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A 1-Labor and Capital Investment Decisions 

The model includes endogenous managerial decisions on how much capital and labor to acquire. These 

decisions are modeled to follow labor and capital levels that are profit maximizing given a level of 

demand, desired service quality, compensation, and task richness. To calculate these decisions three steps 

are followed: 

1) Unit employee cost, unit asset cost, and unit capability costs are calculated 

2) Profit maximizing budget, capital, capability, and employee levels are calculated 

3) Capital, capabilities, and labor are gradually adjusted towards their profit-maximizing values 

The formulations for these steps are discussed in more detail below. All formulations are documented in 

the full model documentation.  

 

Step 1)  

Unit employee cost per month includes the monthly compensation plus employee’s cost of hiring and 

training spread across their expected tenure (given compensation): 

𝐶𝐸 = 𝑐 + (𝑐ℎ + 𝑐𝑡)/𝑀𝑎𝑥(𝜏𝑉_𝑚𝑖𝑛, 𝜏𝑉𝑏 (
𝑐

𝑐𝑁
)
𝜃𝑐𝜉

)  

𝑐ℎ: Minimum hiring costs 

𝑐𝑡: Additional training and hiring costs which helps with finding/training better employees 

 

Unit asset (human-independent capital) cost per month is anchored to the capability cost. It is calculated 

to include the cost of building one unit of capability with unit employee quality and normal capability life. 

This baseline cost is then adjusted with a parameter, aA, signifying the relative cost advantage of assets. 

For comparability with other factors asset costs are spread over time as rents: 

𝐶𝐴 =
𝑐𝑁

𝑒𝐶𝑡𝑏𝑎𝐴
 

𝑎𝐴: asset cost advantage over capabilities 

 

Unit capability cost accounts for the cost of employees needed to build one unit of capabilities (given 

current employee quality) and the current capability life:  

𝐶𝐶 =
𝐶𝐸
𝑒𝑐𝑄Τ

 

 

Step 2) 

Using the desired service quality of s, we can find the desired service capacity, PD:   

𝑃𝐷 = s𝜅𝐶𝛼𝛽𝐴𝛼(1−𝛽)𝐸(1−𝛼)𝑄(1−𝛼)𝛽 = 𝑠𝐷 
Then, taking current quality as given, we solve for the desired levels of assets AD (and employees and 

capability) that minimize the costs of that capacity given the unit costs of factors of production from step 

1. This results in: 

𝐴𝐷 = 𝐵𝐷𝛼(1 − 𝛽)/𝐶𝐴 

Where desired budget, BD is: 

𝐵𝐷 =
𝑠𝐷

𝜅 (
𝛼𝛽
𝐶𝐶
)
𝛼𝛽

(
𝛼(1 − 𝛽)

𝐶𝐴
)
𝛼(1−𝛽)

(
1 − 𝛼
𝐶𝐸

)
(1−𝛼)

𝑄(1−𝛼)𝛽

 



We could find the desired employee and labor similarly, from the same optimization problem. However, 

we note that assets typically move more slowly than employees and capabilities, so the goals for 

capabilities and labor could take current assets as given. We therefore define two more short-term 

problems, one to find desired capabilities given current levels of assets and another to find desired 

employee levels given the current level of both capabilities and assets1. We solve the analogues (but 

simpler) problems and find desired capability (CD) and desired labor for customer service (ED_S). These 

solutions are available as part of model equations. The desired labor for capability building (ED_C) then 

accounts for both labor needed to maintain CD and the labor to close the gap between current capability 

level and the desired level over the capital adjustment time (tC): 

𝐸𝐷_𝐶 =
Max (0,

𝐶𝐷
Τ
+
𝐶𝐷 − 𝐶
𝑡𝐶

)

𝑒𝑐𝑄
 

Total desired labor, ED, is the sum of desired labor for capability building and desired labor for customer 

service. 

