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Abstract 
This paper (and its supplemental model) presents novel approaches to modeling interactions and 
related policies among investment, production, and learning in an emerging competitive 
industry. New biomass-to-biofuels pathways are being developed and commercialized to support 
goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act 
of 2007. We explore the impact of learning rates and techno-economics in a learning model 
excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy 
and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the 
evolution of the biofuels industry. The BSM integrates investment, production, and learning 
among competing biofuel conversion options that are at different stages of industrial 
development. We explain the novel methods used to simulate the impact of differing assumptions 
about mature industry techno-economics and about learning rates while accounting for the 
different maturity levels of various conversion pathways. A sensitivity study shows that the 
parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial 
investment) exhibit highly interactive effects, and the system, as modeled, tends toward market 
dominance of a single pathway due to competition and learning dynamics.  
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Introduction 
Modeling the emergence of an industry presents challenges in assessing the dynamic interactions 
among investment decisions, cost reductions during development (e.g., due to industrial learning 
and economies of scale), and levels of utilization and associated production. The Biomass 
Scenario Model (BSM) uses novel approaches to address several of these challenges. It was 
developed by the U.S. Department of Energy (DOE), partnering with the National Renewable 
Energy Laboratory (NREL), in an effort to reduce ambiguity about potential futures and to 
improve understanding of the role of policy in industry development  (Bush, 2011; Bush et al., 
2008; Newes et al., 2011; Lin et al., 2013; Peterson et al., 2013; Inman et al., 2014). Developed 
in isee system’s STELLA®1, the model uses a system of coupled ordinary differential equations 
and integrates these forward in time. This links variables that represent physical, technical, 
economic, and behavioral features of the biofuels supply chain through interdependent rates of 
change and feedbacks. The BSM has been extensively validated; in particular, the learning 
curves which are used here are based on historical data on learning in ethanol and related 
industries (McCurdy et al., n.d.). The BSM is an analysis platform that is designed to explore the 
impact of biofuel policy on the evolution of the biofuels supply chain. It includes modules 
representing the U.S. agricultural system; pathways that convert starch, cellulosic, oil crop, and 
algal feedstocks into liquid fuels; and downstream distribution and dispensing of fuels.  

Today’s biofuels industry includes mature commercial enterprises, such as starch-to-ethanol, 
sugarcane-to-ethanol, and biodiesel. Other emerging technology pathways convert cellulosic and 
bio-oil feedstocks to ethanol, butanol, or other hydrocarbons; they could develop substantially in 
the future but are not yet mature at industrial scales. These biomass-to-biofuel conversion 
technology pathways have potential to reduce carbon emissions, to enhance U.S. energy security, 
and to increase the degree to which non-food biomass resources supplement or displace corn-
based fuel ethanol production. The Energy Independence and Security Act of 2007 (EISA) 
mandates 36 billion gallons of renewable transportation fuel in the U.S. marketplace by the year 
2022 (Energy Independence and Security Act of 2007), and includes targets for growth of 
advanced biofuels (cellulosic biofuels, biomass-based diesel, and other biofuels that meet 
threshold greenhouse gas emissions reductions of 50%). In response to this mandate, successive 
U.S. administrations have provided incentives for advanced biofuels development. 

In developing the BSM, we sought to provide a simple representation of the mechanisms, 
constraints, and trade-offs associated with supply chain evolution based on the physical features 
and relationships of the biomass-to-biofuels industrial system. We drew from a broad set of 
information sources in order to incorporate data about today’s industry, assess the current status 
of less mature pathways, estimate the economic and technical performance of prospective 
pathways, characterize relationships and constraints, and represent the effects of choices by key 
decision makers. A central feature of the BSM is a dynamic framework that integrates 
investment, production, and industrial learning among competing biofuel conversion options.  
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  http://www.iseesystems.com	
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In this paper, we focus on a subset of the BSM by addressing learning and associated investment 
in conversion pathways that are in early stages of development and whose mature techno-
economic performance is unknown—not the mature, established conversion pathways that 
dominate current production of biofuels in the United States. We show how the model represents 
learning concepts and highlight how our approach differs from the approaches commonly used in 
other energy models. We then explain how the BSM couples together investment, production, 
and learning processes in the context of competing biomass-to-biofuel conversion technology 
pathways. A sensitivity analysis of the simplified model is used to derive insights into the role of 
pre-commercial investment, learning rates, mature-technology capital costs, and mature-
technology yields in the competition among pathways for investment and in overall stimulation 
of industry development.	
  	
