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Abstract 
In this paper we discuss how to automatically generate system dynamics models 
using a kind of genetic algorithm known as a genetic program. This allows both the 
structure and the parameters of the system dynamics models under study to be 
evolved. This paper builds on previous work that introduced the use of genetic 
programs to automatically generate system dynamics models. The paper’s 
contribution is that it discusses how to automatically generate anticipatory system 
dynamics in weakly constrained, data-sparse domains. The paper also describes 
how this technique might be applied to an example domain, namely that of 
transnational organized crime. This paper reports the status of work in progress. At 
the time of submission, the designs described in this paper were partially, but not 
fully, implemented. 
 
Background 
John Holland’s (1992) genetic algorithms are a category of biologically inspired 
search methods that implement some of the central features of natural selection. 
Genetic algorithms (Goldberg 1989, Mitchel 1996) evolve a population of 
individuals, each of which represents a candidate solution to a user-selected 
problem. Genetic algorithms use a fitness function to rank each individual’s 
effectiveness as a solution to the chosen problem. Genetic algorithms modify their 
populations over a series of generations using events patterned after natural 
selection. The events include the deaths of uncompetitive members of the 
population, the reproduction of competitive individuals, and random mutations 
among survivors. Reproduction, in particular, can include crossover events where 
children gain a mixture of the traits of their two parents. 

Genetic algorithms have been widely used for a wide range of search and 
optimization tasks with substantial success (Goldberg 1989, Mitchel 1996). In the 
case of search, the fitness function quantitatively estimates how well each individual 
candidate meets the search criteria. For optimization, the fitness function is usually 
the objective function to be approximately minimized or maximized. It should be 
noted that for nontrivial problems and achievable run times, genetic algorithms are 
usually heuristics that do not guarantee optimal results. In practice, genetic 
algorithms often do quite well despite the caveats. Here we use genetic algorithms 
for a special kind of optimization to be detailed later. 
 
Related Work 
Genetic algorithms have been used in three main ways in the published system 
dynamics literature. First, genetic algorithms have been used in constrained 
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domains to construct system dynamics models that match selected times series 
data. Second, genetic algorithms have been used to calibrate existing system 
dynamics models. Third, genetic algorithms have been used to optimize the 
parameters of existing system dynamics models relative to an objective function. We 
will now review each of these uses. 
 
System Dynamics Model Creation 
Several papers have been published on the use of genetic algorithms to generate 
system dynamics models or parts of system dynamics models such as stock 
equations. These papers are reviewed in this section. 

Abdelbari, Elsawah, and Shafi (2015) use a genetic algorithm to evolve the stock 
equations for system dynamics models with one, two, and three stocks with the goal 
of fitting the resulting equations to known formulas for demonstration purposes. 
This work is similar to ours, but it does not seek to evolve the overall network 
structure, it does not take dimensional analysis into account, and it attempts to fit 
the results to a comparatively dense data set rather than discover new possible 
formulations. 

Chen, Tu, and Jeng (2011) combine recurrent neural network (RNN) encodings 
of system dynamics models with a genetic algorithm to approximately optimize the 
models for the purpose of policy design. They use the RNN’s to learn system 
dynamics model parameter settings and apply a genetic algorithm to evolve RNN-
encoded system dynamics model structures. They attempt to find system dynamics 
models that fit a desired policy outcome and, separately, attempt to maximize 
desired policy outcomes for a given class of models. Chen, Tu, and Jeng (2011)’s 
work is closely related to ours, but they do not take dimensional analysis into 
account and seem to generate new models with only incremental changes from the 
original models. 

Koza et al. (2001) and Pawlas and Zall (2012) use a variant of genetic algorithms 
called genetic programming (Koza 1990) to evolve system dynamics models. 
Genetic programming can be understood as a special class of genetic algorithm 
where each individual is a small computer program. These programs are often 
represented as branching trees of appropriate instructions. Pawlas and Zall (2012) 
used genetic programming to determine the equations and parameters in selected 
nodes of a system dynamics model of economic activity designed by subject matter 
experts. Koza et al. (2001) “reverse engineered both the topology and sizing…of a 
network of chemical reactions.” Koza et al. (2001)’s pioneering work is the closest to 
that presented in this paper, particularly the molecular approach. Nonetheless, 
there are significant differences between our paper and those of Koza et al. (2001) 
and Pawlas and Zall (2012). First, we are modeling a less constrained domain so the 
search space of potential models is much larger. Second, we have less data and 
therefore must use techniques appropriate to a data-sparse domain. Third, we are 
not necessarily attempting to reproduce a known network but rather anticipate 
networks that might emerge in the future. Fourth, we use a nested two-stage 
optimization that considers dimensional analysis then system performance rather 
than a single stage. 
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System Dynamics Model Calibration 
Calibration of an existing system dynamics model using a genetic algorithm usually 
involves evolutionary tuning of the model’s parameters. Typically, each individual in 
the population represents one candidate set of model parameters. The fitness 
function result for each candidate is found by running the system dynamics model 
for a fixed period of time using the associated input parameters and recording either 
the cumulative or final value of a chosen model output. The calibration may be run 
once or it may be executed repeatedly to match varying entries in a target time 
series. Example papers that apply variations of this method are those by Jeng, Chen, 
and Jeng, Chen, and Liang (2006), Shuhong (2008) and Yu and Wei (2012). The 
work presented in this paper includes calibration, but goes beyond this by also 
evolving model structure. 
 
