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Abstract 

 
System dynamics (SD) models typically use one or more sequential exponential processes to 

characterize survival or other expiry processes.  These processes imply gamma distributions of 
the time until death, including the special case of exponential distributions for single-stage 

processes.  For many applications, this provides an adequate representation of the survival 
process.  However, in the context of characterizing risks associated with rare events, the shape of 

the distribution, and in particular the tail, may carry important implications.  We explore a 
number of different ways to characterize survival in an SD framework to fit a set of censored 

survival data for a medical condition that may lead to low probability-high consequence events 
of re-introduction of poliovirus after global polio eradication.  We find that most survival 

characterizations reasonably match the limited data, but the choice of characterization can lead to 
significantly different behavior in the tail of the survival curve, which could result in widely 

different implications for risk management.   

 

  



2 

 

Introduction 

 

Deterministic, differential-equation based system dynamics (SD) models typically characterize 
outflow from stocks using fractional rates that represent the proportion that exits the stock per 

time unit.(Sterman 2001)  Characterizing expiry from a single stock using constant fractional 
rates results in an exponentially-distributed residence time in the stock and leads to appropriate 

and adequate representation of the survival process in some applications.(Sterman 2001)  
Division of the expiry process into multiple, sequential stages with the same fractional expiry 

rate results in gamma-distributed residence times, which provides a more realistic representation 
for other processes.(Lloyd 2001, Sterman 2001)  Chained processes, such as an aging chain, 

allow further flexibility by characterizing appropriate fractional expiry rates at different stages of 
the process.(Sterman 2001)  In deterministic SD models, regardless of the choice of expiry 

process, the number remaining in any stage of the process represents a fractional number at any 
time, which implies an infinite tail of the residence time.  Stochastic formulations of SD models 

circumvent this limitation by allowing only for discrete units in each stock (e.g., people, widgets, 
vaccine doses) and they can achieve a value of 0 units, but attain the same distributions of 

residence times if they utilize rate-based transition probabilities. The method of “continuous 
cohorting” (Eberlein, Thompson et al. 2012) breaks downs the expiry process into one stage for 

each time step and can characterize any desired survival function and truncate the residence time 
at some pre-determined maximum.   

 
Statistical survival analysis for medical conditions typically relies either on competing risk 

survival analysis or uses excess hazard rates.(Sandin 2008)  Competing risk survival analysis 
requires teasing out the cause of death of patients as either related to the medical condition or 

unrelated through analysis of death certificates.  Estimating of the excess hazard rates occurs by 
comparing survival rates of patients with the medical condition with the background survival 

rates of the general population.  Both of these methods results in survival rates specific to the 
medical condition that SD models can take into account, assuming that the data exist to support 

the analysis. 
 

In the context of some risk analysis applications of SD models, consideration of the expiry 
process deserves particular attention if the tail of the distribution generates low probability 

events with high consequences.  For example, decay of radioactive material may involve a very 
long tail and the probability that high enough amounts of material remains beyond the expected 

duration of effective containment measures may drive the long-term risk of catastrophic events. 
In dynamic epidemiologic modeling, the existence of “super spreaders” with much longer than 

average infectious periods drives the pattern of outbreaks and persistence of certain infectious 
diseases.(Lloyd-Smith, Schreiber et al. 2005)  We explore different characterizations of survival 

for a rare medical condition that may potentially lead to major global public health implications 
by re-introducing eradicated poliovirus.(Duintjer Tebbens, Pallansch et al. 2006)  We focus on 

deterministic SD characterizations while noting that stochastic formulations of the same 
processes imply similar distributional behavior.  We consider how well each characterization 

reproduces a censored survival data set for this medical condition, and report the tail behavior 
that drives the risk.  Finally, we discuss pros and cons of each approach and possible areas of 

future research. 
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Problem description 
 

