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Abstract: This paper presents a System Dynamics approach for dealing with complex issues that are characterized 

by deep uncertainty. Deep uncertainty refers to situations in which experts disagree on the formulation of ‘the’ 

underlying model, probabilities of inputs, and the valuation of outcomes. Instead of waiting for full information and 

accurate data to become available, consensus to be reached, or irrefutable scientific proof to be established, one 

could address such issues with approaches that enable one to simultaneously take alternative theories/models, sets 

of possible functions, different distributions, and distinct valuation frameworks into account. Exploratory Modelling 

and Analysis is such an approach: it allows for simulating sets of alternative models across vast uncertainty spaces, 

generating multi-model ensemble forecasts, exploring the resulting ensembles of outcomes using all sorts of 

machine learning techniques, identifying and selecting exemplar scenarios, performing directed searches to answer 

specific questions, and optimizing the robustness of potential adaptive policies that are designed to always work, 

especially when really needed. After introducing the approach, it will be illustrated in this overview paper with 

different applications for each of these typical use cases.  

Keywords: Ensemble Forecasting, Model-Based Policy Analysis, Exploratory Modelling and Analysis, 

EMA, Robust Decision Making, RDM 

 

1. WHY? INTRODUCTION  
 

Many policy issues and systems –like the economic or socio-demographic system– are not only complex, 

they are also characterized by many uncertainties. Their (long term) future are mostly even more 

uncertain, as are the possible impacts of new policies, especially of radically new policies. Although it is 

often possible to accurately project the short term future of complex and deeply uncertain 

systems/issues, it is mostly impossible to predict accurately their long term future. The divergence 

between projected evolutions and real world evolutions tends to be larger for higher degrees of 

uncertainty and complexity, and for longer time horizons. This does not mean, however, that modelling 

and simulating such systems/issues is not possible and that projections are not useful. To the contrary. It 

is often possible to develop models for severely uncertain issues/systems. Although the intended aim, 

expected insights, and the approach may have to change. In such situations, it may be useful to fully 

embrace uncertainty and adopt an exploratory approach instead of a traditional consolidative approach 

aimed at accuracy.  
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There are many reasons for embracing uncertainties in modelling and simulation: (i) it enables one to 

identify potential problems, (ii) it enables one to make better –albeit more uncertain– estimates, and (iii) 

it results in more robust decisions/policies. Reasons for not embracing uncertainties in modelling and 

simulation may be (i) that the analysis could become more challenging, and (ii) that it may be more 

difficult to communicate results and conclusions.  

 

2. WHAT? Uncertainty, EMA, ESDMA, RDM, Scenario Discovery,… 
 

2.1 Uncertainty 

Uncertainty itself is well-known but also a rather ambiguous concept: there is no consensus about what 

precisely should be understood by “uncertainty”. When asked to list uncertainties, most people list 

issue-related or contextual uncertainties, such as the uncertainty related to future oil prices. Apart from 

these application-related contextual uncertainties, there are other locations where uncertainties 

manifest themselves in model-based decision support – for example in methods, models, inputs and 

outputs. Uncertainty is also a multi-dimensional concept. Many authors distinguish the nature, level and 

location of uncertainties in model-based decision support. Most SD work is situated, in terms of the level 

of uncertainty, up to a level often referred to as “deep uncertainty”. 

 

Marginal Uncertainty -> Statistical Uncertainty  -> Deep Uncertainty -> Recognized Ignorance -> Total Ignorance 

Figure 1: Levels of Uncertainty 

 

Deep uncertainty could be defined as the uncertainty pertaining to situations in which experts do not 

agree with regard to the underlying model, probabilities, and evaluations of the outcomes of models 

(Lempert et al., 2003). Note that this definition of deep uncertainty can be translated directly to the 

nature of uncertainty. Note also that this definition implies that, under deep uncertainty, model-based 

approaches could still useful, although in a different way than traditional model-based approaches. 

Under deep uncertainty, it is still possible to construct sets of plausible models [in plural(!)], use these 

models for generating plausible ensembles of plausible scenarios which could be explored and used for 

policy design under uncertainty.  