  

Applying learning curve concepts in the BSM	
  
Cost reduction through learning-by-doing is a prominent feature of many analyses of the energy 
sector (Junginger et al., 2010). Learning curves (also known as experience curves) are based on 
the empirical observation that in many industries’ unit cost declines along with increases in 
production experience. This finding was documented in the 1930s for labor input for airframe 
manufacture (Wright, 1936). Beginning in the mid-1960s, analyses used the experience curve 
concept to explain the cost behavior and the resultant market share dynamics in competitive 
industries (Hax and Majluf, 1982; Kouvaritakis et al., 2000). In the energy sector, empirical 
observation has also supported a learning curve approach. For example, endogenous learning is a 
component in studies focusing on ethanol production in Brazil (Van den Wall Bake et al., 2009) 
and the United States (Chen and Khanna, 2012; Chum et al., 2013) and in studies focusing on 
electricity generation, including nuclear, coal, hydropower, wind, and solar photovoltaics 
(McDonald and Schrattenholzer, 2001). 

The system dynamics literature describes the use of learning curves in models of strategy 
dynamics, technological development, industry growth, and investment decision-making. For 
example, Naim and Towill (1994) present various learning curve formulations and their 
application in system dynamics models. Fiddaman’s work on integrated climate-economy system 
dynamics models (1997) explicitly accounts for learning-by-doing. Morrison (2005) uses an 
extension of learning curve theory to show the potential emergence of positive feedbacks in 
productivity in the context of throughput constraints.  Sterman et al. (2007) describe a system 
dynamics model with learning curves that is used to explore “get big fast” strategies under 
conditions of bounded rationality for actors in the system. Learning curves are also a prominent 
feature of a system dynamics model of the photovoltaic industry (Jeon and Shin, 2014). This 
model uses system dynamics and Monte Carlo analysis to examine how the value of PV 
technology varies over time in response to uncertainty and volatility in 11 key input drivers.  

 A single-factor learning curve is commonly used for analyses in the energy sector. Less 
commonly used are multiple-factor learning curves that incorporate, for example, research and 
development investment (Junginger et al., 2010). In the single-factor formulation, each doubling 
of experience yields a constant percentage decrease in unit costs. The relationship is often 
expressed as a power law: 
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𝑌 = 𝑎𝑋! (1)  

𝑌  current unit cost 
𝑋  cumulative production 
𝑎 unit cost of initial unit 
𝑏  slope of the function when plotted on a log-log scale 

 
𝑃𝑅 = 2!! (2) 

𝐿𝑅 = 1− 𝑃𝑅 (3)  

𝑃𝑅 is the progress ratio, the relative cost after each doubling of cumulative 
production 

𝐿𝑅 is the learning rate, the relative cost reduction after each doubling of 
cumulative production 

 

A single-factor learning curve yields results such as those shown in Figure 1.  

 

 
Figure 1. The chart illustrates a single-factor learning curve relationship under three different progress ratios. With 
each doubling of cumulative production, the cost index is reduced by a constant percentage based on the progress 
ratio. 

The learning curve approaches in the literature generally observe a historical progress ratio, 
which may then be extrapolated to the future. For a single factor learning curve for unit cost, this 
would result in an implicit ultimate cost of near zero. In the BSM, we use a learning curve 
approach to enable us to interpolate between the characteristics of current and future technology 
for each technology pathway under consideration. In doing so, we have adapted the single-factor 
learning curve in several ways. First, instead of using an implicit asymptote of zero for unit cost, 
in the BSM we define an explicit asymptote of a “mature technology.” As discussed in Newes et 
al. (2011), we introduce a variable called maturity, M:  
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(5) 

  
M0 is initial maturity 
L is the minimum experience for learning 
L* is the effective minimum experience for learning 
E is the cumulative experience 
E0 is the initial cumulative experience 
PR is the progress ratio 
 

From Newes et al. (2011). 

Second, we adapt the single-factor learning curve approach that typically is connected to a single 
technical attribute (unit cost). Instead of a single measure, we define a vector of technical 
attributes that are assumed to depend on industry maturity. This vector includes the following 
attributes, each of which has a mature value input and a current state-of-industry value that is 
calculated. As the industry matures, each value is assumed to approach the mature value or nth 
plant characteristics. 

• Process yield 

• Feedstock throughput capacity—the degree to which facilities are able to perform at 
nameplate capacity 

• Capital cost—the premium in capital cost, beyond the nth plant estimate, which would be 
observed if development of a facility was begun today 

• Investor risk premium—the additional premium, beyond normal hurdle rate, that 
investors would require for investment in the facility 

• Access to debt financing—the portion of the expected facility capital cost that would be 
financed via borrowing (as contrasted with equity investment). 

Accordingly, we define a multiplier m that is arrayed by technical attribute i, where n denotes input 
nth plant values. This multiplier is a function of maturity, as described next. Generally, the value of 
the technical attributes A in any simulated year is calculated as: 
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niii AmA ,=   (6) 
 

A is a vector of technical attributes (various units) 
m is a multiplier (unitless) 
i is the index of technical attributes 
n is the ultimate nth plant attributes 

 
im<0  

 
 
 
 
 

 (7) 
 
 
Figure 2 summarizes these interactions in a causal loop diagram. 
 

 
Figure 2. A causal loop diagram summarizing the interactions of maturity, the vector of technical attributes, 
investment attractiveness, conversion facilities, and production.  
 

