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Abstract

Analysis of model behavior is mainly conducted in a pattern-based manner in system dynamics (SD)
methodology. In pattern-based evaluation of model outputs, similarity of the overall behavior pattern
(e.g.S-shaped-growth, oscillations) and of specific pattern characteristics (e.g. inflection points, periods,
amplitudes)are more important than point-by-point similarity measures such as sum-of-squared errors.
Although some output analysis tools/software that address this special pattern focus are available, they
lack usability and are fragmented. In this study, new standalone analysis software, namely Behavior
Analysis and Testing Software (BATS), is developed. It integrates a pattern classification algorithm and a
set of statistical methods for analysis of steady-state behaviors. Apart from enabling comparison of
behaviors with these algorithms/methods, BATS includes structured processes that enable user to
conduct automated hypothesistesting, behavior space exploration, and sensitivity analysis. Inits current
state, BATS can seamlessly communicate with SD modeling software (Vensim) and other common data
sources. This study providesillustrative examples of how BATS can assist the modeler and/or analystin
various phases of modeling; indirect structure testing, output evaluation, sensitivity analysis, policy
analysis. Consideringits pattern-orientation, user-friendly interface, and communication with modeling
software BATS can be an important contribution to the analysis toolset of SD methodology.
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Introduction

One of the key characteristics of the system dynamic approach that distinguishes it from other
simulation-based approachesis the emphasis on dynamicmodelbehavior, rather than events or system
states at specifictime points. Dynamicbehavior of a model can be described as the output patterns that
are generated by the operation of model variables over simulated time. Behavioranalysisis encountered
in various stages of a modeling study. In model construction, it is important for parameter estimation
and calibration of the model according to the historical data or some desired behavior. Model validation
can be discussed in two categories; structural validity and behavior pattern validity (Barlas, 1996). In
structural validity there are certain tests thatinvolve simulation (e.g., extreme condition tests), in which
comparing the model performance with the hypothesized real behavioris essential. In behavior pattern
comparison, the similarity of pattern related characteristics such as trends, means, periods, amplitudes
between model output and real life data is important. In sensitivity analysis, there is a need for
categorization of large numbers of model outputs with respect to certain rules and purposes (e.g., find
the parameterrange that eliminates oscillations). Finally, in policy analysis and design, the outputs are
analyzed subject to certain policy objectives based on pattern related information. Table 1 summarizes
these stages and typical behavior related questions that characterize each one.

Table 1. Stages of system dynamics methodology that involve output evaluation.
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Owingtothe long-term policy orientation of system dynamics modeling, the task of dynamic behavior
analysis or model output evaluation necessitates special care. It should be done in a pattern-oriented
manner, i.e. the primary concernis on pattern related measures. For example, whether the behavioris
an s-shaped-growth pattern or not is more important than the exact value at a certain pointin time. In
the absence of formal methods for pattern evaluation, all the aforementioned stages of a modeling
study that require output evaluation are prone to being subjective and qualitative. This necessitates
development of formal output analysis methods in order to provide stronger basis for SD studies. This
need has also been discussed by several authors (Richardson, 1996; Barlas, 1996, 2007; Sterman, 2000).
Moreover, a set of attempts has been made towards developing such methods, tools and procedures
(e.g. Forrester and Senge 1990; Barlas 1996; Ford and Flynn, 2005; Kampmann and Oliva, 2006; Phaff,



2006; Yacel and Barlas 2011) but a brief literature review reveals that they are utilized at a much less
then desired or deserved level in practice.

The aforementioned underutilization can be attributed to several factors one of whichiis the difficulty of
conductingthe particularanalysis method for SD practitioners. This study primarily aims to address this
issue. Based on a review of SD literature, we compileaset of tools/methods that have been proposed for
pattern-oriented output analysis. Based on this compilation, we aim to develop a user-friendly
environment that will enable SD practitioners to easily apply these formal methods during different
stages of a modeling study.