 

2.2 Exploratory Modeling and Analysis2  

Various scientific fields including the environmental sciences, transportation research, economics, and 

the political sciences, are involved in providing model-based decision support. In these various fields, 
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people are grappling with the treatment of deep and irreducible uncertainty while using models. A 

common theme across these fields appears to be a shift away from predictive model use towards more 

explorative model use. Exploratory Modeling and Analysis (EMA) is a research methodology that uses 

computational experiments to analyse complex and uncertain systems (Bankes, 1993; Lempert et al. 

2003; Agusdinata, 2008).  

EMA is especially useful when relevant information exists that can be exploited by building models, but 

where this information does not allow specifying a single model that accurately describes system 

behaviour. In such situations, models can be constructed that are consistent with the available 

information, but such models are not unique. The available information is consistent with a potentially 

infinite set of plausible models, whose implications for potential decisions may be quite diverse. A single 

model run drawn from this set provides a computational experiment that reveals how the world would 

behave if the various guesses this single model makes about the various irreducible uncertainties are 

correct. By conducting many such computational experiments, one can explore the implications of the 

various guesses. EMA is the explicit representation of the set of plausible models, the process of 

exploiting the information contained in such a set through a large number of computational 

experiments, and the analysis of the results of these experiments. 

EMA is not focused narrowly on optimizing a (complex) system to accomplish a particular goal or answer 

a specific question, but can be used to address ‘beyond what if’ questions, such as “Under what 

circumstances would this policy do well? Under what circumstances would it fail?”, and “what is the 

range of plausible future dynamic developments of a phenomenon of interest? Under what 

circumstances can we expect which dynamic developments?” Given this focus, EMA stimulates out of 

the box thinking and can support the development of adaptive plans/policies (Hamarat et al. 2013, 

2014). 

EMA is first and foremost an alternative way of using available models, knowledge, data, and 

information. In making policy or planning decisions about complex and uncertain problems, EMA can 

provide new knowledge, even where strict model validation is impossible. For example, EMA can be used 

for existence proofs or hypothesis generation, by identifying models that generate atypical or 

counterintuitive behaviour. Knowing that a system can exhibit such behaviour can change the debate or 

open up new directions for the design of targeted solutions. Another example is the case where there is 

ample data available, but also disagreement or uncertainty about which data to use. EMA can be used to 

identify the extent to which the choice of data influences the model outcomes and preferred ranking of 

policy options. Instead of debating the choice of the right data, the debate can then shift to the 

development of policies or plans that produce satisfying results across alternative sets of 

data/assumptions. Other possible uses of EMA include the identification of extreme cases, both positive 

and negative, in order to get insight into the bandwidth of expected outcomes, and the identification of 

conditions under which significant shifts in performance can be expected. All these examples rely on the 

fact that policy or planning debates can often be served even by the discovery of thresholds, boundaries, 

or envelopes that decompose the entire space of uncertainties into sub-spaces with different properties. 

That is, partial information can inform policymaking or planning even when prediction and optimization 

are not possible by using the available partial information in a systematic and transparent way. Many 
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well-established techniques, such as sampling approaches and new types of optimization techniques can 

be usefully and successfully employed in the context of EMA. 

In this paper, we argue that by using models differently, the challenges associated with decision-making 

under deep uncertainty can largely be overcome. Instead of trying to predict accurately, the models are 

used to explore what could happen and what policies would hold across various uncertainties. In this 

way, decision-making can proceed despite the presence of deep uncertainty, for decisions can be 

designed to be robust across the explored range of possible futures. Flavors and Names: EMA, Robust 

Decision-Making, Scenario Discovery, ESDMA,…  

EMA, Scenario Discovery, Robust Decision-Making, Adaptive Robust Design, ESDMA refer to different 

strands of the Exploratory Modelling and Analysis methodology. Different groups (RAND, TUDelft, 

Worldbank,…) use these different labels to refer to variants of the same general approach, which are 

used for different aims or to refer to the use of the EMA methodology within a particular modelling field. 