The Global Polio Eradication Initiative (GPEI) represents one of the largest global public health 
ever undertaken.  With the apparent global eradication of 2 of the 3 wild poliovirus (WPV) 

serotypes (World Health Organization 2001, Kew, Cochi et al. 2014) and indigenous 
transmission of the last remaining WPV serotype confined to 2 countries,(World Health 

Organization 2015) the GPEI increasingly focuses on transitioning to a polio-free world.(World 
Health Organization 2013)  Oral poliovirus vaccine (OPV) represents the current vaccine of 

choice for most GPEI activities.  Inexpensive and easy-to-administer OPV successfully 
interrupted WPV in the most challenging environments, but it contains attenuated (weakened) 

live polioviruses that cause vaccine-associated paralytic poliomyelitis (VAPP) disease in a small 
fraction of recipients and their close contacts.(Platt, Estivariz et al. 2014)  In populations with 

very low immunity, the OPV viruses can continue to spread and evolve to cause paralytic 
outbreaks of circulating vaccine-derived polioviruses (cVDPVs) that behave like WPVs.(Kew, 

Morris-Glasgow et al. 2002, Duintjer Tebbens, Pallansch et al. 2013, Burns, Diop et al. 2014)   
Because of these risks, the GPEI plans to globally coordinate the cessation of OPV,(World 

Health Organization 2013) which requires high enough population immunity everywhere to 
avoid cVDPV outbreaks after OPV cessation.(Thompson and Duintjer Tebbens 2014)  Because 

of the typical infectious period of approximately one month for most individuals, dynamic 
poliovirus transmission and OPV evolution modeling suggests any cVDPVs would emerge 

within approximately one year of OPV cessation.(Thompson and Duintjer Tebbens 2014)  Thus, 
if the GPEI successfully manages OPV cessation to prevent or contain cVDPV outbreaks, the 

risks of cVDPVs and VAPP will disappear within a few years of OPV cessation, and only long-
term poliovirus re-introduction risks will remain.  These include intentional or unintentional 

release of poliovirus from laboratories or poliovirus vaccine manufacturing sites and 
introductions of immunodeficiency-associated vaccine-derived poliovirus (iVDPV) from a small 

number of individuals with primary B-cell immunodeficiencies.(Duintjer Tebbens, Pallansch et 
al. 2006)  Given that population immunity will decline after OPV cessation,(Duintjer Tebbens 

and Thompson 2014) any poliovirus re-introduction long after OPV cessation could potentially 
spread rapidly, resulting in a major global health emergency and presenting a serious challenge 

to contain.   
 

While immunocompetent individuals excrete poliovirus for less than 3 months,(Alexander, Gary 
et al. 1997) as of late 2014 the GPEI identified 73 immunodeficient patients who excreted for at 

least 6 months.(Burns, Diop et al. 2014)  The iVDPV viruses excreted appear to possess similar 
properties as WPV and cVDPVs and thus could spread and cause paralytic poliomyelitis disease 

if introduced after OPV cessation.(Burns, Diop et al. 2014)  To date no known outbreaks of 
paralytic poliomyelitis occurred as a result of virus introductions from these patients into the 

general population, which could reflect population immunity in the communities surrounding 
these patients rather than absence of iVDPV introductions or limited transmissibility of these 

viruses.  The GPEI defines prolonged excretors as immunodeficient patients who excreted at 
least 6 months and chronic excretors as immunodeficient patients who excreted for at least 5 

years.(Burns, Diop et al. 2014).  Only 5 of the 73 known prolonged and chronic excretors 
exhibited chronic excretion, all diagnosed with one category of primary immunodeficiency 

disease, i.e., common-variable immunodeficiency disease (CVID).   While at least one of the five 
chronic excretors spontaneously stopped excreting,(Bellmunt, May et al. 1999) others continued 
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to excrete until they died (in some cases by contracting paralytic poliomyelitis), and one began 
excreting in approximately 1978 and continues to date without contracting paralytic 

poliomyelitis.(MacLennan, Dunn et al. 2004)  Given the potentially serious consequences of 
poliovirus re-introductions long after OPV cessation, the global prevalence of CVID patients 