Third, instead of a single learning curve metric, we have applied learning curves in a cascading 
fashion to multiple industry development scales (pilot, demonstration, pioneer, and commercial). 
Pilot and demonstration facilities are constructed without the intention of producing fuel for 
commercial sale. For most technologies in the BSM, commercial scale is over 2,000 short tons 
per day throughput capacity. Pioneer scale refers to the early commercial developments that are 
assumed to be approximately one-third the scale of commercial facilities and to have higher 
capital costs. As a result, at any point in simulated time, the performance and cost characteristics 
of a pioneer or commercial-scale facility are estimated and used to inform the model’s 
investment allocation. To accomplish this, maturity is calculated at each developmental scale, 
and the multiplier m in the equation above is calculated based on the impact of each development 
scale: 
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)1()]1([ CDiDiCii MMPMDMCm −×−++=  (8) 

10 ≤<M  (9) 

MC is commercial maturity and MD is demonstration maturity 
C is the vector of mature commercial multipliers 
D is the vector of mature demonstration multipliers 
P is the vector of mature pilot multipliers 

 
Mature multipliers at commercial, demonstration, and pilot scale (C, D, and P) define the 
maximum performance on each technical attribute that can be achieved through experience at 
that scale.    

With these three modifications to the single-factor learning curve, we have developed a novel 
modeling approach to modeling learning that accounts for performance in multiple technical 
attributes that approach non-zero ultimate values through development at multiple scales. This 
approach is best suited to situations wherein the modeler can readily assume knowledge of the 
ultimate technical attributes of the technology and the mature technology characteristics, and 
would like to explore scenarios for the rate at which current technology approaches this mature 
performance. We are not aware of other literature describing this application of learning curves. 
In situations where mature technology characteristics can be estimated, this approach replaces 
the implicit assumption in much of the literature of ultimate near-zero cost (if unit cost is the 
attribute). For the BSM, we operationally define “mature technology” by drawing from 
engineering design studies that estimate capital investment, process yield, and fixed and variable 
operating costs for the “nth plant” (where n is a large number) of a given pathway. Because the 
BSM relies on design studies to provide estimates for nth plant techno-economics, its results are 
subject to uncertainties in yield and cost estimates as well as scale effects of assumed 
commercial plant sizes.  

Figure 3 shows an illustrative example of the correspondence between production (or 
experience), maturity, and values of technical attributes over the simulated time. We use 
different units of experience at different scales, as shown in panel a. As shown in panel b, the 
maturity multipliers include experience at each scale, increasing as cumulative production grows 
over time and asymptotic to one. Panel c illustrates how current (or state-of-industry) values for 
two of the technical attributes change as they approach mature values as cumulative production 
increases over time.   

Because the BSM is a forward-looking simulation model of technologies that are not yet 
commercialized, there is no empirical data from which to estimate many of the progress ratios 
that we use. Instead, it uses assumed values that are informed by statistically estimated values for 
progress ratios from the literature about related technologies, such as starch ethanol production 
and, more generally, the chemical process industry. In their review of retrospective studies of 
learning in the energy sector, McDonald and Schrattenholzer (2001) identify a high degree of 
variability in estimates for learning rates—both within a given technology and across differing 
energy technologies. They suggest that modelers should consider the uncertainty in the value of 
learning rates (McDonald and Schrattenholzer, 2001). For the BSM, this points to the importance 
of including sensitivity analysis of learning rates in this paper. Model results are not predictions, 
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but should be viewed as plausible scenarios subject to uncertainties in model structure and data 
inputs.   
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Figure 3. (a) The first panel illustrates experience profiles at pilot and demo scales, as well as commercial scale 
(measured in industry output). Pre-commercial curves are based on accumulation of operating time at pilot and 
demo scales. Cumulative industry output grows as a quadratic, reflecting constant linear growth in annual industry 
output beginning in year 14. (b) The second panel shows change in maturity index with increasing cumulative pilot 
experience, demonstration experience, or commercial production over time. The corresponding experience or 
production curves are shown in panel a. Pilot experience precedes demonstration experience, which precedes 
commercial production.  Maturity is correlated with doublings of experience at each scale. The maturity index is an 
abstract, unitless multiplier that is multiplied by metrics of mature technological performance to estimate the state of 
the industry. (c) The third panel illustrates a cascading effect of maturation on selected technical attributes. 
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Technical attributes improve with maturity, based on a distinct calculation for each measure. The technical attributes 
shown are a subset of those used for commercial biorefineries. At a given year in simulated time, investment techno-
economics will reflect the cumulative effect of pilot, demo, and commercial maturity levels. Technical attributes 
progress differently at different industry-development scales. 