For example, Scenario Discovery refers to exploratory approaches to identify and select exemplar 

scenario from ensembles of scenarios, Robust Decision-Making refers to exploratory approaches to 

iteratively make robust decisions, and Adaptive Robust Design refers to design adaptive robust 

policies,…). And ESDMA refers to the successful combination of EMA and System Dynamics modelling 

and simulation (Forrester, 1961; Sterman, 2000; Pruyt, 2013), which is a modelling method for simulating 

dynamically complex issues at the systems level. In the case, the label is used to distinguish the 

exploratory SD approach from the consolidative SD approach. This paper focusses particularly on 

ESDMA. Note, however, that it is not the first paper on ESDMA: earlier writings about ESDMA include 

Kwakkel & Pruyt (2013,2015), Pruyt and Kwakkel (2014), Pruyt et al. (2015), as well as some 50 

proceedings articles. The current paper provides a more comprehensive and illustrative overview of 

ESDMA in terms of use cases in health policy though. 

2.3 Use Cases and Steps 

As indicated above, there are different use cases for EMA with distinct labels. These use cases also apply 

to the combination of EMA and SD. In practice, these use cases are often applied one after the other – in 

a logical order. First, ‘certainties’ and ‘uncertainties’ are identified in order to build sets of plausible 

models that are subsequently simulated. The resulting ensembles could be used as ensemble forecasts. 

Second, these ensembles are explored and analyzed using all sorts of algorithms (clustering, PRIM, …) 

during an open exploration phase. Third, interesting clusters of scenarios are identified and 

representative exemplars are selected. Fourth, direct searches are performed to find answers to specific 

questions. And fifth, policies are designed, tested and robustly optimized across the uncertainty space. 

The corresponding use cases are: (i) ensemble forecasting, (ii) open exploration, validation and analysis, 

(iii) scenario discovery, (iv) directed searches, and (v) robust decision making and/or adaptive robust 

policy design. These use cases are illustrated with recent cases in section 4 of this overview paper.  
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3. HOW? METHODOLOGY: EMA with/out the EMA Workbench 
 

Figure 2 displays the EMA process. Different types of computational models and sampling techniques are 

used in EMA to generate ensembles of scenarios. Although individual scenarios could be studied, 

ensembles of scenarios are mainly focused on. These ensembles are subsequently explored, analyzed, 

and searched using all sorts of data science techniques. Different visualization techniques are used too. 

The exploratory process itself is quite iterative, and specific techniques like adaptive sampling and robust 

optimization require many iterations too.  

Although it is possible to perform EMA with separate software packages, it is more convenient to use 

open source scripting suites that allow to perform EMA (i.e., generate, store, explore, analyze, and 

optimize ensembles) and to develop new algorithms to be used for EMA. TUDelft’s EMA Workbench3 is 

one such open source suite programmed in Python (van Rossum, 1995).  

 

Figure 2: Exploratory Modelling and Analysis w/o the EMA Workbench 

The EMA Workbench enables one to perform all steps with the same scripting language and in the same 

package or the same interface. And new scripts can be developed with the same language. A Cookbook 

with many snippets of scripts is currently being written. Only the models are still developed with 

modelling software packages (although python versions are currently being developed too). These 

models are different from traditional models in that they contain certainties and all sorts of uncertainties 
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(different structures, functions, inputs, et cetera). A variety of sampling techniques is used for a variety 

of purposes (e.g., generating the largest variety of outcomes versus covering the input space (Islam and 

Pruyt, 2014)). And different types of exploration, analysis, and search algorithms are used, including 

algorithms to assess the importance of uncertainties or the joint causes of particular types of outcomes 

like  undesirable futures, to cluster scenarios, to reduce the dimensionality, to search for worst possible 

outcomes, to robustly optimize policies on multiple dimensions, et cetera4. And large open source 

visualization libraries are available. These explorations, analyses and visualizations can be documented 

with IPython Notebooks (see below).  

 

4. WHAT FOR? ILLUSTRATIONS OF TYPICAL USE CASES 

 
4.1 Ensemble Forecasting: Ebola in West Africa 

  

Figure 3: A suite of Ebola models with endogenous social-psychological relations 

Figure 3 shows the core of a set of System Dynamics simulation models related to the recent Ebola in 

West Africa. Much of the data and information related to the outbreak was deeply uncertain. A multi-
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method EMA approach was therefore adopted to generate ensemble forecasts and test policies. We 

used switches (blue arrows in Figure 3) to simulate different versions of the core simulation model, 

sampled across a large uncertainty space, and used a soft calibration approach (see Pruyt et al. 2015). 

