catastrophes is applied to the development of modifica-

tions of the Schaefer fishery model. The key variables are the stock of the bioresource, 

its natural net change, as well as the Man harvesting activity. The global and local 

analysis reveals quantitative and qualitative characteristics of open or closed loop con-

trol. Especially dangerous are the aggravation regimes arising from the dominance of 

the positive feedback connecting the biomass and the rate of its net change. The equa-

tions for excessive or sparing harvesting are derived. The time frames for collapses 

have been determined. This paper facilitates creation of more complex and realistic bi-

oeconomic models and enhances Harvesting Control Rules. 

Key words: renewable resource, depletion, maximum sustainable yield, harvest-

ing control rule, aggravation mode, saddle-node bifurcation, catastrophe theory 

 

 Introduction 

 

As well established by system dynamics research over decades, reserves of fish and 

other resources of flora and fauna, due to their natural reproductive capacity, can 

grow, contributing to the preservation and increase of natural capital [1, 2]. However, 

according to the World Bank experts [3, 4], a decrease in the biomass of global fish 

stocks, as a result of their excessive catch, created a threat to sustainable fishing.  

“Global marine fisheries are in crisis. The proportion of fisheries that are fully 

fished, overfished, depleted, or recovering from overfishing increased from just over 

60 percent in the mid-1970s to about 75 percent in 2005 and to almost 90 percent in 

2013.” [4: 1]. These conclusions are shared by OECD analysts [5] who believe that 

the current rate  of resource utilization is far  in  excess  of  what is sustainable 

in the long run.
1
 

                                                 
1
 Unsustainable management of renewable resources can lead to their permanent depletion in much 

the same way as the finite extraction of nonrenewable resources. Stagnant or declining (even slight-

ly) catches can accompany a long-term decline in fish stock. If left unchecked, harvesting could de-

stroy the fisheries that would become biologically or commercially extinct over time. 
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There is a need for a transition to fundamentally more favourable natural-

anthropogenic regimes. This transition should be based on in-depth studies of con-

trasting regimes of ecological and economic interaction based on system-dynamic 

models, starting with engaging ones such as Fish Banks Game developed by D. 

Meadows and his colleagues [2]. A great constructive role in clarification of such 

models and in their further development belongs to the mathematical control theory 

[6] with strong footage in mathematical analysis and theory of differential equations.  

According to the control theory, open-loop control is completely determined at 

the initial instant t0; here, the integration of the equation (or equations) of motion for 

fixed initial conditions defines the phase trajectory x(t) of the states of the system [7]. 

Closed-loop control (with feedback) assumes the definition of control as a function of 

phase coordinates and time (ibid.). These concepts have wide theoretical and applied 

significance for economic theory and economic practice. 

To simplify exposition of economics of renewable resources we will keep in mind 

their rich diversity and consider non-farming fish as their representative. Peculiarities 

of specific types of these resources are not considered on this stage of investigation.  

Then according to existing conventions, biomass is total amount of fish re-

sources, biomass net change is due to natural processes and harvesting by Man. 

Hereby harvest equals yearly catch. Table 1 lists model variables and their units of 

measurement. It may be a prompt on variables of differential equations below.  

 

Table 1. The main variables of simplified biomass models 

Variable Notation Measurement unit 

Catch y, c fish/year 

Fish stock (biomass) x fish 

Carrying capacity 1/ fish 

Birth rate x fish/year 

Death rate –x
2
 fish/year 

Net change of fish stock x  fish/year 

The growth rate of fish stock x̂  1/year 

The growth rate of catch ŷ  1/year 

 

The reader sees that global marine fish stock is considered as a scalar. This per-

mits application of single equation technique akin to methods developed in the re-

search on mineral resources and proved stocks (see references and critique in [12]). 
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1. Simplified Verhulst – Schaefer – Arnold models 

1.1.  Verhulst's textbook model M-1 

 

The logistic equation, also known as the Verhulst equation (named for the first time 

formulated by a Belgian mathematician), originally appeared when considering the 

model of wild population growth. Denoting by x the population size, by t ≥ 0 time, 

the model can be represented by a non-linear autonomous differential equation 

x  = (x) = (1 )x x  .        (1) 

where parameter  characterizes the potential rate of growth (multiplication) in the 

absence of intraspecific competition, and  – the reciprocal of the supporting capaci-

ty of the environment (that is, the inverse of the maximum possible population size). 