 

Step 3) 

Assets adjust slowly towards desired level: 

𝑑𝐴

𝑑𝑡
= (𝐴𝐷 − 𝐴)/𝑡𝐶  

Capability adjustment is achieved through employees who are allocated to capability building. Employee 

allocation first satisfies demand for customer service (ED_S), then demand for capability building, and if 

any labor remains (EX), it is allocated between the two purposes based on task richness, so with high task 

richness focus is on capability building and with low task richness the focus is on customer service: 

𝐸𝑆 = Min(𝐸, 𝐸𝐷𝑆) + 𝐸𝑋(1 − 𝛽) 

𝐸𝐶 = Max(𝐸 − 𝐸𝑆 , 0) 

𝐸𝑋 = Max(0, 𝐸 − 𝐸𝐷) 
Finally, the gap between labor and desired labor (G) is closed over employee adjustment time (μ) through 

hiring (H) as well as the faster of layoffs or voluntary turnovers (U): 

𝑑𝐸

𝑑𝑡
= 𝐻 − 𝑈 

𝑈 = 𝑀𝑎𝑥(−
𝐺

𝜇
,
𝐸

𝜏𝑉
) 

𝐻 = 𝑀𝑎𝑥(0, 𝑈 +
𝐺

𝜇
) 

𝐺 = 𝐸𝐷 − 𝐸 

 

A 2-Base case sensitivity to quality goal and behavioral decisions 

The base case analysis changes two factors (compensation and task richness) keeping the third potential 

managerial lever, desired service quality, fixed. To assess the impact of different values of desired service 

quality we repeat the baseline analysis for s values of 0.7 and 1.3. Results are reported in Figure S 1. The 

impact of service quality goal on the tradeoffs across the two other dimensions is limited to changes in the 

value of payoff, but the shape of the payoff landscape and the existence and location of the two peaks 

remain very similar. 

                                                            
1 In equilibrium the two approaches give identical results. They are also fairly similar dynamically, but the one we 
use leads to faster adjustments during transition and is behaviorally more realistic because it anchors the shorter-
term factors on the current (rather than future optimal) value of factors with slower adjustment time. 



 
 

Figure S 1-Sensitivity of results to different service quality goals. 

 

Another sensitivity analysis relates to the choice of efficient allocation functions in the model. This 

potentially strong assumption can be made modified to account for the anchoring of capability and service 

quality goals in historical values. Specifically, it may be more realistic to expect managers to anchor their 

current desired capability to past values and only slowly adjust towards more efficient levels. Similarly, 

service quality goals may be anchored to past service quality level. We assess both these possibilities by 

adjusting the equations for desired capability and desired service quality as follows: 

𝐶𝐷 = 𝐶𝐷
∗𝑤𝐶𝑒𝑓𝑓 + 𝐶(1 − 𝑤𝐶𝑒𝑓𝑓) 

𝑠 = 𝑠∗𝑤𝑠𝐸𝑥𝑡 + 𝑆̅(1 − 𝑤𝑠𝐸𝑥𝑡) 
Here CD* is the efficient desired capability from the optimization problem discussed above, s* is the 

external desired service quality (which we had denoted as s before), 𝑆̅ is the exponential average of actual 

service quality over τS, and wCeff and wsExt are weight parameters that control the strength of behavioral 

information cues in desired capability and service quality decisions. Our exploration of model using these 

new formulations and different weights suggests the behavioral mechanisms have limited impact on the 

results. As long as the weights are above 0, these behavioral formulations only slow down the 

convergence to efficient capability and externally desired service quality, but do not otherwise change the 

equilibrium behavior. While not central to our theoretical analysis, the slower adjustment time is 

potentially relevant for assessing the exact costs of transition and profitability in response to stochastic 

demands, however those numerical sensitivities do not change the qualitative results. Two sample 

analyses are reported in Figure S 2 where base case analysis is repeated with weights of 0.5 for each 

mechanism; no significant differences are observed however. In the special case where weights are put to 

zero, no external signal would inform service quality and capability goals and the dynamics change 

notably, becoming path dependent and anchored to the initial capability and quality levels. 