Background and Objectives

SD model output is a typical time-series, i.e. collection of data points over a time interval. The
straightforward approach to measuring similarity or dissimilarity of two time-series is to compare their
single statistics such as means, variances, and final or cumulative values. Another approach might be to
considerevery pair of data points and obtain a time-series of functions of pairwise differences, whichis
the basis for point-based metrics such as sum of squared errors (SSE), mean squared error (MSE), R, and
Theil statistics (Theil, 1966; Sterman, 1984). However these approaches have a potential of yielding
incorrectresults. Forexample, let us consider MSE, a frequently used statistical metric calculated by the
formula: MSE = %Z(Xi —Y;)? . The inappropriateness of arbitrarily using MSE for comparison of

behavior patterns is illustrated in Figure 1. In this plot, an arbitrary negative exponential curve
outperforms the model output when their proximities to reference oscillatory behavior are measured by
MSE. Here, small phase and bias shiftresultsin alarge penalty due to the point-based orientation of the
technique. However, from a pattern-based perspective it is visible that this model behavior has similar
pattern characteristics with the actual data; they belongto same behavior class (constant oscillation) and
have similar periods and amplitudes.

10,

+—+ A: actual data
e -» B: model output
+ C: arbitrary pattern

MSE(A,B) = 14.6146
MSE(A,C) = 7.7408
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Figure 1. Illustrative example for showing the inapproprianteness of MSE.



In ordera formal approach to be relevantforthe SD practice, it should have the capability to capture the
pattern-wise similarity of model output to the actual output given in Figure 1. As discussed in the
previous section, there are various attempts to this pattern-orientation issue in methodological SD
model analysis literature. In this study, we focus on two of them; multi-step procedure for behavior
comparison and ISTS algorithm for behavior classification. In the following sections we briefly describe
these two previous studies, identify the problems encountered in model analysis practice, and propose
motivations for this study.

Multi-Step Procedure for Behavior Comparison

In the previous section, it is illustrated that individual statistical methods are not suitable to be used
directly forevaluation of dynamic behaviors. Nevertheless, with appropriate ordering and organization
available statistical methods can be beneficial. An attempt to come up with a relevant set and logical
ordering of methods has been made in a series of research, namely multi-step procedure (formerly 6-
step) by Barlas (1996). This procedure contains the following functions and methods; trend regression,
autocorrelation, spectral density, amplitude estimation by trigonometric function fitting and winters
forecasting, calculation of mean and variance, cross correlation, and calculation of discrepancy
coefficient. Interested reader may referto the following studies that build on this procedure for further
information; Barlas (1989, 1990, 1996); Barlas and Erdem (1994); Barlas et al. (1997); Bozyayla (2001). It
is appropriate to note that the methods presented here are specifically relevant for comparison of
steady-state periodicbehaviors. They are originally developed for testing behavior validity of SD models,
and forthis specific purpose the logical ordering depicted in Table 2 can be followed. In addition to this
usage principle, these methods can also be useful for other model analysis purposes such as model
calibration, sensitivity analysis, and policy analysis since each individual step enables extracting
information on pattern related components of a dynamic behavior.

Table 2. Multi-step procedure.

MULTI-STEP PROCEDURE
1  Trend comparison and removal
2 Period comparison using autocorrelation |
and spectral density function
3 Autocorrelation test for lag comparison
X .n‘.];rf‘xrrrinj; the fl\'e-l‘rx;;v.-.;- i 7
5 Comparing the variations
fi  Amplitude comparison
Testing phase lags using
crosscorrelation function
§ Overall summary measures:

coefficient of similarity

ISTS Algorithm for Behavior Classification
This algorithm was developed by (Kanar, 1999; Kanar and Barlas, 1999) originally for structure-oriented
behaviortesting (Barlas, 1996), especially for extreme-condition testing. It takes a time-series as input



and returns a table of likelihoods for similarity to generic behavior patterns that are frequently
encountered in theory and practice. These patterns are from six behavior families; constant, growth,
decline, growth-and-decline, decline-and-growth, and oscillatory. Including variations, the total number
of behavior classes that can be recognized and classified by ISTS Algorithm is twenty-five. They are
illustratedin Figure 2. Behaviorclasses are labeled, e.g. plinr represents positive linear growth (complete
list of descriptions of these labels can be found in the appendix). The algorithm is a supervised one,
namelyitcan recognize classesthatitis previously trained to do so. In the training process, training set
includes variants of the basic pattern class with noise and this set is used to estimate the transition
probabilities that represent the class the best. The procedure is repeated for all basic behavior patterns
to parameterize hidden Markov models.
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Figure 2. Generic dynamic patterns (Kanar, 1999).