Doing so resulted in an ensemble prediction by 4 November 2014 of between 17 thousand and 40 

thousand cases by 31 December 2014 and between 18 thousand and 50 thousand cases by July 2015 

(see Figure 4). Crucial for obtaining this ensemble forecast were the inclusion of uncertain endogenous 

social-psychological relations, of uncertain massive deployment policies, of surprises like superspreading 

events, and of a switch in social-psychological relations from adverse to ‘normal’. Figure 4 also shows 

that the ensemble forecast significantly improved between 28September and 4 November simply due to 

the availability of more and better real-world information.  

The key take-away was that massive deployment would allow to curb the outbreak by January 2015 (and 

hence, that massive vaccination campaigns would not be needed). Key methodological takeaways are 

that embracing uncertainty leads to fewer surprises, and that including endogenous change and 

surprises leads to less uncertainty.  

 
Figure 4: Ensemble forecasts of the Ebola Outbreak on 28 September, 17 October, 4 November 2014 

 

4.2 Open Exploration and Analysis: Radicalization under Deep Uncertainty 

Open exploration is one of the most important uses of EMA and ESDMA. Note, however, that the open 

exploration process itself is hardly ever reported on in academic papers. An exception is the paper by 

Pruyt and Logtens (2015): the appendix of that paper comprises a structured account of the systematic 

exploration process. Mostly, however, “outcomes” are reported on in journals, not the exploration 

process itself. For example, although the explorative process was the essence of the SDR paper by Pruyt 

and Kwakkel (2014), the authors had to rewrite the paper such that hardly anything was left of the 

explorative process.  



8 
 

A polished account of that particular explorative process is nevertheless available as a supplementary 

online notebook (see: http://nbviewer.ipython.org/gist/anonymous/4669f83d27d3e51b23c1). Note that 

the published paper only refers to one explorative technique (PRIM), while initially5, many analytical and 

exploratory methods and techniques were used.  

Records of explorative and analytical processes may actually be key to understanding the nature and 

value of explorative model-based research. Transparency and reproducibility of exploratory research 

then requires researchers to share models, but also data sets, scripts, and their notebooks. Publishing 

unpolished notebooks may in fact be a crucial addition to reporting in modelling – whether the model-

based study is explorative or not.  

Note that the Ebola work referred to in the previous section was published with a link to the online 

notebook (see http://nbviewer.ipython.org/gist/ep77/4b836f916dde743e96bf). The additional work 

reported on here (superspreading and shifting behaviours) are explored in another notebook (see 

http://nbviewer.ipython.org/gist/anonymous/c2aed2745e373a272164).  

 

4.3 Scenario Identification and Selection: Shale Gas, Energy Prices, and State Stability 

Scenario identification and selection is a third important use case. A good example of this particular use 

of EMA or ESDMA is the shale gas study by Auping et al. (2014), de Jong et al. (2014), and Moorlag et al. 

(2015). They used a first SD model to identify and select distinct future energy price scenarios. These 

scenarios are subsequently used in a second exploratory SD model related to state stability in order to 

assess the stability of important fossil fuel exporting countries when confronted with different energy 

price scenarios. Figure 7 visualizes the multi-model systems-of-systems architecture of this study.  

 
Figure 7: Scenario generation and selection for a Systems of Systems SD study 

 

Figure 8 displays the energy price scenarios selected from the ensemble of runs generated with the first 

SD model that were subsequently used in country-specific versions of the second SD model.  

Simulation of these scenarios under uncertainty in the one of the country-specific versions of the second 

SD model show or example that gradually decreasing price scenarios as well as decreasing scenarios with 

oscillatory patterns like scenarios 1, 2, 4, 6, 7, 8, 13, and 14 are mostly undesirable from a Russian 

internal stability point of view for 100% of the simulations. 
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Figure 8: Selected exemplar scenarios generated with the Global Energy Mix model  

 

4.4 Optimization and Direct Searching: The Worst 

Pandemic Flu 

Direct searching under deep uncertainty is another 

typical EMA use case, largely inspired by Miller (1998). 

Optimization techniques are typically used to provide 

answers to particular questions or generate (ensembles 

of) simulation runs with particular characteristics, such 

as the set of worst pandemic flu scenario (see Pruyt et 

al. (2010, 2013)).  