 



  
Figure S 2- Sensitivity of results to alternative goal setting mechanisms 

 

A 3-Complete sensitivity analysis results 

 

One dimensional sensitivity analysis 

Figure S 3 reports the full sensitivity analysis results for all the parameters discussed in the paper and 

summarized in Error! Reference source not found.. The discussion in sensitivity analysis section 

provides explanations for the observed patterns in this figure.  

 

  

  



  

  

  



  

  

 

 

Figure S 3-Full sensitivity analysis of dominant strategy at different parameter values 

 

Full factorial sensitivity analysis 

For this analysis we change the values of 5 key model parameters at the three low-medium-high values 

below (Table S 1), using a full-factorial design (a total of 35 scenarios). In each scenario the full strategy 

space is mapped using values of task richness between 0 and 1, and compensation between $500 and 

$4500 per month. For each scenario the number of peaks, and their locations on the four possible 

quadrants (determined based on Compensation and Task Richness thresholds of $2000/Month and 0.5 

respectively) are recorded. We label these quadrants as HH (for High Compensation and High Task 

Richness), HL, LH, and LL. We then record which peak dominates the results, so a scenario that is coded 

with a dominant peak of LH, has had the profit maximizing peak at low compensation and high task 



richness. In a few cases more than one peak is found on a single quadrant; to simplify the analysis we 

only call a scenario multiple-peaked if there are peaks in at least two quadrants.  

 

Parameter (lables) Low Medium High 
α Capital contribution to capacity 0.1 0.3 0.8 
𝛿𝑄 Employee quality on margin 0 0.05 0.3 
𝜃𝑐 Compensation on job attractiveness 0.1 0.6 1.5 
𝜃𝑄 Work environment on job attractiveness 0 0.25 0.6 
𝜉 Job attractiveness on tenure 0.2 2 4 

Table S 1-Full factorial sensitivity analysis parameters 

 

In 60% (145 of 243) of scenarios the HH (high-compensation high-task-richness) peak dominates. LH 

dominates in 28% of cases, and LL in 12%. Overall, 173 out of the 243 scenarios included multiple peaks, 

which we coded as another binary variable. Table S 2 also reports the number of scenarios in which at 

least a peak existed in each quadrant.  

 HH HL LH LL 

# SCENARIOS WITH AT LEAST A PEAK 159 78 91 121 

# OF SCENARIOS WITH DOMINANT PEAK 145 1 67 30 
Table S 2-Number of different types of peaks and their dominance in full factorial sensitivity analysis. 

 

Two questions drive our analysis in this section: 1) Which peak dominates? 2) When would we have 

more than one peak in the strategy space? We used logistic regressions to inform these questions and 

summarized the findings in the main body of the paper. Here we describe the details of the analysis. A 

full factorial analysis offers many viable combination of explanatory variables to include in a regression, 

and calls for a systematic exploration of this space. We applied both mechanistic methods (e.g. stepwise 

regressions) and more theoretically driven arguments (e.g. based on our understanding of the model’s 

main mechanisms) to explore the independent variables that we could include in the regressions and 

iterated between this exploration and improving our understanding of the model mechanisms. We found 

the theoretically driven search to be more effective in focusing on a small subset of variables that explain 

a large portion of variation in the results. The final regressions shown in Table S 3 are selected based on 

this simplicity criterion. 