Coupling learning, production, and investment in the BSM 
Production and investment in the BSM depend upon performance in each technical attribute, as 
calculated in the learning process. In the BSM, techno-economic information drawn from design 
reports and engineering studies is used to select the input assumptions for the initial and mature 
industry (or nth plant) technical attributes vector (listed above), the financial and performance 
characteristics for different biomass-to-biofuel conversion technology pathways. Over simulated 
time, the model’s learning curve logic determines how the state of each pathway moves from 
today’s characteristics toward nth plant maturity. Together with other inputs, notably feedstock 
cost and product price, the state of each pathway defines streams of expected costs and revenues 
associated with a prospective project investment based on costs and revenues in the simulated 
year, without investor foresight. In the BSM, we discount these expected costs and revenues 
streams to the current simulated year to calculate the net present value (NPV) of the prospective 
investment, as follows: 

][ jjjjj TCIRNPV ++−=  (10) 

NPV is the net present value of investment in a biorefinery of technology i 
R is the NPV of expected revenue less expected operating costs for technology j 
Tj is the initial equity investment for technology j 
C is the present value of the debt for technology j 
T is the net present value of the taxes less tax credits for technology j 

 
The net present value calculation uses the required rate of return, which changes with maturity, 
and is calculated according to: 

 ∑
= +

=
n

t
t

t
nd d

R
R

0
, )1(

 (11) 

Rd,n is the expected revenue less expected operating cost, discounted by the 
required rate of return d over n time periods 

Rt is the net revenue in time period t 
d is the required rate of return 
t is the current time period 
n is the final time period 

 
Then, we use a logistic function to allocate investment among different conversion pathway 
options or non-biofuels options based on the relative financial attractiveness of each. This 
approach is often used to model consumer choice situations (Train, 2009); in the BSM, we use 
logistic formulations to allocate limited resources, such as plant construction capacity, among 
competing uses. 
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 (12) 

S is the share construction capacity allocated to pathway j 
k is a constant 
c is a constant scaling factor 

 
As suggested in Figure 4, reinforcing feedbacks (also called “positive” feedbacks) emerge from 
the coupling of investment, production, learning, and the maturation of a set of performance 
attributes. 

 

Figure 4. The chart is an overview of key concepts, mechanisms, and processes in the BSM. Reinforcing feedbacks 
around investment, production, and learning drive biomass-to-biofuel conversion technology pathway and industry 
evolution.  

Sensitivity study design 
The BSM is a dynamically complex model that is rich in feedback and nonlinearities (Peterson et 
al., 2013). To investigate the impact of learning, investment, and techno-economic inputs on 
biofuel industry development, we extracted from the BSM a simplified model, focusing on 
biomass-to-biofuel conversion processes that occur at biorefineries. While the BSM considers 
ten U.S. regions, this simplified model considers only one region and only three conversion 
technology pathways (labeled “A,” “B,” and “C”), as opposed to more than ten conversion 
technology pathways in the larger model. Costs of feedstocks entering the biorefinery and prices 
of products that the biorefinery produces are defined as scenario inputs. The model is configured 
such that the three hypothetical pathways under consideration differ in their nth plant techno-
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economic characteristics, their initial levels of maturity, and their pre-commercial investment 
profiles. These baseline conditions serve as a springboard for a sensitivity analysis in which we 
vary select techno-economic attributes, learning rates, and pre-commercial investment scenarios 
(Table 1). The sensitivity ranges are relatively narrow (McDonald and Schrattenholzer, 2001), 
but sufficient to cause substantial variation in the key result, technology market share. 

The techno-economic attributes were selected to mimic real trade-offs among capital, feedstock, 
and other operating costs, without specifically representing existing technologies. For example, 
there are actual technologies with higher first-costs and lower operating costs, higher feedstock 
costs and higher co-product sales, lower operating costs and lower yield, and lower maturity and 
lower expected future performance. In the baseline condition: 

• Pathway A:  This conversion technology pathway represents an extremely promising 
pathway that is very early in its development.  

• Pathway B is quite promising as well (although its expected yield at maturity is lower 
than A) and is closer to commercialization than A.  

• Pathway C is very close to commercialization but has a very high capital cost and 
significantly lower yields. On the other hand, pathway C appears to have a favorable 
variable cost structure relative to the other two options.  

The sensitivity variations perturb the attractiveness of the pathways along one or more 
dimensions. Initial technical maturity (MP, D, or C) and progress ratio (PR) are the learning 
attributes in the sensitivity variation. Initial technical maturity is the initial value of the maturity 
index that was described in the learning section. It has a value between 0 and 1, where 1 
represents full nth plant maturity and associated performance. The selected progress ratio value of 
PR = 0.75, and the sensitivity value of PR = 0.79 are within the range of historical progress ratios 
for starch ethanol and chemical processes. Pre-commercial investment projects at pilot and 
demonstration scales are projects not intended for commercial production that contribute to the 
initial learning of each pathway, as described above. Simulations are conducted against a policy 
backdrop designed to stimulate initial take-off of all pathways. Policies consist of loan 
guarantees and capital cost grants for pioneer-scale facilities that expire in 2022. An initial 
product subsidy applies to each gallon of production, up to the first 1 billion gallons of industry 
output; this is reduced to a nominal amount for the duration of the simulation. It is important to 
note that this is a hypothetical policy set. The policies are derived from a scenario library 
developed elsewhere in the BSM project. For details on these scenarios, see Inman et al. (2014).  
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Table 1. Conditions for baseline simulation. 