System Dynamics Model Optimization 
Optimization of existing models involves using a genetic algorithm to find system 
dynamics model parameters that approximately minimize or maximize an objective 
function. The objective function in turn is either the cumulative or final value of a 
chosen model output as generated by executing the system dynamics model for a 
fixed period of time using the selected candidate parameters. Examples papers that 
use this kind of approach include those by Linard (2000), Alborazi (2008), and 
Eksin (2008) as well as the aforementioned parameter-fitting element of Chen, Tu, 
and Jeng (2011)’s work. Our work preforms optimization on both the model’s input 
parameters and the model’s structure. 

There is some debate as to how effective genetic algorithms are for calibration 
and optimization of system dynamics model parameters. Ventana Systems Inc., the 
makers of Vensim, have stated that “we have experimented extensively with genetic 
algorithm optimization and found that the results are very poor” (2015). Other 
system dynamics tools are reported to have included genetic algorithms for 
optimization (Linard 2000), at least at one time. Other researchers such as Linard 
(2000), Alborazi (2008), Eksin (2008), and Chen, Tu, and Jeng (2011) have reported 
successful results using genetic algorithms to optimize system dynamics model 
parameters. 
 
Model Design 
Two fundamental approaches are being pursued for this paper4. Both approaches 
use the genetic algorithm technique known as genetic programming to dynamically 
create a series of candidate system dynamics models to be evaluated by subject 
matter experts. 

Each individual in the genetic program consists of a set of assignments to a fixed 
list of system-level output variables. Each output variable includes a time series of 
values and an associated unit. The domain-specific output variables are chosen by 
subject matter experts to represent the system’s critical measures of interest. The 
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genetic program determines the assignments to these output variables using either 
molecules or atoms as discussed later. 

The fitness function uses rising values to represent increasingly preferred 
candidates. We use a nested two-stage fitness function that considers dimensional 
analysis then system performance. The dimensional analysis evaluation adds up any 
dimensional arithmetic or assignment errors and assigns an undesirable value to 
the fitness function that is inversely proportional to the total number of errors. The 
system performance evaluation only occurs when there are no dimensional analysis 
errors. System performance evaluation involves running the model for a specific 
period of time and then collecting the output results. Then, the system performance 
is assigned a desirable function of the output variables selected by the subject 
matter experts (e.g., maximizing profit). A candidate with the minimal system 
performance is arranged to have a higher fitness value than a candidate with even a 
single dimensional analysis error. 

Either the molecular or the atomic approaches discussed next will produce 
generations of models with increasing fitness levels. Once the fitness levels become 
high enough the resulting models will be considered as possible future networks. Of 
course, having a high fitness level does not necessarily mean that a given 
transnational organized crime (TOC) network is a realistic possibility now or in the 
future. It is possible for networks with high fitness levels to contain subtle problems 
or to simply be unreachable by transformations from the current state. Nonetheless, 
novel networks with high fitness values may offer interesting anticipatory windows 
into possible futures. These candidate networks will be shown to subject matter 
experts to determine if the networks contain useful insights. 
 
The Molecular Approach 
The molecular approach uses Eberlein and Hines’ (1996) concept of system 
dynamics “molecules” to build candidate models. Molecules are small to medium-
sized sets of system dynamic components that represent common themes or motifs 
in a domain of interest. For example, Eberlein and Hines (1996) identify the simple 
stock and flow structure called a “decay process” as a common example molecule. 

The molecular approach to dynamically generating system dynamics models 
involves subject matter experts identifying common behavioral patterns in their 
domain that are candidates to become molecules. These molecules are then given 
standardized interfaces that minimize the chances of dimensional analysis errors 
and maximize the opportunities for interoperability with other molecules. For 
example, common units are chosen when possible (e.g., all currency values in are 
U.S. dollars). It is intended that this will reduce the time spent in finding 
dimensionally-consistent candidate models. 