Fish hatch (give birth), grow to maturity, lay eggs and die.  Fish death rate is the 

number of fish per year that die from causes other than fish harvesting.  Factors of 

fish population    simple growth   are   depicted on Figure 1. 

 

 
Figure 1  – The Vensim diagram of the Verhulst logistic model M-1 

 

The initial assumptions for the derivation of the equation when considering pop-

ulation dynamics are as follows: the rate of reproduction of the population is propor-

tional to its current level; the second term of the equation reflects intraspecific com-

petition for resources, which limits the growth of the population, or, in plain words, 

the death rate increases as crowding increases.  

The derivative of the natural net change is defined as 

' 2x x   .       (2) 

When 'x = 0, net increment (x) is maximal for xs=1/ (2 ) .

The stationary states are found from the condition that the right-hand side of (1) 

is equal to zero. They differ qualitatively and quantitatively. 

On the one hand, x1 = 1/  is an asymptotically stable node, since 1'( )x x  = – 

< 0, on the other hand, x2 = 0 – unstable node, as  2'( )x x  =  > 0. 

The population growth is S-shaped. Neither open nor closed loop control of the 

wild population by Man is active. The  size  of  the  population tends to   dynamic  

equilibrium  at  the  maximum  number that can sustain most of random external 

shocks except huge calamities. M-1 is structurally stable.  

Stock x

x0

Death rate
+

Birth rate
+ (R1) (B1)
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1.2. Simplified Schaefer – Arnold model M-2 

 

The model [8] supplements the assumptions of the logistic growth of biomass by the 

assumption that human fishing activities reduce the increase in the fish population by 

the catch amount y, the amount of which linearly depends on the available biomass 

without delay: 

x  = f(x) = (1 )x x   – y,      (3) 

where y = kx, 1 > k = const ≥ 0 (Figure 2).  

 
 

Figure 2 – A causal structure of M-2 without information delay in catch y 

 

Table 2.  Three feedback loops in M-2 

Loops descendant from M-1 New loop 

R1 of length 1  

Stock Birth ratex  B2 of length 1  
Stock Catch x y  B1 of length 1  

Stock Death ratex  

 

Without loss of generality, let  = 1 and =1 [9: 98–99]. Then 

x = (1 – k – x)x,        (4) 

where x0 > 0 for t0= 0, '( )xf x  = 1 – k – 2x.  

 For the linear harvesting control rule (HCR) there is a negative linear depend-

ence of the growth rate of the stock on its magnitude like in M-1 (for k = 0): 

Stock x

x0

k

Death rate

Catch y

+

+

Birth rate
+ (R1) (B1)

B2
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x̂ = 1 – k – x.           (5) 

The rate of change in catch and stock is, contrary to M-1, the same: 

      ˆ ˆy x  = 1 – k – y/k.            (6)  

Let us consider the properties of stationary states more closely. The first of these 

is a stable node 1x = 1 – k > 0 as 1'( )xf x = k – 1 < 0. The value of 1x smoothly depends 

on control parameter k, the latter’s changes in the specified boundaries do not affect 

the established mode qualitatively. The necessary and sufficient condition for domi-

nance of the negative feedback  ˆx x x


    is fulfilled in M-2 
ˆdx

dx
 = – 1 < 0. This 

property gives the equilibrium global asymptotic stability. 

In addition, there is a second steady state 2x = 0. It is unstable node since 

2'( )xf x  = 1 – k  > 0. 

If x0 > 0, 1x = 1 – k, a solution to (6) is   

x =  1 0
(1 )

0 0 1( )k t

x x

x e x x  
.       (7) 

This formula generalizes its particular case (1) for k = 0, y = 0 in M-1. Similarly to 

the former, M-2 is structurally stable  for  0 ≤ k < 1. 