with chronic poliovirus excretion represents an important risk for reintroduction.(Duintjer 
Tebbens, Pallansch et al. 2015) Polio antiviral compounds may offer the possibility to clear 

chronic infections, but require significant investments to develop.(McKinlay, Collett et al. 2014)  
Moreover, using polio antiviral drugs requires identification of prolonged and chronic excretors, 

which remains costly, because the majority excrete asymptomatically for many years.(Duintjer 
Tebbens, Pallansch et al. 2015)  In the context of modeling the prevalence of prolonged and 

chronic excretors,(Duintjer Tebbens, Pallansch et al. 2015) the survival of CVID patients in 
different settings emerged as a major uncertainty that warrants modeling attention given the 

important risk management implications. 
 

CVID represents the most prevalent of the many types of primary immunodeficiency diseases 
accounting for approximately 20%.(Gathmann, Grimbacher et al. 2009)  CVID is a progressive 

disease that typically does not result in any symptoms until the second decade of life, with an 
average age of onset of approximately 25 years.(Chapel, Lucas et al. 2008)  Due to their 

compromised immune systems, CVID patient tend to incur recurrent bacterial and viral 
infections, but intravenous immunoglobulin (IVIG) therapy can prevent infections and extend 

life.  While the GPEI identified some known CVID excretors, it appears that only a small 
fraction of all CVID patients fails to normally clear OPV infection, because poliovirus screening 

studies among CVID patients very rarely detect prolonged excretors and to date never detected 
any chronic excretors.(Li, Ivanova et al. 2014)  Estimating the survival of CVID patients in 

different settings remains challenging due to the need for long-term follow-up, highly variable 
ages of CVID onset, changing treatment options over time, and differences in hygienic 

conditions between countries and over time.  However, some data exist to estimate survival. 
(Chapel, Lucas et al. 2008, Joshi, Iyer et al. 2009, Mohammadinejad, Aghamohammadi et al. 

2012)  Figure 1 shows the 2008 data from the most comprehensive longitudinal study,(Chapel, 
Lucas et al. 2008) which clearly shows decreased survival of CVID patients compared to the 

general population in developed countries and a trend toward improved CVID survival over time 
most likely reflecting improvements in treatment.  Due to the finite duration of follow-up, the 

data remain right-censored, but some unknown maximum survival exists for CVID patients such 
that they cannot exceed the maximum life time for humans.  The authors report that the age of 

onset inversely correlated with survival, but constructing statistically meaningful survival curves 
by age of onset would require following a larger cohort of patients than the 389 individuals 

included in the 2008 study survival curve.(Chapel, Lucas et al. 2008)  For purposes of 
demonstration, we set aside these limitations and focus our analysis on the data,(Chapel, Lucas et 

al. 2008) although the insights from this work extend to other data sets, time periods, and 
countries.  We also do not consider all of the other complexities associated with estimating 

incidence of different primary immunodeficiency diseases, delays in disease onset and diagnosis, 
exposure to different poliovirus serotypes, treatment with IVIG and polio antivirals, and the 

probability of prolonged or chronic infection by primary immunodeficiency disease.(Duintjer 
Tebbens, Pallansch et al. 2015) 

 

Characterizations of survival 
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We consider a number of different survival characterizations, as illustrated in Figure 2 (omitting 

the arrows from stocks to their outflows for visual simplicity).  In each characterization, CVID 
patients enter the CVID survival process as they develop symptoms (i.e., disease onset), and exit 

the process through death that may occur at different stages of CVID progression.  For simplicity, 
the models ignore the role of the diagnostic delay with respect to CVID survival and assume that 

onset of CVID coincides with the time of diagnosis.(Chapel, Lucas et al. 2008)  To explore the 
survival distribution associated with each characterization, we model a pulse of height 1 at time 0 

and follow the surviving fraction of CVID patients over a period of 200 years.  We use Euler 
integration and fix the integration step to a small value of 1/128 years to eliminate the possibility 

of consequential errors related to the step size.  For each characterization we estimate death rates 
that give the best possible fit to the survival data.(Chapel, Lucas et al. 2008)  