In the classification process, the algorithm normalizes the time-series on y-axis, and splits it into six
segments. Each segment is then characterized by a feature vector of mean, slope, and curvature. The
fundamental principleis thatthe likelihood of a type of segmentbeingfollowed by a particular segment
type can be used to distinguish the generic behavior patterns. For example, in an exponential growth
pattern, a segment with positive slope and positive curvature is most likely to be followed by another
segment of the same character (positiveslope and curvature). However, in an S-shaped growth pattern,
the likelihood of the preceding section to have a positive slope but a negative curvature is significantly
higher. Once the sequence of all segments is analyzed, state-optimized likelihoods for this particular
sequence belongs to generic pattern classes are calculated and reported. This is done for all classes and
twenty-five likelihoods are obtained. From those results, itis possibleto extract meaningful information



on the mostlikely pattern class towhich the input behaviorbelongs to. A pseudo-code of the algorithm
is given in Figure 3. Interested reader may refer to Kanar and Barlas (1999), Kanar (1999), and Soylu
(2006) for further information on both training and classification processes related to ISTS Algorithm.

Receive the time-series data, X, to be classified

Normalize X using min-max normalization procedure 1o obtain Xy
Split Xn into six segments of equal-length, and obtain S;.Ss,..., 55
For each segment S; 1

Calculate mean

Calculate slope

Caleulate curvature
}
For all behavior classes B; {

Calculate the state-optimized likelihood of XN belonging to the class B;

|
Return the results for all behavior classes

Figure 3. ISTS Algoritm.

Problem Description

As discussedinthe previous parts, a set of formal methods and procedures have been proposed to the
field in order to satisfy the need for pattern-based output evaluation. Despite their availability, the
utilization of these tools is very limited. In that respect, it is possible to discuss that there are some
barriers between SD practitioners and these formal analysis methods and procedures.

Firstly, there is a usability issue related with these tools. They are fragmented, separated, and lack
organizations that brings them together. Some of these methods require familiarity with advanced
software or programming environment such as Matlab (Yiicel and Barlas, 2011) and Matematica
(Kapmann and Oliva, 2006), which may lie outside the expertise of certain SD practitioners. It is also
observed that these applications require several intermediary preparation/transformation stepsin order
to actually run the tool and get the results. This lack of automation makes the analysis process time-
consuming, especially when lots of experiments are involved. The time-consuming problem is discussed
in detail by several authors (Hearne, 1985; Drechsler, 1998; Miller, 1998).

The secondissue is related with connectivity and compatibility. Lack of communication of the developed
tool with modeling software (e.g. Stella, Vensim) brings forth burden to overall analysis process. The
significance of thisintegration is mentioned in the literature (Barlas, 1996; Richardson, 1999; Eksin, 2009;
Yicel and Barlas, 2011). Establishingthis connection eliminates the requirement for adoption of a new
analysis language and possible transfer errors. It also enables to preserve SD specific modeling
techniques, e.g. graphical/table functions and delay formulations, and maintains numerical consistency.

The third issue is the lack of user-friendliness, which is encountered in the available software
development attempts. There are two software applications from the literature that we decide to
mention in this context. The first one is Behavior Testing Software - BTS (Barlas et al., 1997) based on



multi-step procedure described above, and the second one is SiS (Bog and Barlas, 2006) built upon ISTS
Algorithm. As the modern software standards and design principles constantly develop and there is a
necessity forthe analysis software to follow them. The available projects in the literature fail to satisfy
certain requirements such as efficient graphical user interface, multi-tasking, elaborate design,
customization, cross-platform compatibility (i.e. works on Windows and Mac), being able to export
quality graphs, and so on.

The problems mentioned above reveals that without achieving certain objectives it is highly unlikely for
any support tool to reach a wideruserbase. In order to overcome these problems, we propose to design
new analysis software that has:

e Structured and automated analysis processes
e Communication with SD modeling software and compatibility with standard data types
e User-friendly design for efficient human software interaction

In other words, it is aimed to design a usable software application for the modeler/analyst to perform
pattern-oriented behavior analysis at various steps of a modeling study/project.