Next equation determines catch 

 y = 1 0
(1 )

0 0 1( )k t

y y

y e y y  
.      (8) 

Proposition 1. For t→∞ 1 (1 )y y k k   . Maximum sustainable catch MSY    

ys = cs = 0.25 is achieved at k = ks = 0.5, when the biomass volume is determined by 

the conditions of a stable node 1x = xs = 1 – ks = 0.5.  

The general biological overexploitation of fish stocks beyond the biomass level 

corresponding to MSY inevitably leads to subsequent reduction in catches.  Timely 

reduced fishing efforts can allow depressed fish stocks to recover. 

As pointed out in [10: 6], “from a biological point of view the concept of MSY 

is simply not sufficient. Nevertheless, it should be stressed that it provides a valua-

ble rough index of production potential. As a first rough cut at management policy 

for major commercial species, MSY is probably acceptable. But ones the level of 

MSY is attained, it should be expected that it may not be sustained.”  

The simplified Schaefer – Arnold models represent social production in very (if 

not extremely) abstract form. They are enhancement for thought experiments on the 

rocky and hard way from abstract to concrete. Still teaching experience demonstrates 

that these models strongly stimulate interest of students and newcomers to the system 
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dynamics field discovering how their mathematical knowledge can be applied for bet-

ter understanding of acute – local and global – sustainability issues. 

In more complex models, this deficiency is overcome by explicitly taking into 

account the goals of capitalist production and the methods for achieving them [1, 2–5, 

11–13]. For economic reasons, economic entities that maximize profits and / or rents 

tend to choose k ≠ ks. Technological capabilities, property relations, as well as fea-

tures of competition, narrow the boundaries of the choice of k and y. 

According to [4], “stocks are defined as fully or overfished if their biomass is at 

or below the level  that supports maximum sustainable yield (MSY). Maximum eco-

nomic yield  (MEY), which maximizes the sustainable net benefits flowing from the 

stocks,  occurs at a stock size that is larger than that at MSY level.”  

Harvesting control rule in M-2 is not satisfactory from the control theory stand-

point. It can be dangerous for low stock x to harvest it with rate kx if random fluctua-

tions are taken into consideration. It violates to an extent – dangerous under some 

typical circumstances – the precautionary principle in the renewable resources man-

agement.  

 

1.3. Modified Schaefer – Arnold model  M-3 

 

Guided by the precautionary principle the author transforms M-2 into M-3, preserv-

ing the logistic natural increase in the bioresource (1), but replacing the linear de-

pendence of the catch on stock by a quadratic one: 

y = mx
2
,         (9) 

where m ≥ 0. 

The net increase in biomass is now defined as 

x = f(x) = x[1 – (1 + m)x],     (10) 

where x0 > 0 for t0= 0, '( )xf x  = 1– 2(1 + m)x. 

Similarity to M-1 and M-2, for  quadratic HCR the growth rate of the stock has a 

negative linear dependence on its positive magnitude as well 

       x̂ = 1 – (1+m)x.       (11) 

However, now the product (1 + m)x has replaced the algebraic sum k + x in (5). Fig-

ure 3 presents causal-loop structure of M-3 that is very similar to that of M-2 (Figure 

2). 
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Figure 3 – A causal structure of M-3 without information delay in catch y 0 

 

 Still unlike M-2, the rate of increase in catch is now twice the rate of increase in 

stock. This brings about a non-linear negative dependence of this rate on the catch 

magnitude: 

ˆ ˆ2y x  = 2 2(1 )
y

m
m

  .      (12) 

The negative derivative 
ˆdx

dx
= – (1 + m) < 0 guarantees the dominance of the sta-

bilizing negative feedback ˆx x x


  . The dominant negative feedback is deeper 

in M-3 than that in M-2. This deepening accelerates restoration of equilibrium after 

disturbance. Thanks to this deepening the threat of overshooting which is present for 

k ≥ 1 in M-2 has disappeared in M-3 that is more structurally stable than M-2.  

Let us consider stationary states for m ≥ 0 explicitly. 

Proposition 2. The system has two equilibrium states. One of them is a stable 

node 1x = 1/(1 + m) > 0, because 1'( )xf x = –1 < 0. The other is unstable node 2x = 0, 

because 2'( )xf x  = 1 > 0. 