 
Characterization A 

 
Characterization A (Figure 2A) reflects the standard first-order expiry process with 

exponentially-distributed residence times used in many SD models in which the shape of the 
distribution is either truly exponential or not of major importance.(Lloyd 2001, Sterman 2001)   

For this characterization, we calculated the average death rate from the survival data set as: 
 

Average death rate = –Ln(ST)/T,  
 

where  ST= proportion surviving at the last survival data point (=0.58) 
 T = year corresponding to the last data point (=45 years) 

 
Characterization B 

 
Characterization B (Figure 2B) divides the survival process into n equally-wide stages with 

transition rates equal to the average death rate multiplied by n.  To ensure maximum 
correspondence with the survival data set, we do not simply use the same average death rate as in 

Characterization A.  While this would represent a reasonable standard approach when fitting to 
an estimated average death rate or life expectancy, the data represent a survival curve and not an 

average, and we found that using the same average death rates as in Characterization A results in 
a large distance between the model and survival curve.  Instead, we fit the average rate for a 

survival process of n stages directly to the data by numerically solving the average death rate for 
each stage from the cumulative gamma distribution implied by the multi-stage process (i.e., 

using built-in Gamma functions and the goal seek function in MS Excel): 
 

G(T,n,n/ad(n))=1-ST 
 

where  ad(n) = average death rate for each stage in the n-stage survival process  
G(x,alpha,beta) = Gamma distribution function with parameters alpha (corresponding to 

number of stages n) and beta (corresponding to 1 divided by the average death rate for 
each stage) 
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We initially set out to focus on the optimal number of stages in terms of the sum of squared 
errors (SSE) between the data and the model, but found that n=1 gave the best fit (i.e., equivalent 

to Characterization A).  We explored potential improvements of the tail behavior despite the 
increased SSE by computing the results for 2, 3, or 4 stages of survival.  

 
Characterization C 

 
Characterization C  (Figure 2C) represents an aging chain.(Sterman 2001)  Conceptually, the 

aging chain allows us to break the survival process into any desired number of stages and use 
appropriate death rates as a function of time since disease onset, consistent with the reported 

survival data.  We consider two variations of the aging chain.  Characterization C1 breaks the 
survival process into stages corresponding to the time when the survival proportions change in 

the reported data in Figure 1 (i.e., 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-24, 24-35, 36-38, 
39-44, 45-79, and >80 years after CVID onset).  While no survival data exist as far out as 80 

years after CVID onset, this characterization allows us to “force” a low survival proportion 
beyond 80 years after CVID onset, which we set at 1% to factor in the reality of finite human 

survival.  The choice of 80 years remains arbitrary, and the aging chain allows any alternate 
number of stages and values beyond the last reported data point at 45 years.  In each stage s, the 

theoretical fit of the death rate to the data equals: 
 

d(s) = -Ln(St+1/St)/(Tt+1-Tt) 
 

where  d(s) = stage-specific death rate (between tth and t+1th data point) 
 St = survival proportion at tth data point in the survival data 

 Tt = number of years after CVID onset for the tth data point in the survival data 
 

For the last stage (>80 years), we assume the same d(s) as for the penultimate state.  The choice 
of d(s) for the last stage influences the tail behavior and thus provides some flexibility to 

influence the tail in the absence of data.   
 