Behavior Analysis and Testing Software (BATS)

The software developed during this study, i.e. Behavior Analysis and Testing Software (BATS), isaimed to
support evaluation, validation, sensitivity analysis and policy analysis processes in a SD study. It has
pattern classification capabilities and consists of various statistical analysis tools for comparison of time -
series. BATS is written on pure Python', which is an object-oriented, dynamically typed, high-level
programming/scripting language. In its current form, BATS is standalone software that is delivered in
single executable file. It naturally involves intense user interaction and this need is addressed by
designing and building an effective user-friendly Matplotlib embedded wxPython based graphical user
interface (GUI). BATS’ GUI implements an IDE-style tabbed document interface framework, which
enablesatabbed working environment thatis widely used in new generation of software (e.g. Chrome,
Firefox, Matlab, etc.). Inaddition, Matplotlib offers high-quality graphical output capabilities that allow
print-quality exporting of results. Using its tabbed interface it is possible to work with multiple
operations and customize screen views. BATS makes use of Numpy for algebraic and matrix
computations. Numpy is the fundamental scientific computing package of Python which allows fast,
convenient and efficient computation. BATS is extensible and designed for becoming a platform for
future extensions. In Figure 3, several screen shots from BATS are illustrated in order to provide an idea
about its interface to the reader.

As mentioned earlier, ability to communicate with potential data sources is an important requirement
for software like BATS to be useful. In that respect, BATS is able to import external data from
spreadsheets and text files, and moreover communicate directly with Vensim via Vensim DLL. The
important contribution is that models developed on Vensim can be directly controlled with BATS by
sendingcommands (e.g. set parametervalue, run) and importing outputs. These outputs can be used for

! Available at http://www.python.org



all analysis featuresincluded in BATS. Lastly, itis possible to manually input time-series into BATS using
its drawing pad feature.
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Figure 4. Custom screen views of BATS.

BATS covers functionalities of two aforementioned model analysis software applications (BTS and SiS)
and also introduces new procedures and features. In summary, operations of BATS can be grouped
under three categories; behavior input and preprocessing, behavior analysis, and model analysis.
Behaviorinputting featuresinclude reading from external files, drawing a new data, splitting/cropping
existing data, extracting selections of data, applying exponential smoothing and moving average filtering
techniques. Behavioranalysis featuresinclude behavior classification, trend regression, autocorrelation,
spectral densities, amplitude estimation, cross-correlation, summary statistics, and graphical
comparison. Model analysis features include a general purpose model docking window, hypothesis
tester, behavior space classifier, and behavior class mapper. In Figure 5, current features and
functionalities of BATS are illustrated.



Overview of Features of BATS

Data Importing Data Visualization
Load From File Plot
Model Docking Window Model Analysis
Draw Data Analysis Hypothesis Tester
Classify Behavior Space Classifier
Trend
. Behavior Class Mapper
Data Preparation Autocorrelation
Split Autocorrelation Test
Select Spectral Density
Exponential Smoothing Amplitude Estimation
Moving Average Crosscorrelation
< Trend > Summary Stats

Graphical Comparison

Figure 5. Overview of Features of BATS.

In the Figure 6, brief information on software architecture is provided. Different building blocks, their
interaction and the flow of information between them, as wellas communication with Vensim, Excel and
user are compactly illustrated in this figure.

BATS
Dataltem
Excel Workspace Dataltem Model model outputs Vensim
Analysis
export Features
Main Page commands & parameters|
Dataltem Special Tabs
Data Related Plot Tabs Plothook
Features
Al Tabs
Graphical User Interface (GUI)
Control View

USER |~
| SN N

Figure 6. Communication capabilities with external software and internal operations of BATS.

In the following sections of this paper, alternative usage modes of BATS are demonstrated.



BATS for Structure-oriented Behavior Testing

Structure-oriented behavior tests are strong behavior tests that can provide information on potential
structural flaws (Barlas, 1996). Extreme condition testing is one of the important and widely used
techniquesinthis group of model evaluation methods. In orderto demonstrate BATS in this usage mode,
we use density-dependent growth model (Barlas, 2002, p. 22 and Sterman, 2000,p. 118). The stock-flow
diagram of the model can be seen in Figure 7 and model equations can be seen in the appendix.