 
The Atomic Approach 
The atomic approach allows equations to be built up from raw terms rather than 
molecules. This approach allows greater flexibility than the molecular approach, but 
also substantially increases the range of possible models. In particular, it is expected 
that this will increase the optimization time spent on dimensionally-inconsistent 
models. 
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Example Application Discussion 
Governments are increasingly faced with challenges that present themselves as 
“wicked problems” (Rittel and Webber, 1973).  These problems are complex 
systems that have many interdependent elements. They are typically not “owned” 
by one organization, but instead have a myriad of stakeholders with different and 
sometimes conflicting perspectives on the system. Finally, these problems become 
especially challenging for areas related to security, where the complex systems 
being addressed are highly adaptive and covert.  

The U.S. government typically addresses these types of complex wicked 
problems by dissecting them and parsing out the pieces to individual agencies and 
organizations. It is unreasonable to expect congressionally mandated agencies to 
reorganize themselves for every wicked problem.  Therefore, interagency 
coordination is often accomplished through committees and task forces. 
Unfortunately, these approaches have not always been effective against wicked 
problems.  

Collaborative interagency groups need to act like a meta-organization, with a 
trans-agency structure. To tackle complex adaptive systems, the ‘trans-agency’ itself 
needs to become a complex adaptive system. Methods must be developed that can 
design these trans-agency meta-organizations to be systemically aligned to the 
wicked problem they are charged with tackling.   

Our case study looks at U.S. strategies for addressing the convergence of 
transnational organized crime with domestic local gang crime. Transnational 
criminal organizations engage in many kinds of trafficking including that of people, 
drugs, arms, dangerous chemicals, biological materials, nuclear materials, and funds.  
Even the illicit transfer of information over the Internet can be categorized as 
transnational crime. Today, TOC has shocking scale and tragic sophistication that 
creates enormous costs for both the global economy and the human community 
(United Nations 2004). For example, one estimate sets the financial cost of TOC at 
$870 billion annually (United Nations Office on Drugs and Crime 2012). 

Criminal networks are not only expanding their operations, but they are also 
diversifying their activities, resulting in a convergence of transnational threats that 
has evolved to become increasingly complex, volatile, and destabilizing. These 
networks threaten U.S. interests in many ways including the forging and feeding of 
TOC alliances with corrupt elements of governments worldwide. 

Several global trends—including dramatically increased trade volumes and 
velocity, the growth of cyberspace, and population growth—have facilitated an 
explosion of violent non-state actors, strengthened TOC, supported the emergence 
of a new set of transcontinental supply chains, and driven the expansion of existing 
illicit markets. The resourcefulness, adaptability, innovativeness, and ability of illicit 
networks to circumvent countermeasures make them formidable foes for national 
governments and international organizations alike (Miklaucic and Brewer 2013).  

The complexity of the challenge requires attention to all levels of the illicit 
trafficking supply chain.  The United States government has traditionally sought to 
address these challenges vertically, with agencies acting largely in isolation from 
one another. The Drug Enforcement Agency focuses on controlling narcotics; the 
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Food and Drug Administration concentrates on stopping counterfeit 
pharmaceuticals; the Department of Energy targets dual-use components of 
weapons of mass destruction; and the State Department limits conventional 
weapons flows to name but a few. These organizations are all short on resources, 
are highly overworked, are evaluated using divergent metrics by Congress, and are 
unable to develop the interagency responses necessary to disrupt the increasingly 
interconnected illicit enterprises they are charged with fighting. 

Studies aimed at anticipating the evolution of TOC emphasize the need to 
understand the cultures and sub-cultures that yield and shield organized crime 
(Miklaucic and Brewer 2013). In addition, enhanced awareness of the political and 
economic incubators for criminal enterprises are needed. Facilitating the 
development of appropriate precautions or countermeasures by law enforcement 
agencies requires anticipating the long-term risk management strategies of criminal 
enterprises. 

Recent empirical research on drug trafficking networks in Central and South 
America, confirms that illicit networks are not only composed of the expected 
unlawful social agents but also include critical “gray agents” (Salcedo-Albaran and 
Salamaca 2012). Gray agents are defined as social agents with conflicting 
organizational and functional roles. Examples are public servants, political actors, or 
security specialists who also promote criminal interests. Such agents are said to 
engage in preference falsification driven by their divergent, and mutually 
incompatible, commitments. As a result, interactions with gray agents produce 
different social relationships than those seen amidst the typical confrontation 
between bright (i.e., lawful) and dark (i.e., unlawful) social agents (Salcedo-Albaran 
and Salamaca 2012). These unexpected interactions contribute to the already high 
level of complexity found in TOC-infused systems. This naturally leads to a 
discussion of complex adaptive systems. 

The complex adaptive system used in our case study is that of worldwide TOC 
network connections to local gangs. We plan to apply the atomic and molecular 
system dynamics model generation approaches discussed earlier to the TOC control 
problem. 
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