Corollary. Stock x depends smoothly on control parameter m, the latter’s chang-

es do not affect the steady state qualitatively. 

The solution to (9) is the logistic function 

x = 1 0

0 1 0( )t

x x

x e x x 
.       (13) 

Stock x 0

Death rate 0

Catch y 0

+

+

Birth rate 0
+ (R1) (B1)

B2

m

<x0>
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This formula is valid for the Verhulst model (1) above, as a special case, in which    

m = 0.  

The catch is given by 

y = 1

21

0

[1 1 ]t

y

y
e

y

  
  

 

.      (14) 

Proposition 3. Catch y 1 2(1 )

m
y

m
 


 for t→∞. Maximum sustainable yield 

(catch) 
2(1 )

s
s

s

m
y

m



= 0.25 is achieved at ms = 1 and 1x = sx = 1/(1 + ms) = 0.5. 

For low x0, the integral (cumulative) catch in M-3 is lower than that in M-2 over 

short segments (few years) and higher when integrating over longer segments of 5–10 

years (Figure  4). 

 

 

Initial stock x0 = 0.1 Initial stock x0 = 1 

 
Stock x in M-2, x 0 in M-3 

 
Stock x in M-2, x 0 in M-3 

0.54

0.54

0.27

0.27

0

0

0 1 2 3 4 5 6 7 8 9 10

Time (Year)

x

x 0

1

1

0.74

0.74

0.48

0.48

0 1 2 3 4 5 6 7 8 9 10

Time (Year)

x

x 0
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Catch y in M-2, y 0 in M-3 

 
Catch y in M-2, y 0 in M-3 

 
Cumulative catch y in M-2, y 0 in M-3 

Cumulative y, y 0 

 
Cumulative catch y in M-2, y 0 in M-3 

Figure 4  – Stock, catch and integral (cumulative) catch under two HCRs (k = 0.5,    

m = 1, respectively) over 0–10 years for x0 = 1 on the left and for x0 = 0.1 on the 

right, blue curves – for linear HCR, red curves – for quadratic HCR  

 

Table 3.  Average stock, catch and net change of stock 

under three harvesting control rules for x0 = 1 over 0–10 years 

HCR Stock x Catch y Net change x  

Linear 0.570 0.285 –0.051 

Quadratic 0.536 0.294 –0.053 

Enhanced in S-1 0.516 0.297 –0.053 

 

0.26

0.26

0.13

0.13

0

0

0 1 2 3 4 5 6 7 8 9 10

Time

y

y 0

1

1

0.6

0.6

0.2

0.2
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Time

y
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2

2

1

1

0

0
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y

y 0

3

3

1.5
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0

0
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y
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Table 4. Average stock, catch and net change of stock 

under three harvesting control rules for x0 = 0.1 over 0–10 years 

HCR Stock x Catch y Net change x  

Linear 0.341 0.171 0.039 

Quadratic 0.419 0.189 0.040 

Enhanced in S-1 0.433 0.192 0.040 

 

Transition from linear to quadratic HCR strengthens precaution in nature man-

agement, due to its adherence to longer-term efficiency, which helps overcome "quar-

terly capitalism", aimed at immediate profit. 

 

2. Aggravation modes and catastrophes in Arnold’s model M-4 

 

The author uses the concept of aggravation modes, investigated in different contexts, 

in particular, in [4, 11–12, 14, 15].  

Let the natural increase in the biological resource be determined as before, 

whereas the catch y is redefined as constant c [9: 98]. Then open loop control deter-

mines HCR in M-4, whereas the net increase in stock is given as 

x = f(x) = x – x
2
 – y = (x) – c,    (15) 

where c > 0, x0 > 0, '( )xf x  = 1 – 2x. 

The analysis reveals non-linear dependence of the rate of growth of the stock on 

itself x̂ = 
x

x
= 1 – x – 

c

x
, where the last hyperbolic element is potent of  an aggrava-

tion mode. Indeed, x̂ for 0x  .  