(o

)

Figure 7. Stock-flow diagram of density-dependent growth model.

In order BATS’ model analysis features to be utilized, as a preparatory step, the model developed on
Vensimshould be published as (.vpm) file. In this demonstration for structure-oriented behavior testing
with BATS we use Hypothesis Tester feature (see Figure 8 for screenshot of Model menu group).

File [Model] Data Analysis Options Help
= Model Docking Window Ctrl+M

Hypothesis Tester

Behavior Space Classifier

Behavior Class Mapper

Figure 8. Screenshot of Model menu group.

Afterthe featureis selected and the Vensim modelis connected to BATS, the settings dialog box for the
method appears (see Figure 9), in which test name, parameter name, parameter value, outcomevariable
of interest, and hypothesized behavior for the outcome variable are specified by the user.
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Run Specifications for Indirect Structure Testing

Model: density_dependent_growth.vpm

Parameter: [normal bf

-] o

Outcome: [Population

)

Hypothesis:

TestName:  if ng births, then Population decays to (|

L]

| R || Cancel

Figure 9. Settings dialog box for Hypothesis Tester feature.

Here in this example, the nexdc label represents a hypothesized behavior pattern of negative
exponential decline (or goal-seeking decay) if the birth fractionis setto zero. Hypothesis Tester uses ISTS
Algorithm and calculates likelihoods for all twenty-five behavior classes. If the likelihood value for the
hypothesized behavior pattern is higher than the confidence level (currently set as -3), conclusion
PASSEDisfilled inthe corresponding test row. It is also possible to observe all the likelihood values by
looking at their labels and exporting that particular simulation run to internal data keeping system for

further analysis (see Figure 10).
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Figure 10. Results of the first hypothesis in Hypothesis Tester.

Hypothesis Tester stores the results of the previous tests, so that overall assessment of the structural
validity of the model can be made in a user-friendly manner. A representative analysis session that

involves six experiments is illustrated in Figure 11.
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Figure 11. Screenshot for Hypothesis Tester after a representative extreme condition testing process.

BATS for Behavior Pattern Comparison

Behavior pattern comparison is conducted differently with for transient and steady state modes. For
steady-state behaviors or parts of behaviors, the multi-step procedure can be utilized, whereas for
transient behaviors graphical measures can be applied (Barlas, 1996). In this demonstration two time-
seriesare imported from an Excel and a .txt file using Load from File option (see Figure 12 for screenshot
of Data menu group).

o L

File Model Analysis Options Help
[ ' BATS W. Load From File Ctrl+0
Name Draw t
Split
Crop
Exponential Smoothing

Moving Average

Export Workspace

Figure 12. Screenshot for Data menu group.

The screenshotin Figure 13 displays the all behavioranalysis features currently available in BATS. These
menu items correspond to individual methods in aforementioned multi-step procedure and ISTS
algorithm. In addition to them a new feature called graphical comparison is included, which enables
manual comparison of behavior patterns.



File Model Data | Analysis | Options Help
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Trend
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Statistics Summary
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Graphical Comparison
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Figure 13. Screenshot for Analysis menu group.

Throughout this demonstration, the two time-series are referred as actual and model. In Figure 14, a
screenshot of the workspace of BATS during this demonstration is pictured. The naming convention and
outputs of operations can also be visualized in this figure. As the operations are held, new dataseries are
created and stored, and for every iteminthe workspace statistical summary information is displayed in

order to provide quick feedback to user.
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Figure 14. Workspace of BATS during behavior pattern comparison demonstration.

After successful import, the initial step is to visualize the data using the Plot feature (see Figure 15).
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Figure 15. Two patterns thatare used for behavior pattern testing.

It is observed that both of the two data series involve a transient phase. In order to analyze behavior
patterns transient and steady-state parts should be analyzed separately (Barlas, 1996, p. 195). These
two parts are separated using the Split feature and steady-state parts of the behavior patterns are
obtained (the reader may refer to Figure 14 for updates in the workspace).
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Figure 16. Transient steady-state behavior splitter tool.
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Afterthe separation of transient phases from the behavior patterns, itis now possible to conduct multi-
step procedure in Table 2 (also see Barlas, 1996, p. 195). First step of the procedure is to estimate and
compare trends (see Figure 17). The linear trend is estimated and removed by using the Trend feature,
and trend related information (slope and intercept) is stored for comparison of patterns.
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Figure 17. Trend estimation.



