
Entity Based System Dynamics

Larry Yeager, larry@ventanasystems.com

Thomas Fiddaman, tom@ventanasystems.com

David Peterson. david@ventanasystems.com

Ventana Systems, Inc.
60 Jacob Gates Road
Harvard, MA 01451
 ventity.biz

Abstract

We describe a new platform for system dynamics modeling that supports

detailed and object oriented modeling while preserving attractive features

of existing tools, including a completely declarative language with a

graphical representation. New concepts supporting this platform include

collections of entities, attributes, relationships, aggregation and allocation

functions, and actions, which are presented with examples. The design

facilitates modularity and collaboration, provides a more natural

description of detail than arrays, and solves sparse matrix problems. It has

application to both traditional system dynamics, with modular sectors, and

to agent based modeling.

mailto:larry@ventanasystems.com
mailto:tom@ventanasystems.com
mailto:david@ventanasystems.com
http://ventity.launchrock.com/

Why?

Complex Systems

 Project
 Task-prerequisite matrix is sparse; arrays

are inefficient
 Project data is granular and relational

 Loan portfolio
 Use individual statistics
 Dynamically create & delete

loans from data
 Climate Integrated Assessment

 Delegate atmospheric and
economic sectors to different teams

 Initialize regional emitters flexibly from data
 Social network

 Hard to determine rules
for aggregation a priori

 Sparse matrix of contacts
 Competitive dynamics

 Multiple products, lines,
customers … not a
natural matrix

 Product lifecycle cohorts
 Big Data

 Hard to draw the stock-flow network a priori
 Individual statistics

Complex Situations

 Involve non-modelers and spreadsheet
users

 Capture knowledge from subject matter
experts

 Persuade decision makers

Ingredients for productivity
& quality

 Integrated development
environment

 Pure declarative language (no
code)

 Advanced graphics

 Informative diagram

 Interactive charts and
visualization

 Rich, efficient representation

 Seamless data connections

 Interaction

 Synthesim

 Data exploration & pivots

 Run management

 Scenario management

 Advanced algorithms

 Team collaboration, model
federation and submodels

 Quality control

 See everything, all the time—
Causal Tracing™

 Automated Reality Checks™

Extensions of the SD paradigm

 Collections, create and delete actions map to stocks, inflows and outflows

 Attribute changes move entities among collections like flows move con-

tinuous quantities between stocks

 Replace arrays, which make work by making an object property into
equation properties

 Dynamic creation and deletion of model components and relationships
creates structure on the fly

 The modeler creates, or reuses, a separate entity type
definition (ETD) for each component in the system. These are
intentionally similar to class definitions in an object oriented
programming language. Each ETD can be defined using
system dynamics stock and flow diagrams.

 Individual entity instances are created at runtime, and may
be specified by external data sources, making it easier to use
a model or its components across many separate
applications.

 Collections contain lists of entities. They can also be
referenced as a variety of subcollections, corresponding to
subsets of attribute values. Supercollections can contain
entities of different types, e.g., a collection of businesses
containing restaurants and factories.

 Each entity contains one or more identifiers, called attributes,
which identify, categorize, and logically differentiate entities
created from the same entity type definition. Attributes
serve a similar role to key fields in relational database tables
and arrays in traditional SD. They support the modeling of
references, relationships, collections, and aggregated
reporting.

 References permit an entity to access the variables of any
other entity via a unique identifier. Relationship entities link
two or more other entities with references, as in a social
network or a task prerequisite matrix.

 Aggregate functions summarize the properties of many
entities in a collection for use by one entity elsewhere.
Corresponding allocation functions provide the opposite
mapping, as when many moviegoers compete for scarce seats
in a theater, or many to many relations, as when multiple
buyers seek a product from multiple suppliers.

 Actions provide discrete events for dynamic creation of
entities, changing attributes, delete, split, and merge. Actions
can be used to package transactions or flows that must occur

together in order for an internally consistent
change of the model state to occur; for
example, double entry bookkeeping. in a
financial model.

Elements