A birth of the aggravation mode results from the transition from dominant nega-

tive feedback  ˆx x x  to dominant positive feedback ˆx x x  at a tipping 

point, when the sign of  
ˆdx

dx
= –1 +

2

c

x
 <  0 turns into its opposite. Quite dramatically  

ˆdx

dx
 for 0x  .  

The conditions for emergence of an aggravation (exacerbation) regime and its 

unfolding are described in detail below. This aggravation mode arises when misman-

agement in M-4 destroys structural stability present in M-1, M-2 and M-3. 

For brevity, the author defines auxiliary parameter 

a = sc c .         (16)  

Proposition 4. The stationary state for c = cs = 0.25 and a = 0 is xs = 0.5. The sta-

tionary states for c < cs  are defined as 
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0 < 1,2 0.5x a  .      (17) 

A lower stationary state 2
1

2
x a   is an unstable node, since )(' 2xfx  =  2a  > 0, 

while the higher stationary state 1
1

2
x a  is a stable node, since 1'( )xf x  = – 2a  < 0. 

Maximum catch ys = cs = 0.25 requires stock xs. The quantity cs is critical, or bi-

furcational: jump-like changes in dynamic regimes are generated by infinitesimal 

changes in this parameter’s magnitude in M-4. 

Proposition 5. Let 0 < c < cs and x0 < 2x  < xs. There is a monotonous decrease in 

biomass down to complete exhaustion; a solution to (15) is 

x = 

22 0
2 1

1 0

22 0

1 0

1

at

at

x x
x x e

x x

x x
e

x x











.          (18) 

Exhaustion x = 0 occurs at the moment 

T1 = 1 0 2

1 2 0

1
ln

2

x x x

a x x x

   
   

   
.            (19) 

For example, if c = 0.2499, a = 0.01, T1 = 23.54 for x0 = 0.46 < x2 = 0.49 < x1 = 0.51. 

Proposition 6. Let c > cs. There is no stationary state. There is a monotonous de-

crease in available biomass up to its elimination; a solution to (15) is 

x = 
2

0

0

( ) ( )

( )( )

s
s

s

a tg at a x x
x

a tg at x x

  


  
.     (20) 

Exhaustion x = 0 occurs at the moment 

T2 = 01 s sx x x
arctg arctg

a a a

     
    

    
.             (21) 

For example, for x0 = 0.52 and c = 0.2501, T2 = 265.81. 

It is easy to see that both stationary states merge into one sx if a = 0. There is a 

catastrophic change in the system's regime in response to a smooth change of this 

control parameter. 

Proposition 7. For a = 0, a saddle-node bifurcation takes place. This saddle-node 

state is unstable for x < sx and is stable for x > sx . 

Proof. The necessary and sufficient conditions for the saddle-node bifurcation 

are fulfilled [16: 84–84]: the fusion of the nodes with the conversion into the saddle is 
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confirmed by the inversion of the derivative at the critical point to zero 

'( , ) 1 2 0x s c sf x c x    in the absence of degeneracy in it, ''( , )x s sf x c  = –2 ≠ 0, and 

it is additionally supported by transversality condition '( , )c s sf x c = –1 ≠ 0 satisfied. 

For the lower (unstable) branch of solutions sx x the derivative 

'( , ) 1 2 0x cf x c x   , whereas for the upper (stable) branch of solutions sx x the de-

rivative '( , ) 1 2 0x cf x c x   . In other words, sx  is an attractor for sx x and a repel-

ler for sx x . 

If a = 0 and 0 sx x , depletion of the resource occurs on the hyperbolic curve; a 

solution to (15) is shaped as 

  x = 

0

1

1s

s

x

t
x x






.      (22) 

Complete extermination of the bioresource occurs at the moment 

T3 = 0
0

1
2

0.5
x

x
.                      (23) 

For example, for  x0 = 0.2  and a = 0  T3 = 1.33. 

Proposition 8. A steady steady-state regime with attractor 1x dies, colliding with 

an unstable regime with a repeller 2x , and at the moment of collision, the conver-

gence rate is infinite. 

Proof. For sc c there are 1 1

2

x

с a


   


 and 2 1

2

x

с a


 


. 