Characterization C2 uses continuous cohorting.(Eberlein, Thompson et al. 2012) This method 
divides the entire survival period from 0-80 years after CVID into sub-stages of the same width 

as the integration time step (i.e., 10,240 stocks for our choice of a small integration step of 1/128 
years).  Continuous cohorting represents a hybrid approach that contains elements of discrete 

(deterministic) simulation but remains compatible with using rate-based flows in other parts of 
the SD model.  The approach circumvents the implicit assumption of perfect mixing within 

stocks(Eberlein, Thompson et al. 2012) by transitioning the entire contents of the sub-stage to the 
next sub-stage at each time step, except for the fraction that dies at the given time after onset:  

 
CVID(ss+1)=CVID(ss)×(1-d(ss)) 

 
Where d(ss) = sub-stage-specific death rate at stage ss (i.e., at ss integration steps after CVID 

onset) 
 CVID(ss) = proportion of CVID patients  surviving ss integration steps after CVID onset     
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Unlike a conventional aging chain, this approach remains consistent with how aging occurs in 
the real world (i.e., each day, we all get one day older, instead of a proportion of us becoming 

one day older).  The available survival data are not granular enough to estimate different death 
rates at each sub-stage, but we can use the same fitting approach as for characterization C1 to the 

reported wider time intervals when the survival proportion changes.  However, with continuous 
cohorting, the remaining survival proportions at different times represent the result of a discrete 

rather than a continuous compounding process, so that the fitted death rates for all sub-stages ss 
that fall with the wider data interval s equal: 

 
d(s) = 1- (St+1/St)

dt/(Tt+1-Tt)
 

 
where  dt = size of the integration time step (=1/128) 

 
Characterization D 

 
Characterizations A-C do not explicitly account for the age of patients because the survival data 

reflect time since CVID onset (Figure 1).  However, arguably age significantly impacts the 
survival of patients, particular at older age.  Unfortunately, the available data not provide 

patients-specific causes of death needed for a competing survival risk analysis.(Chapel, Lucas et 
al. 2008) They also do not provide a directly comparable age-specific survival curve for CVID 

patients relative to the general population because the age at onset varies widely in the CVID 
patient groups (between 0 and 76 years).(Chapel, Lucas et al. 2008)  Derivation of the excess 

hazard rate would require individual patient survival data to compare each patients survival 
given their age of onset with the background survival rates for the general population from that 

age on.  However, for purposes of demonstration, characterization D (Figure 2D) shows the 
stock-and-flow structure corresponding to a model based on the excess hazard rate.  This 

example assumes a constant excess hazard rate by age, although sufficient data would allow 
estimation of age-specific excess hazard rates.  To demonstrate the characterization for our data 

set, for simplicity we unrealistically assume that all CVID patients developed CVID onset at 
exactly the average onset age of 25 years.  We estimate the excess hazard rate as 

 
Excess hazard rate = –Ln(ST)/T - -Ln(P70/P25)/T 

Where ST and T are as defined for Characterization A 
Px is the proportion of the general population surviving to age x years (based on UK life 

tables)(Office for National Statistics 2015)   
 

For comparability, we consider the same stages as for Characterization C1 based on the time 
points when the CVID survival data change (i.e., 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-24, 

24-35, 36-38, 39-44, after onset, corresponding to ages 25-27, 28-30, etc.) and further include 
age groups 0, 1-4, 5-14, 15-24, 70-79, 80-89,90+ to complete the aging chain.  While the actual 

distribution of clinical CVID patients will depend on birth and death rates for pre-clinical 
patients, they do not factor into our focus on the survival response to a pulse of 1 CVID patient at 

time 0.  We consider two alternative initial pulses. The first (characterization D1) follows a 
patient entering the clinical CVID stage at age 25. The second (characterization D2) divides the 

initial pulse over all age groups according to the reported distribution of the age of onset.(Chapel, 
Lucas et al. 2008)  
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Results  
 

Figure 3 shows the behavior for the different survival characterizations compared to the data.  
Table 1 shows the behavior at the tail for each characterization as well as the fit to the data.  The 

single-stage first-order expiry process (Characterization A) produces a remarkably good visual 
fit (Figure 3) and numerical fit (low SSE in Table 1) to the survival data.  Due to estimation of 

the average death rate based on the last survival data point, the curve goes through this point 
(Figure 3).  However, the single-stage survival process implies an unrealistically long tail, with 

30% of modeled CVID patients expected to survive for more than 80 years after CVID onset and 
an impossible 23% after 120 years in the context of the late average age of onset.  Thus, naïve 

use of Characterization A would greatly overestimate the risk associated with survival of CVID 
patients persistently infected with iVDPVs beyond OPV cessation. 