The final transformed states of the behavior patterns, after transient phase removal and de-trending,
can be seenin Figure 18.
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Figure 18. Plot of de-trended steady-state parts of behavior patterns.

Autocorrelation results show that both signals have a period of 20 (see Figure 19).
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Figure 19. Autocorrelation function results.

Periods can also be estimated using spectral density function as in Figure 20. The results are in
coherence with the results of autocorrelation method. The highest energy content is observed at lag 20,
whichindicatesthe primary period. Inthis demonstration the behavior patterns do not involve multiple
periodicities so either autocorrelation or spectral density function can be utilized for period estimation.
For estimation of periods from behavior that involve multiple periodicities spectral density function
offers more extensive results (Bozyayla, 2001).
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Figure 20. Spectral density function results.
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Autocorrelation test constructs a confidence interval around differences of autocorrelation lags. In this
example the differences lie inside the confidence region (see Figure 21). This indicates that
autocorrelation patterns of these two time-series are quite similar, and there is nothing that suggests
that they are different (for further information on this test the reader may refer to Barlas, 1990).
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Figure 21. Autocorrelation testresults.

The amplitudes are estimated using trigonometricfunction fitting. The amplitudes are found as 2.04 and
1.95 respectively. The values can be read from the plot and also from the log keeping system in BATS

(see Figure 22).
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Figure 22. Amplitude estimation using trigonometric function fitting.



Cross-correlation function measures the phase shift between two signals. In this example, maximum
value is observed at lag 0, which indicates that the signals are in phase (see Figure 23).

Croszcorredation Function for Actups! SS.LR and Moded 55.LR
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Figure 23. Cross correlation function results.

The means and variances are calculated using Summary Statistics feature, and reported to the userinthe
logging system (see Figure 24). This feature also calculates the coefficients of similarity, namely
discrepancy coefficient (U) by Barlas (1989) and Theil statistics by Sterman (1984). U value takes values
between0and 1, and ratherlarge values are acceptedif the othersteps of the procedure designate that
the behaviors are pattern-wise similar (0.3790in this example).

Comparative Stats

Actual. 55.LR  Model SS.LR Difference Error:
Mean - 4657302 4 768117 -0.110216 -0.023662
Var  © 3111434 2 670452 0.440983 0141730
Single Stats
U : 0.379063
MSE - 1671315
Theill - 0.007268
TheilS - 0.010077
TheilC_: 0.982655

Figure 24. Summary statistics results.

In addition to application of multi-step procedure on the steady-state parts of the signals, the Graphical
Comparison feature can be applied to transient parts. In this feature the user can manually indicate
relevant custom key characteristics. These key characteristics can either be points orintervals, and either
be on the x axis ory axis. In Figure 25, four different measures, namely minimum level, maximum level,
time between min and max, and overall change in level, are calculated and compared. This new feature is
implemented in BATS in order to enable performing flexible and manual comparison of pattern

components such as maxima, minima, inflection points, equilibrium levels, durations, distances, and so
on.
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Figure 25. Comparison of transient parts of behaviors and illustration of Graphical Comparison feature.

The results of all operations used in this demostration are summarized in Table 3.

Table 3. Summary table for behaviorvalidity pattern tests.

Metrie [ Actual [ Model | Difi [ % Err.
Steady-state Fart

Linear trend skope 0.037¢ | .0420 | 0.0050 | 0.135]

Primary period 20 20 n 0.0000

Autocorrelation test Pazaed -

Mean 46579 | ATEs1 | 0102 | 00237

Varlance 3104 | 26705 | -0.4408 | 20,1417

Amplitude 20400 | 19500 | 0.0800 | 00441

Phinse Lag 1] a

&) 04791 -

MSE 16713 -
UM 000 | =

Us (o101

e 020626 -
Trunsierd Part

Maximum 176438 | 136111 | -4.0G27 | -0.2286

Minimum 18254 | 44444 | 26000 | (4348

Tine between max and min | 11.0473 | 10,0097 | -1.0876 -0.0030

Ovetall changs 01860 | 2.1825 | 1.9085 | 10,7334

BATS for Sensitivity Analysis

In this demonstration, behavior sensitivity analysis of an SD model is analyzed using Behavior Space
Classifier feature of BATS (see Figure 8forthe corresponding menu item). This feature finds behavior
pattern sensitivity of the model with respect to changes in parameters. For this demonstration we use