  Pathway A 
Baseline 

Pathway B 
Baseline 

Pathway C 
Baseline 

Sensitivity 
Variation 

Mature 
Industry 
Techno-
economics 

Feedstock Input 
(dry short ton/day) 

2,000 2,000 2,000  

Fixed Capital 
Investment ($) 

300,000,000 300,000,000 400,000,000 1.15 × 
baseline 

Fixed Operating 
Cost ($/yr) 

15,000,000 15,000,000 15,000,000  

Other (non-
feedstock) 
Variable 
Operating Cost 
($/yr) 

50,000,000 40,000,000 5,000,000  

Co-Product Sales 
Revenue ($/yr) 

5,000,000 16,000,000 10,000,000  

Process Yield 
(gal/dry short ton) 

100 90 66 0.85 × 
baseline 

Initial 
Technical 
Maturity (unit-
less) 

Pilot 0.1 0.5 0.85 0.85 × 
baseline 
(pathway 
“B” only) 

Demonstration 0 0.5 0.75 

Commercial 0 0 0  
Progress Ratio 
(1/doubling) 

Pilot 0.75 0.75 0.75 1.05 × 
baseline Demonstration 0.75 0.75 0.75 

Commercial 0.75 0.75 0.75 
Pre-
Commercial 
Investment 
(projects/yr) 

Pilot pre-2012: 2 
2012: 4 
2013: 4 
2014: 4 

pre-2012: 2 
2012: 4 
2013: 4 
2014: 4 

pre-2012: 2 
other yrs: 0 

 

Demo pre-2012: 0 
2014: 4 
2015: 4 
2016: 4 

pre-2012: 0 
2014: 4 
2015: 4 
2016: 4 

pre-2012: 0 
other yrs: 0 

For the sensitivity study, baseline conditions are modified as shown in the final column. Each combination of 
conditions was simulated, resulting in two conditions each for three parameters (fixed capital investment, process 
yield, and progress ratio) for each of three pathways and two conditions of a fourth parameter (initial pre-
commercial maturity) for pathway B only. 

Results and insights 
Figure 5 shows simulation results under baseline conditions. With this set of baseline policy 
conditions and input values for feedstock cost and product price, the model generates a phased 
evolution in which pathway C is first to mature. Over time, growth in pathway C stabilizes, 
while pathway B, and then pathway A, grow to significant volumes (Figure 5).  
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Figure 5. The figure shows baseline results by conversion technology pathway. (a) The first panel shows baseline 
production. For the purposes of this study, pathway characteristics were selected to show industry growth for all 
three pathways under the background policy conditions that were modeled. (b) The second panel shows baseline 
results for commercial-scale NPV by conversion technology pathway. Modeled decisions to invest in commercial-
scale facilities are based on NPV for a new commercial facility constructed in each year. NPV is calculated based on 
capital costs, operating expenses, revenue from product sales, and effects of incentives, all of which change over 
time. Positive NPV in Figure 8 corresponds with early industry growth in Figure 7. There are 2 discontinuities in 
each NPV trace.  The first is the result of expiration of FCI loan guarantees. The second is the result of expiration of 
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fuel product startup subsidies that applies to the first 1 billion gallons of industry output. (c) The third panel shows 
baseline results for commercial maturity by conversion technology pathway. The chart shows that pathway C is 
initially more mature and obtains early investment that advances its maturity. Pathways A and B are able to compete 
sufficiently such that they also mature. 

The results from this sensitivity study (see Figure 6) illustrate competition among biomass-to-
biofuel conversion technology pathways, interaction among the sensitivity parameters studied, 
and a tendency for a single pathway to gain most of the technology market share. Each 
horizontal, colored line represents a different amount of biofuel production in the year 2030 from 
one of the conversion technology pathways. The numerical x-axis labels indicate simulation 
condition values that are held constant within that column while other sensitivity parameters are 
varied. In any given column, there are many different year 2030 production levels for each 
pathway. These represent results of different simulations for sensitivity parameters other than the 
one for which the column is labeled.   

 
Figure 6. The chart is a summary of sensitivity study results. Interpretation of this chart is discussed in the text. In 
each column the baseline case is at 1.00 on the x axis. Each horizontal bar in the chart represents the biofuel 
production for one of the three pathways (indicated by the color or the bar) in the year 2030 under one set of 
conditions in the sensitivity study. Each of the 10 columns labeled with a sensitivity variable name at the bottom 
separates the simulation results for a low value of that input variable from those for a high value of that variable, 
such that all of the simulations in the study are shown once in each of the 10 columns. The slanted lines indicate 
how the mean output of each pathway varies as a function of the sensitivity variable for that column. 

