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Extended abstract 

 
In this paper, we describe a system dynamics model that views cancer as a dysfunction of the 

cellular system analogous to those of human societies. Our experiments with the model replicate 
the propagation of the ailment and the impacts of the treatments. It also represents work in 
progress and should be viewed as a proposition that can be further developed to understand 
cancer and used to create appropriate combinations of interventions for specific situations. Our 
model represents the interaction between the various types of cells in an organ or a subsystem of 
the body. It depicts the common structure in the simplest possible terms. It defines a generic 
system that can be applied to solid as well as blood and bone-related diseases, although we 
mainly address it to proliferation of sold cancers and their response to treatments in this paper.  

Whether viewed in the context of an afflicted organ or a body subsystem, the interacting cell 
populations can be placed in four broad categories: normal cells, pre-cancer cells, cancer cells 
and immune system cells. Thus, our model contains four stocks connected by flows shown in 
Figure 1. Normal cells and Immune system cells have disciplined growth regimes in that they 
tend to grow to their indicated levels – the former goal is determined by the internal intelligence 
of the cell, while the later by the surveillance need created by the very existence of the unwanted 
cells in the body. The cancer cell stock is initially populated by a transformation of precancerous 
cells meant to reflect the accumulation of tumor-promoting mutations that increase with age. 
Once transformed, the cancerous cells exhibit unregulated proliferation and thus cancer grows 
exponentially. The immune response increases to combat the rising cancer cell population, and it 
is ultimately the imbalance of tumor growth vs immune response that yields a proliferation of 
cancerous cells.  

 
Model behavior 
The model is supplied with an internally consistent set of parameters and initial conditions so 

under normal conditions, all cell populations except cancer are maintained in a dynamic 
equilibrium or homeostasis. Cancer population is initialized at zero value. The simulation time is 
set at 1000 months (83.3 years) that approximates the average life expectancy of a healthy 
individual. It should be noted that despite the equilibrium, all cell populations constantly turn 
over rather than remaining constant. The in- and out- flows tied to each stock continue while the 
stocks remain in a dynamic balance. 

When initially populated by the transformation of pre-cancer cells, the cancer cells begin to 
grow exponentially.  Low and intermediate rates of growth of cancer are contained however by a 
concomitant increase in the immune activity that constantly kills the cancer cells and keeps their 
population under control. The absolute number of cancer cells is influenced by cancer cell 
proliferation, as well as the rate at which normal cells acquire pre-cancerous characteristics and 
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then are ultimately transformed into cancer cells. To model rates of proliferation that may differ 
between aggressively growing and slow growing tumors, the model allows for modulation of 
cancer cell proliferation rates.   
 

Figure 1 Key cell population stocks, their connecting flows and rules of conduct in the 
cellular society. 
 
Conclusion 
We have made a preliminary attempt in this paper to model the development of cancer as an 

interaction between normal, immune system, pre-cancer and cancer cell populations. The model 
is used to test hypotheses about lifetime risk of cancer and the performance of Cancer treatments, 
and shows credible results. It is also simulated for experimental treatment options, which reveals 
interesting contingencies. We recognize the importance of the inclusive nourishment commons 
of the body embodied in its blood supply and propose extending the model to include this for 
future work. 
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