The author would like to turn the reader attention to the notion of characteristic 

return time Tr near a threshold [17, 18]. This notion rests, in my view, on the concept 

of the first order delay in the system dynamics literature. 

Proposition 9. For x > 2x   and values of the parameter c, increasingly close to 

the critical value cs, the delay time Tr, which characterizes the asymptotic approxima-

tion of x to a so far stable node, increases unlimitedly.  

The proof for the present case follows a more general proof [17, 18: 244]. Near  

x1 stock adjustment process of the first order  takes place  

x = (x1 – x),        (24) 

where
1

rT
= 2a. 

As a result of integration (24), I obtain 

x = 1 1 0( ) tx x x e  .     (25) 
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For sc c ,  → 0 holds, therefore unbounded growth of the delay in over-

coming the initial deviation of x from the attractor 1x  happens: Tr →∞. Thus, the 

characteristic return time Tr stretches to infinity near threshold sc  of the parameter c. 

Let us explain this important aspect. The excessively growing time interval re-

quired to eliminate imbalances can be a precursor for a catastrophe.
2
 Catastrophic re-

gimes are possible even with a catch locally close to MSY sc with a minor excess.     

The collapse will happen relatively faster if the author assumes that the catch is 

more or less steady growing in M-5. On the contrary, timely and accurate reduction 

of catch allows avoiding collapse. Table 5 and Figure 5 illustrate this principal differ-

ence in the evolutionary patterns in M-4 and in M-5. Notice that M-5 has the same 

equations and parameters as M-4 except those that directly affect catch y. 

 

Table 5. Effects of HCR on fishery time frame for the same x0 = 1 and c = 0.2501  

in M-4 and M-5 

Model  Catch y   Catch growth rate Time left until 

full depletion of 

stock x 

M-4 y = c = const  

 

0 

310.2 

M-5 Growing y = ce
t 

 

 

0.02 12.65 

M-5 Declining y = ce
t 

 –0.02 Infinity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2
 In other bioeconomic models, saddle-node bifurcations and hysteresis occur with the initial 

presence of three rather than two, as in our case, stationary states. Examples are [19–21]. They have 

properties similar to those presented in the eighth and ninth Propositions. 
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Growth rate of catch  = 0.02 in M-5 Growth rate of catch  = –0.02 in M-5 

 
Catch y in M-4, y 0 in M-5 

 
Catch y in M-4, y 0 in M-5 

 
Stock x in M-4, x 0 in M-5 

 
Stock x in M-4, x 0 in M-5 

Figure 5 – Catch y and stock x under HCRs for x0 = 1: blue curves for constant har-

vest in M-4 with collapse at t = 311, red curves for exponentially increasing catch on 

the left with stock depletion at t = 12.65 and exponentially declining catch with stock 

recovery on the right  

 

Being severely or moderately harvested, fish stock x is completely depleted at 

very different moments separated by roughly three hundred years (in the year 12.65 

in M-5 or in the year 311 in M-4). Fish stock is allowed to recover after the initial 

plunge to a high sustainable level if catch is reduced exponentially in M-5. 

The increased overfishing makes collapse in fisheries closer and faster. To re-

verse the decline in fish stocks, catch y has to become lower than the natural net in-

crement x – x
2
 > 0. Such a reduction promotes the ability of depleted stocks to recov-

er from otherwise a dangerously low level. 

The rigorous mathematical control theory maintains these rather clear sustaina-

bility rules and assists in their further development. The author proceeds to a quite 

more elaborated closed loop control than developed by my predecessors in M-2 and 
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even than newly proposed for M-3 in this paper earlier. HCRs will be upgraded as 

well. 

3. MSY-centred stabilization in predator-prey model S-1 

 

An appropriate stabilization policy for proved mineral reserves for avoiding their de-

pletion has been proposed in the system dynamics literature [12]. This section elabo-

rates a stabilization policy for a renewable resource that improves economic efficien-

cy and maintains bioresource sustainability in the middle- and long-term.  

The recent World Bank and FAO studies have identified lack of prudent control 

as one of the main factors detrimental for the global renewable  resources [3, 4]: 

“…the state of governance worldwide varies greatly and, despite some encouraging 

successful approaches, is in dire need of improvement [4: 17].” 