Competition 
Competition among the pathways shapes results of the sensitivity study. In general, sensitivity 
cases that reduce the performance of a given conversion technology pathway affect fuel 
production from that pathway the most, and the other pathways tend to benefit. Conversely, 
improved performance primarily increases production from the improved pathway, with 
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secondary effects decreasing production from the other pathways. The examples below give 
trends in one direction only, but each of these could be expressed either as an increase or a 
decrease. 

• See Figure 6, column 1, “Initial Maturity B.” Sub-column labeled “0.85” has lower initial 
maturity than sub-column labeled “1.00.” Production in “0.85” is lower on average than 
production in “1.00” as indicated by the slope and endpoints of the orange line. 
Production from conversion pathway B drops dramatically if its initial maturity is 
lowered, and production from conversion pathways A and C increases modestly on 
average. 

• See Figure 6, columns 2–4, “Progress Ratio A, B, or C.” Sub-columns labeled “1.04” 
have higher progress ratios than sub-columns labeled “1.00” for pathway A, B, or C, 
respectively. An increase in progress ratio for pathway A, B, or C causes production for 
that conversion pathway to plummet, as indicated by the slopes and endpoints of the blue 
line in the column “Progress Ratio A,” by the orange line in the column “Progress Ratio 
B,” and by the green line in the column “Progress Ratio C.” The other pathways increase 
production slightly in each case, as shown by the other two line colors. Pathway A is 
more sensitive to changes in its progress ratio than the other pathways, primarily because 
of its initial immaturity, as indicated by the steeper slope of the blue line in the column 
“Progress Ratio A” relative to the slopes of the orange line in pathway B and green line 
in pathway C. 

• See Figure 6, columns 5–7, “Yield A, B, or C.” Sub-columns labeled “0.85” have a lower 
yield than sub-columns labeled “1.00.” A drop in yield results in a dramatic loss in 
production capacity for the affected conversion pathway, shown by the slopes and 
endpoints of the blue line in the “Yield A” column, the orange line in the “Yield B” 
column, and the green line in the “Yield C” column. The drop in yield in a given 
conversion pathway generally increases the capacity of the other pathways. This is shown 
in the figure because the slopes of the two lines for the unaffected pathways are negative, 
but the slope for the affected pathway is positive. For example, in the “Yield A” column, 
production for pathway B (orange) and pathway C (green) is higher in sub-column “0.85” 
than in sub-column “1.00.” The increase may or may not be sufficient to make up the 
production capacity loss. For example, a drop in yield in pathway A or C could cause an 
increase in pathway B that is sufficient to make up the overall production loss because 
production from pathway B generally can increase more rapidly and attain higher levels 
than from pathways A and C.  

• See Figure 6, columns 8–10, “FCI A, B, or C.” Sub-columns labeled “1.15” have a higher 
capital cost than sub-columns labeled “1.00.” An increase in the capital cost of pathway 
A causes much lower production capacity from pathway A, as shown by the negative 
slope of the blue line in the “FCI A” column. Pathways B and C only increase their 
production capacity a little in response, with the orange and green lines having a small 
positive slope. Conversely, the production capacity of conversion pathway A benefits 
greatly from increases in the capital cost of the other pathways, especially for increases in 
FCI C, as shown by the relatively large positive slope of the blue lines (for pathway A) in 
column “FCI C.” Pathways B and C show drastic loss in production at higher capital 
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costs, with large negative slopes for the orange (B) and green (C) lines in columns “FCI 
B” and “FCI C,” respectively. Pathway B, and especially pathway C, are less influenced 
by increased capital costs in the other conversion pathways, as shown, for example, by 
the relatively low positive slope of the green lines (for pathway C) in the “FCI A” and 
“FCI B” columns. 

Note that this simple model does not include competition among pathways for feedstock or for 
end users. Studies with the BSM have indicated that these can be significant factors under some 
scenario conditions. 

Interaction 
The input parameters exhibit interacting effects. Every combination of input parameters (fixed 
capital investment, process yield, progress ratios, and pre-commercial investment) shows 
interaction in its effects on simulation results. These interactions are not simple linear 
relationships, but rather, nonlinear dependencies rooted in the feedback mechanisms inherent in 
the dynamics of coupled learning and investment. Small differences in progress ratio, cost, and 
yield shape the evolution of the system through the feedback structure of the model in a complex 
and nonlinear manner.  

Reducing a pathway’s assumed performance does not necessarily lead to increased production 
capacity for competing pathways, but in certain situations, an increase may be dramatic. For 
example, Figure 6 shows a small subset of the sensitivity studies in which dramatic changes may 
be observed.  These situations are likely conditions that are favorable for industry growth, such 
that the growth opportunity will be met by the most competitive pathway, and lower 
performance of one pathway will open an opportunity for another.  
 