  
HH LH LL Multiple 

Peaks 

Intercept -2.26  
(0.34) 

-1.89   -129.85   1.08  
(0.62) 

θC 
 

40.07   306.97   7.61  
(1.6) 

α 
   

1.14  
(1.01) 

θQ 
   

-2.75  
(0.86) 

δQ 
   

-12.48  
(1.87) 

θC
2 

 
-71.75   -147.18   

 



αδQ 
  

-72.6  
(21.79) 

 

θQξ  
  

-3.87  
(1.16) 

 

αθQ 5.94  
(1.67) 

   

αθC 4.8  
(1.56) 

  
-8.22  
(2.1) 

δQθC 10.62  
(2.96) 

   

αθCξ  2.68  
(0.9) 

   

AUC 0.96 0.95 0.95 0.92 

Table S 3-Logistic regression results for predictors of dominant peak and existence of multiple peaks. All models and parameters 
are statistically significant; AUC reports area under the Receive Operating Characteristic (ROC) curve and is a measure of 
goodness of fit for the model (changing between 0.5 and 1). Due to limited variation in explanatory variables (only changing at 3 
values), multiple (infinite) solutions exist for some parameters, in which case one is reported and standard deviations are 
excluded. 

A 4-Analytical equilibrium for simplified model 

Equilibrium performance for a simplified version of the model can be found analytically. To this end we 

can remove learning and training from the model which simplifies the equilibrium conditions 

significantly. Next, we use the following arguments to specify the equilibrium values for the state 

variables of the model: 

- Baseline quality can be found using the equation for new employee quality because training and 

learning do not change quality in the simplified model: 

𝑄𝑁 = (
𝑐

𝑐𝑁
)
𝜃𝑐
𝑄𝜃𝑄𝑠𝜃𝑆𝛽𝜃𝑇 ⇒𝑄𝐸𝑞 = ((

𝑐

𝑐𝑁
)
𝜃𝑐
𝑠𝜃𝑆𝛽𝜃𝑇)

1
1−𝜃𝑄

 

- Underlying Demand can be found based on its base value and the impact of service quality on 

demand, keeping in mind that in equilibrium service quality equals desired service quality: 

𝐷𝑈−𝐸𝑞 = 𝑑𝐵𝑠
𝛾𝑄 

- Equilibrium capability, employees, and assets should be set to their desired levels, CD, ED, and 

AD, discussed above. These are: 

𝐴𝐷−𝐸𝑞 = 𝐵𝐷−𝐸𝑞𝛼(1 − 𝛽)/𝐶𝐴 

𝐶𝐷−𝐸𝑞 = 𝐵𝐷−𝐸𝑞𝛼𝛽/𝐶𝐶  

𝐸𝐷−𝐸𝑞 =
𝐵𝐷−𝐸𝑞(1 − 𝛼)

𝐶𝐸
+
𝐶𝐷−𝐸𝑞

𝑒𝐶𝑄𝐸𝑞
 

Where desired budget in equilibrium, BD-Eq is: 

𝐵𝐷−𝐸𝑞 =
𝑠𝐷𝑈−𝐸𝑞

𝜅 (
𝛼𝛽
𝐶𝐶
)
𝛼𝛽

(
𝛼(1 − 𝛽)

𝐶𝐴
)
𝛼(1−𝛽)

(
1 − 𝛼
𝐶𝐸

)
(1−𝛼)

𝑄𝐸𝑞
(1−𝛼)𝛽

 

 

We can then replace these state variables in various model equations to calculate the equilibrium profit: 

𝜋𝐸𝑞 = 𝐷𝑈−𝐸𝑞𝑝𝑙𝑏𝑚𝑏𝑄𝐸𝑞
𝜂𝑄𝛿𝑄𝑠𝜂𝑆 − (𝑐 +

𝑐ℎ

𝜏𝑉𝑏𝑄𝐸𝑞
𝜉
)𝐸𝐸𝑞 −

𝑐𝑁
𝑒𝐶𝑡𝑏𝑎𝐴

𝐴𝐸𝑞 − 𝐶𝐹𝑖𝑥𝑒𝑑 



In short, both equilibrium conditions and the profits in equilibrium could be calculated analytically after 

the simplifications discussed above. However, the resulting expression for profit (as a function of model 

parameters) is quite complex and the optimization problem to maximize profits as a function of 

compensation, desired service quality, and task richness cannot be solved analytically; thus even in the 

simplified model a numerical approach is required for calculating optimal strategy.  

 

 

 