3.1. Enhancing harvesting control rule  

 

Transforming the previous models into a predator-prey model is the necessary step 

for designing more reliable and efficient HCR than considered above. Catch c be-

comes the new phase variable in addition to stock x.  

The urgent question arises: how do we turn the hyperbolic element c/x as a foe 

of sustainability under open loop control as in M-4 or M-5 in its champion? In real 

life similar transformation of certain quality into the opposite are ubiquitous:  for in-

stance, an explosive gas that destroys homes accidentally faster than a blink of eye 

can be thoughtfully applied for home construction purposes instead.  

The new phase variable c has become a subject of proportional and derivative 

control as Table 6 and Figure 6 demonstrate. Thereby catch c is targeted at MSY cs, 

and stock x is targeted at corresponding optimal level xs.  

 

Table 6.  Four feedback loops in S-1 

Loops descendant from M-3 New loops 

A1 of length 1  

xx A   

B1 of length 2  

ˆNc x c   

A2 of length 2  

xxx A  ˆ  

B2 of length 4  

ˆNx c c x x     

Note. Only a negative partial derivative and partial derivative with alternating algebraic sign are 

explicitly shown with N and A, respectively, immediately above arrows. All other first partial deriv-

atives are positive.  
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Figure 6 – A condensed causal loop structure of S-1; total number of feedback loops 

– 4, among them: 1
st
 order – 3 (1 – negative, 2 – alternative), 2

nd
 order – 1 (negative) 

 

The positive feedback ˆx x x   is transformed into one with alternating po-

larity A2 of length 2 (Table 6) that is much safer indeed. A mathematical analysis 

that follows maintains this expectation. 

The above causal loop diagram is the basis for the 2
nd

 order system of ODEs   
 

x = f(x) = x – x
2
 – c        (26)   

c  = p(xs – x) + q x̂  = p(xs – x) + q(
x

c
x 1 ),      (27) 

where p ≤  0 and q ≥ 0. 

For this system the Jacobi matrix is defined as 

JS-1 = 
1 – 2x –1 

. (28) 
–(p + q) + q

2x

c
 –q

x

1
< 0 

The reader sees S-1 can belong to predator (c) – prey (x) models whenever   
c

x




 > 0 as 

x

c




 < 0 is always satisfied. There is predator intra-specific competition as 

c

c




< 0. Preys co-operate with each other if x < 0.5 and 

x

x




> 0 or compete with each 

other if  x > 0.5 and 
x

x




< 0 , a neutral case is for x = xs = 0.5. 

The above system has the non-trivial stationary state: 

Es = (xs, cs)                     (29) 

Stock x
Net change xdot

x0

Rate of change xhat

c0

Catch c
Net change cdot

-+

-

(A1)

A2

(B1)

(B2)

p
q

x MSY
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with   corresponding Jacoby matrix 

Js = 

0 –1 

. (30) –p > 0  

 

–2q < 0  

 

 

P r o p o s i t i o n  1 0  ( a ) . The stationary state Es  (29) is locally asymptotically 

stable. 

P r o p o s i t i o n  1 0  ( b ) . If  20 p q    the stationary state Es (29) is stable node; 

if 2 0p q     it is stable focus. In both cases, it is hyperbolic. 

Proof (applying the Routh–Hurwitz stability criterion). 

The necessary and sufficient conditions for asymptotically local stability of (29) are 

satisfied:  

sJ = – p > 0          (31) 

as p <  0 and  

Trace(Js) = – 2q < 0         (32) 

as  q > 0. 

For gaining additional information consider a characteristic equation that is writ-

ten as 



2q– p = 0.        (33) 

It has one real root or two roots 

 pqq  2 .       (34) 

For having one negative real root  q there must be  
2p q  .        (35) 

Roots (34) are real and negative if 2p q  . They are  complex-conjugate with a 

negative real part if 2p q  .  

A stable focus arises for p < – 2q   with  


2( )q i q p    .      (36) 

 

The period of converging fluctuations is then 

Tc ≈ 
 pq 



2

2
.       (37) 

The author has proved that at q = 0 sufficient requirements for Andronov – Hopf 

bifurcation are satisfied. Yet this case in not immensely relevant for selecting appro-

priate HCL and it is skipped therefore. 