 
Characterization B results in a greater SSE between the data and the model (Table 2) but more 

realistic behavior in the tail (Figure 3).  However, for a small number of stages, the proportion 
surviving beyond 80 years probably remains higher than expected even for the general 

population, and some fraction still survives beyond any reasonably expected number of years 
after CVID onset (Table 3, e.g., 11% surviving beyond 120 years with 2 stages).  With more 

stages, the tail behavior improves, but this comes at the expense of greater SSE due to poor fit to 
the existing data. 

 
Characterization C1 with a conventional aging chain produces more realistic tail behavior than 

Characterizations A and B, but underestimates survival near the last available data points (Figure 
3 and Table 1).  This occurs because drainage due to mortality in each stage reduces the effective 

aging rate to the next stage, which effectively reduces the proportions in later stages of the 
survival process.(Eberlein, Thompson et al. 2012)  This artifact of “cohort blending”(Eberlein, 

Thompson et al. 2012) represents an importation limitation of conventional aging chains to 
model slow processes with long tails, and in the case of the poliovirus risks analysis will lead to 

serious underestimation of risks.  In contrast, Characterization C2 with continuous cohorting 
circumvents this limitation and closely mimics the survival data, yielding the lowest SSE of all 

characterizations (Table 1).  In addition, Characterization C2 remains very flexible with respect 
to the tail behavior, because the modeler can specify any tail probabilities deemed realistic.  

However, the approach requires specification of a maximum survival time, because one can 
model only a finite number of sub-stages.  For our application, a finite tail represents a 

reasonable assumption and we elected to use a maximum of 80 years after CVID onset, resulting 
in 0 proportion surviving beyond that point (Table 1).  Additional time points after the last data 

point at 45 years after onset can give different shapes beyond 45 years, although these would be 
based on judgment rather than actual survival data.  Continuous cohorting involves a large 

number of stocks to represent each sub-stage, which can increase multiplicatively if the model 
requires multiple continuous cohorting processes or stratification by other variables (e.g., sex, 

age, age at diagnosis, poliovirus infection with each serotype, treatment status).   
 

Characterization D1 using the excess hazard rate with 1 initial clinical CVID patient at 25 years 
produces results very similar to Characterization C1.  This occurs because both characterizations 

essentially use the same total net rates as of function time since of onset.  In Characterization D1, 
we interpret time since onset as age and differentiate the contribution of the excess hazard rate 
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and the general population death rate, but the total remains similar.  Assuming constant excess 
hazard rates versus age-specific excess hazard rates yielded minimal impact.  Characterization 

D1 also uses slightly different age groups beyond 70 years of age than Characterization C1, with 
the general population death rates based on life tables rather than mere extrapolation of the 

CVID survival data, which accounts for the difference between the two curves.  If we assume a 
pulse according to the actual observed distribution of the age of onset (Characterization D2), 

then this violates our simplifying assumption of onset at 25 years for estimating the excess 
hazard rate, and consequently we obtain greater errors than with Characterization D1.  Cohort 

blending still occurs with these characterizations, but as for Characterizations C we can 
circumvent this using continuous cohorting.  

   

Discussion 

 
The choice of survival characterization matters and may result in large differences that can affect 

estimates of risk and risk management policies.  Thus, the choice of model to characterize 
survival in risk analysis applications of SD models deserves careful consideration, particularly 

for risks involving a slow process with a long tail.  Table 2 summarizes the advantages and 
disadvantages of the different approaches we considered for this application.  The available data 

to estimate survival limits the choices of survival characterization, ranging from Characterization 
A (warranted if only an average is available and no information about the distributional form) to 

Characterization D (requiring individualized data).  If individualized data are available, then 
Characterization D would provide the most realistic characterization that can account both for 

age and time since disease onset.  In our application, the data limit our ability to use 
Characterization D.  