 
Figure 6. The chart is a subset of sensitivity analysis results showing examples of significant change with change in 
pathway performance.  
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Market dominance 
In our sensitivity analysis, the case where all three pathways exhibit high output is the base case, 
which was selected with that goal. There are only a handful of cases where two exhibit high 
output. In the cases where two pathways exhibit high output, each pathway must remain 
sufficiently competitive with the other to attract investment during key periods of market 
development. This tendency toward market dominance is a key feature of the behavior of this 
model, given the reinforcing feedback as encoded in the logistic, techno-economic, and learning 
parameters used in this study. In Figure 7, points at the vertices of the triangle are dominated by 
a single pathway. The figure 7 shows that many of these single-pathway simulations are also 
those with higher biofuels production output (shown by larger, darker blue circles). A few of the 
high-output cases have high production from 2 pathways (points along one of the sides of the 
triangle). High output cases do not have pathway C as the largest-producing pathway, but include 
cases with dominance from A, from B, or combined production with either A or B having the 
largest production. Figure 8 zooms in on a small subset where more than one pathway develops. 

 
Figure 7. This figure shows total biofuels production in 2030 and the distribution of biofuels production among 
pathways. The points that fall at the vertices show dominance by a single pathway; points that fall along a side have 
production from the two pathways corresponding to the two adjoining vertices; and points in the middle share 
production among all three pathways.  
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Figure 8. The chart is a subset of sensitivity analysis results showing examples of multiple pathways increasing 
production. 

In this discussion, market dominance refers to dominance of a technology, not dominance of a 
single firm. This conceptualization of market dominance is consistent with a competitive market. 
This is application of the “competitive exclusion principle” (Meadows, 2008) and an example of 
the “success to the successful” system archetype as described in Senge (1990). Figure 9 shows 
this as a causal loop diagram, illustrating in greater detail the reinforcing feedback shown in 
Figure 2. Pathways can dominate through combinations of superior mature techno-economics, 
higher learning rates, and greater initial maturity. This is one of the fundamental mechanisms by 
which a pathway that initially attracts slightly more investment could develop more rapidly and 
ultimately dominate the market. The pathway that initially attracts more investment develops 
more biorefineries, produces more fuel, and advances down the learning curve through these 
experiences. This increase in maturity, translated into more favorable cost and performance, 
makes it even more attractive to future investment. Annual investment in construction of new 
biorefineries is assumed to be constrained. Pathways compete directly for this investment, so the 
reinforcing feedback can cause favorable pathways to attract most of the investment and 
dominate the market. Even without complete market dominance, successful pathways have a 
tendency to suppress less favorable ones, so it is rare that all pathways succeed equally well. This 
can only happen in the unlikely situation where technological parameters are tuned to maintain 
sufficient competitiveness among all pathways. 

The implications of the tendency toward market dominance of one or two pathways for actual 
industry development are challenging to assess. In this simple model, the tendency for market 
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dominance may occur in part because of the small number of pathways considered, and perhaps 
also because the model does not sufficiently represent details of different market segments, 
which might provide competitive advantage to multiple pathways, each in its respective niche.  

 

 
Figure 9. The chart shows key factors in the competition between pathways for investment. Attractiveness of 
investment in a given pathway is determined by mature industry techno-economics, as modified by current state of 
maturity. Progress ratio governs the speed by which production translates into increases in maturity. Lock-in 
dynamics can result from differences in (1) initial maturity, (2) progress ratios, or (3) nth plant techno-economics 
such as capital cost or yield. 

The converse of market dominance—pathway failure—is also common. If a pathway does not 
reach some minimal level of learning-based feedback, it is unable to attract sufficient investment 
and therefore fails to develop. There are thresholds for progress ratios, and to a lesser extent, for 
techno-economics and initial maturity, in their contribution to this reinforcing feedback between 
industry development and learning-based cost reductions. 

Production capacity and maturity both contribute to learning, but on different timescales, 
resulting in a sequence of feedback responses. Production capacity, when utilized, directly and 
immediately increases learning from experience, a function of production. This is especially 
influential in the early years of pathway growth. Maturity influences learning; increased maturity 
facilitates investment in new plants, but guarantees neither production capacity construction nor 
production of biofuels due to external conditions and competition between pathways. 
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Limitations 
This analysis has several important limitations. First, the learning model boundaries include only 
the biomass-to-biofuels conversion portion of the supply chain, eliminating interactions with 
feedstock supply and fuel demand. This portion of the supply chain is illustrative of the interplay 
between investment, technology development, and production. Second, the concept of nth plant 
performance is not grounded in purely physical limitations, so quantitative values for nth plant 
performance are uncertain. Third, learning rates (or progress ratios) are highly uncertain, and the 
full range of possibilities is not explored here. Fourth, learning rates may not reflect omitted 
variables. Fifth, modeled markets are simplified, eliminating niches that may counteract the 
tendency to market dominance. Sixth, this novel formulation of learning curves is not validated 
elsewhere in the literature. Despite these limitations, we offer this paper and the associated 
model as a potentially valuable approach to understanding emerging industry development.  