Explicit solutions to the linearized at the stationary state system are different for 

two distinct negative , onthe one hand, and for negative =  = – q for p = – 2q , 

onthe other hand. 
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3.2. Policy optimization 

The author has carried out two parameters policy optimization for c0 and q for one 

stable node with p = –q
2
. The optimization criterion is mostly grasped as cumulative 

catch over 0–T years. Besides this, Penalty for negative c is added in Pay-off: 

 Penalty = 
0

T

dt         (38) 

where = 0, if c ≥ 0,  = –100, if c < 0. 

Formally, this policy optimization in Vensim is based on a restricted dynamic 

optimization problem: 

Max
0 0

T T

cdt dt
 

  
 
   ,       (39) 

subject to (26) and (27)  

with z0 = (x0, c0), 

initially: 0 ≤ c0 = 0 ≤ 1 and 1 ≤ q = 1 ≤ 3. 

A solution for the stable node depends on x0  (Table 7). 

 

Table 7. Policy optimization results depending on x0 in S-1 

Run’s No. x0 c0 q p 

2 0.1 0 2.261        –5.112 

1 1 1 3 –9 

 

The convergence of biomass x and catch c to its distant attractor Es (29) is al-

most monotonous in the both runs. Results for this HCL judged by average catch c 

and integral catch 








T

cdt
0

 over years 0–10 are better now than for aforementioned M-

2 and M-3 with linear and quadratic HCL correspondingly when all other conditions 

are the same (Tables 3 and 4, Figure 7).  
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Stock x 

(green in M-2, red in M-3, blue in S-1)  

for x0 = 1 

Stock x 

(green in M-2, red in M-3, blue in S-1) 

for x0 = 0.1 

 
 

Catch y = c 

(green in M-2, red in M-3, blue in S-1)  

for x0 = 1 

Catch y = c 

 (green in M-2, red in M-3, blue in S-1) 

for x0 = 0.1 
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Cumulative catch 

(green in M-2, red in M-3, blue in S-1)  

for x0 = 1 

 

Cumulative catch 

(green in M-2, red in M-3, blue in S-1)  

for x0 = 0.1 

 
Figure 7 – Comparison of HCL results in M-2, M-3 and S-1 for years 0–10  

for x0 = 1 on the left and for x0 = 0.1 on the right 

 

The upgraded closed loop control in S-1 gives a bit more time for the biore-

source to grow from  low  x0 by choosing c0 = 0 initially. Quite contrary this control 

sets c0 = 1 initially for high x0. 

 

Conclusion 

 

Typical modes of renewable resource management are considered for open-loop or 

closed-loop control. Using the theory of bifurcations and catastrophes, the policies of 

improving bioresource catch and renewal, with raised long-term effectiveness in rela-

tion to the policy proposed in the simplified Schaefer – Arnold bioeconomic model 

M-2, are elaborated in M-3 and S-1. 
The obtained results related to the compared modes of nature-use are not only 

local, as is often the case in the applications of catastrophe theory, but also global in 

nature (particularly, in M-4 with open loop control). For all the considered regimes in 

one-dimensional models (except M-5), the original formulas of integral curves for 

stocks and catches are derived. Still the analytical results for the proposed two-

dimensional predator-prey model S-1 are mostly local, they are extended to broader 

areas thanks to Vensim simulations.   
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A more concrete presentation of the ecological and economic reproduction and 

its current global crisis is expected to be carried out in further studies with detailed 

elaboration of technological and institutional aspects. 

The transition from the above simplified analysis of sustainability to the study of 

the evolutionary ecological stability of interacting bioresources is promising [22]. 

The research should also enhance the probabilistic approach to bioeconomic model-

ling. 

However, there is no doubt that depletion of bioresources is Damocles sword for 

the world economy. Management of reproduction based on scientific foresight be-

comes more and more pressing necessity. Only this path, traditionally favoured by 

advanced system dynamics, opens the rich opportunities for overcoming the global 

crisis of nature management. 
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