4.5 Robust Policy Design: Societal Aging in the 

Netherlands 

The most important use case relates to Policy Design. An interesting example, at least from a policy  

analysis perspective, is a study related to the potential consequences of societal aging in the Netherlands 
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and the effects of policies for dealing with the potential negative consequences of societal aging on 

governmental expenditure. This EMA study was performed in 2010-2011 (see Pruyt & Logtens (2015) 

and Auping et al. (2015)). A rather open System Dynamics model was used for this study (see Figure 5 for 

a subsystem diagram): many societal evolutions were taken into account with sets of exogenous 

evolutions (e.g. life expectancies). Figure 6 shows on the one hand that the base ensemble of this study 

is, due to broad uncertainty ranges, wider than comparative studies (e.g., CBS (2015)). Figure 7a shows 

that the most extreme outcomes of the base ensemble in terms of government spending as a fraction 

GDP are, due to the conscious omission of endogenous policy adaptation processes, practically 

impossible. Note that this was a very explicit choice.  

 

Figure 10: Sub-system diagram of the societal aging model with exogenous time series in italics and 

policy options in bold. Source: Auping et al. 2015 (based on Pruyt and Logtens (2015)) 
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Figure 11: Ensembles for the Dutch population size (left) and the demographic pressure (right) as in 

Auping et al. (2015) and CBS (2015) 

 
Figure 12 Three retirement age policies tested by Auping et al. 2015  

 

Figure 13: Effects of retirement policies on the necessary government contribution to AOW costs relative 

to GDP (left: without additional policies; right: with additional supporting policies) 
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Figure 14: Effects of the retirement policies on health costs relative to GDP 

That does not mean the model does not generate interesting insights. One of the many key insights in 

2010 was that productivity (especially in care and cure) is both a cause of, and solution for, many 

problems related to societal aging (Pruyt and Logtens, 2015).  

Moreover it does not mean the model cannot be used for testing policies. To the contrary, the model 

developed purposefully for testing policies. Figure 7b shows the three retirement age policies tested 

here. The “robust retirement age policy” is fully adaptive: the retirement age fully depends on the 

uncertain evolutions of the male and female life expectancies (hence the wide ranges of retirement 

ages). Figure 8 shows that additional supporting policies are necessary irrespective of the choice of 

retirement age policy, but also that the robust adaptive policy outperforms the other two policies in 

terms of ensemble predictions. Figure 8 nevertheless shows that these policies are insufficient for 

ensuring health costs relative to GDP remain sustainable.  

Other relevant examples related to this use case are the studies by Hamarat et al. (2013, 2014). They use 

a process called Adaptive Robust Design to optimize the robustness of adaptive policies. 

 

5. CONCLUDING REMARKS 
 

This paper reviewed typical use cases of a model-based methodology for generating ensemble 

projections, systematically exploring the consequences of deep uncertainty, identifying and selecting 

exemplar scenarios, directly searching for answers to specific questions pertaining to uncertain issues or 

systems, and designing robust policies under deep uncertainty.  

This approach is particularly useful for long term assessment and policy design in situations characterized 

by high degrees of uncertainty and ambiguity (i.e. the existence of rival theories/ perspectives/models). 

Instead of trying to reduce uncertainty and increase accuracy (with the risk of getting it precisely wrong), 

the EMA approach enables one to embrace uncertainty and find policies that always work especially 
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when really needed. One of the basic principles underlying the EMA approach is that it is better to get it 

robustly right than precisely (or probably or probabilistically) wrong. 

Typical use cases were illustrated with recent studies. The Ebola case shows that ensemble projections 

could be as useful as accurate predictions (which could not have been generated at the time). The 

radicalization case shows that The societal aging case shows that policy analysis under deep uncertainty 

is possible too.  

Each of these use cases has particular advantages. For example, ensemble forecasting helps not to be 

surprised. It also enables one to include alternative/rival economic theories/models, or models with 

variety of plausible submodels/functions/.... Open Exploration enables one to address complex long-

term issues that are deeply uncertain. Scenario Discovery enables one to develop narratives beyond the 

minimum / maximum / average, which very often are not the most interesting scenarios. If they are the 

most interesting, then direct searching enables one to identify them losing time. Finally, robust policy 

design enables one to develop robust adaptive policies even if highly the underlying issues or systems 

are deeply uncertain/ambiguous.  
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