Abstract for: Global and Local Control of a Resource Utilization Model
System Dynamic models describe physical, technical, economical, or social systems using differential and algebraic equations. In their purest form, these models are intended to describe the evolution of a system from a given initial state. In many applications, it is possible to intervene with the system in order to obtain a desired dynamic or a certain outcome in the end. On the mathematical side, this leads to control problems, where aside from the simulation one has to find optimal intervention functions over time that maximize a specific objective function. Using a dynamical model for the utilization of a natural nonrenewable resource of Behrens as a demonstrator example, we present two main mathematical solution strategies. They are distinguished by the quality certificate on their respective solution: one leads to proven local optimal solution, and the other technique yields proven global optimal solutions. We present implementational and numerical issues, and a comparison of both methods.