Conclusions 
The simplified learning model illustrates implementation of the novel approach to learning that is 
used in the full BSM model. This approach contrasts with the single factor learning model in (1) 
progress toward mature performance instead of an implicit zero asymptote of (2) multiple 
technical attributes instead of only unit cost at (3) multiple development scales. The sensitivity 
study shows that the parameters studied (fixed capital investment, process yield, progress ratios, 
and pre-commercial investment) exhibit highly interactive effects. The system tends to show 
market dominance of a single pathway due to competition and learning dynamics. While these 
results do not predict biofuels industry development, they illustrate the types of behavior that 
could occur for different combinations of techno-economic and learning parameters for biomass-
to-biofuel conversion technology pathways. This modeling approach could be broadly useful in 
representing the interactions among investment decisions, cost reductions during development, 
and utilization and production in the emergence of other industries. The results could inform 
future analytic work to explore the robustness of the finding of a tendency toward market 
dominance, and the policy implications of this kind of system behavior could be considered. 

The coupling of learning and investment, within the context of a dynamic model, can generate 
results that show a variety of potential behaviors of the system. These may inform the 
development of a shared understanding among stakeholders of possible effects of policy, 
external factors, decision making (e.g., by investors, growers, and consumers), infrastructure 
constraints, and learning on the development trajectory of the domestic biofuels industry. 
Exploration of learning and investment scenarios for biofuels industry development could help 
inform consideration of biofuels as part of U.S. energy and climate strategy. For example, the 
system behavior showing a tendency toward dominance of single pathways could prompt 
discussion about whether this outcome appears likely or is an artifact of the model formulation, 
how mitigating circumstances (e.g., more detailed representation of different market segments) 
could overcome this tendency, and social costs or benefits of such an outcome. Similarly, the 
wide range of potential learning rates could focus discussion on rates of progress that are or are 
not conducive to further public or private investment. Through its uses as an analysis platform 
and scenario generator, the BSM can inform the pursuit of these biofuels goals. 
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Appendix 
 
Table A1. Indices for Equations 

 
 
 
 
 
 
 
 

 
 
 
Table A2. Selected Equations 
 
Eq. No. or 
Symbol 

Equation and Variable Name in Model Units Variable Name in Paper 
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0 ≤  M ≤ 1	
  
Pilot Maturity 
Demo Maturity 
Commercial Maturity 

Unitless Pilot maturity 
Demonstration maturity 
Commercial maturity 

L 
Min Pilot Experience for Learning 
Min Demo Experience for Learning  
Min Cume Industry Output for Learning 

year Minimum experience for learning 

0 ≤  PR ≤ 1 Pilot Progress Ratios, Demo Project Ratios, Project Ratios 
Commercial 

1/doubling Progress ratio 

E 
Cumulative Pilot Experience 
Cumulative Demo Experience  
Cumulative Industry Output 

year 
year 
billion gallons 

Cumulative experience 

Index Symbol Definition Variables Using Index 
0 Initial value M 
n Ultimate value A 
i Attributes of technologies A 
C, D, P Scale (Commercial, Demo, Pilot) M 
j Technology pathways NPV, S 
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Eq. No. or 
Symbol 

Equation and Variable Name in Model Units Variable Name in Paper 

6 niii AmA ,= 	
     

A 

(vector of 
technical 
attributes) 

State of Industry Process Yield  
FS Throughput C, FS Throughput P 
Expected FCI C, Expected FCI P 
Req’d Rate of Return as % 
Expected Equity Fraction 

gal/short ton 
short ton/day 
$ 

Process yield 
Feedstock throughput capacity  
Capital cost growth  
Investor risk premium 
Access to debt financing 

im<0  State of Industry Multipliers (one for each technical 
attribute A) 

unitless multiplier 

8 )1()]1([ CDiDiCii MMPMDMCm −×−++=    

C 
D 
P 

Mature Commercial Multipliers 
Mature Demo Multipliers 
Mature Pilot Multipliers 
(one for each technical attribute A) 

unitless 
unitless 
unitless 

Mature commercial multiplier 
Mature demonstration multiplier 
Mature pilot multiplier 

10 ][ jjjjj TCIRNPV ++−=    

NPV 
R 
I 
C 
T 

NPV Investment C 
NPV Revs Net of Op Cost C 
Initial Equity Investment C 
PV Loan Payment C 
NPV Taxes C 

$ 
$ 
$ 
$ 
$ 

Net present value 
Expected revenue – operating costs 
Initial equity investment 
Present value of debt 
NPV of taxes – tax credits 

12 𝑆! =
𝑒(!!!!"#!)

𝑒(!!!!"#!)!
 

 This equation summarizes several 
calculations in the model. 

S 
k 
c 

share to biofuels 
offset for attractiveness weighting  
invest attractiveness weighting 

Unitless 
unitless 
unitless 

Share of construction capacity 
Constant 
Constant scaling factor 
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