 
For aging chains (Characterizations C and D), continuous cohorting clearly represents the most 

appropriate characterization for the poliovirus risk analysis application among the 
characterizations we considered.  However, using this approach comes at the expense of the need 

for a very large number of stocks for multiple levels of stratification, leading to higher 
computational demands, more complicated implementation, and more complexity to 

communicate to policy makers.  Stochastic formulations of continuous cohorting models, such as 
discrete-event simulation (DES) models, offer a more convenient approach to track time since 

onset and/or age and other factors, while preserving the desirable tail flexibility and behavior.  
Unlike the deterministic SD models described here, DES models require a large number of 

stochastic iterations, particularly given the importance of low probability-high consequence 
events.  Given that risk analysis applications focus on probabilistic outcomes, the need for a 

large number of stochastic iterations represents a necessary requirement.    
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Figure 1: Common variable immunodeficiency disease (CVID) survival data from different 

studies compared to the general population, as reported in (Chapel, Lucas et al. 2008) 
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Figure 2: Stock-and-flow diagrams for the different characterizations of CVID survival  
 

A: Single-stage process 

 
 

B: Multi-stage process with single average death rate 

 
 

C: Aging chain with death rates that vary with time since CVID onset 
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D: Excess hazard rate 

 
dgen(a)= general population death rate for age group a 

dex = excess death rate for CVID patients 
   



15 

 

Figure 2: Comparison of  available data(Chapel, Lucas et al. 2008) to results with each 

survival characterization 
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Table 1: Sum of squared errors (SSE) compared to data and tail behavior for each survival 

characterization 

Survival characterization SSE Proportion surviving at 

45 years 

(data: 0.58) 

80 years 100 years 120 years 

A 0.019 0.58 0.38 0.30 0.23 

- B1 (2 stages) 

- B2 (3 stages) 
- B3 (4 stages) 

0.019 

0.062 
0.105 

0.58 

0.58 
0.58 

0.28 

0.21 
0.16 

0.17 

0.11 
0.066 

0.11 

0.050 
0.024 

- C1: conventional aging chain 

- C2: continuous cohorting 

0.084 

0.0077 

0.40 

0.58 

0.038 

0 

0.0072
 

0 

0.0012 

0 

- D1: conventional aging chain 
- D2: continuous cohorting 

0.044 
0.099 

0.44 
0.43 

0.044 
0.086 

0.0078
 

0.025 
0.0012 
0.0058 
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Table 2: Pros and cons of each characterization 

Survival 

characterization 

Pros Cons 

A (single stage) • Conceptually simple 

• Easiest to parametrize 

• Only 1 stock needed 

• Only one distributional form attainable 

• Too many short survivors 

• Too many long survivors (i.e., long tail) 

B (any number 
of stages) 

• Conceptually simple 

• Easy to parametrize 

• Relatively few stocks needed 
 

• Limited distributional forms attainable 
(only gamma) 

• Tail still too long for optimal number of 
stages 

• No better fit to data than 
Characterization A 

C1 (conventional 

aging chain) 
• Flexible 

• Ability to directly moderate tail 
behavior 

• Conceptually clear 

• Poor fit to survival curve data due to 

cohort blending 

• May require many stocks to represent 
survival data 

C2 (continuous 

cohorting) 
• Flexible with respect to any 

desired realistic tail behavior  

• Direct fit to survival data 

• Realistic representation of 
chronological process 

• Requires large number of stocks 

• More cumbersome to integrate with 
conventional rate-based processes 

D (excess death 
rate) 

• Can realistically account for 
both age and time since onset 

• Estimates require individualized data 

• Cohort blending still possible (unless 
continuous cohorting used) 

• More than twice as many stocks as with 
Characterization C 

  