the temperature adjustment model. Thisis amodel forthe stock control problem under the presence of
two types of delays. The firstone is the material delay anditrepresents the delay occurs due to the flow
of hot/cold airin the air-conditioner system. The second one is the information delay and it represents
the perception delay of the human being while feelingand measuring the actual temperature. The stock-
flow diagram of the model can be seenin Figure 26.
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Figure 26. Stock-flow diagram of temperature adjustment model.
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Figure 27. Workflow of Behavior Space Classifier.

Model file, output variable, sensitivity parameters and theirranges are collected asinputs fromthe user.
Behavior Space Classifier produces a classifier grid drawn respect to sensitivity values of parameter 1 and
parameter 2. In Figure 27 the workflow of this feature is illustrated. For each cell on the grid Vensim
modelis run with corresponding parametervalues setand then the outputis automatically obtained. For
the model output ISTS Algorithmiis called and all twenty-five likelihood values are calculated. The cell on



the grid is filled with the label of the behavior pattern class with the highestlikelihood for that particular
run. This processis automated, thatis, the computations continue until all the feasible parameter range
is searched and classified. The screenshot from the software can be observed in Figure 28. In this final
plot, a coloring systemis embedded to improve visual classification. In addition, the plotatthe bottom is
responsive, thatis, as the user clicks a cell on the classifier grid, the plot updates to show the output of
the corresponding run. In this figure, behavior when temperature adjustment delay is equal to 20 and
perceptiondelayisequal to 12 isillustrated (the runis also indicated by the red ellipse on the classifier
grid). In this parameter combination, the highest likelihood value is from S-shaped growth pattern.

Overall examination of the colored classifier grid supports the modeler/analyst while assessing sensitivity
of behaviormodes as aresult of numericparametervalue changesinthe model. It can be seen from the
results thatthere fundamentally exists four different behavior modes. When the material delay is low
(i.e.fasttemperature change), but the perception delay is high (i.e. slow perception change) the actual
temperature exhibits oscillatory behavior (indicated by red oscct label on the grid). Under the opposite
conditions when the material delay is high and perception delay is low the temperature smoothly
reachesthe desired equilibrium level (green nexgrlabel). Following the oscillatory case, as the material
delay increases the oscillations get weaker and the behavior becomes more like growth then decline
behavior (yellow gr2db label). Finally, when both material and information delays are high the behavior
become more s-shaped growth alike (blue sshgrlabel). The results comply with the analytical solution of
the model and with a previous study in the literature (Yiicel and Barlas, 2011).
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Figure 28. Screenshot for the classifier grid and model behavior plot of Behavior Space Classifier.



BATS for Policy Analysis

In this demonstration we suppose that the desired behaviorforthe ActualRoom Temperature variable in
the temperature adjustment modelisan S-shaped growth pattern. Asinthe previous example, there are
two decision parameters of sensitivity, namely Temperature Adjustment Delay and Perception Delay. The
feasible rangesforthese parameterare determined as [1,21]. The modelerisinterestedin changesin “s-
shaped growthness” of model behavior with respect to parameterchanges. In order to perform this task,
Behavior Class Mapper feature of BATS is used (see Figure 8 for the corresponding menu item). This
feature provides a method for assessing changes in the behavior mode of the model as a result of
changes in its parameters. In the preparation step the user chooses a specific behavior pattern such as
sshgr (s-shaped growth), as well as parameters of uncertainty and theirranges and the output variable of
interest (actual room temperature in this case).

Behavior Class Mapper

Pre-specified class Is
sshgr
(s-shaped-growth)

For each
pointa
simulation
run is made
Model
output is The likelihood
taken from value for pre-
Vensim 25 likelihoods cified class is
ISTS spe
Algorithm is are obtained _____» plotted on the graph
Param|= called __—7
Param2=16 299

Figure 29. Workflow of Behavior Class Mapper.

In Figure 29, each pointonthe plotcorrespondsto one simulation run and for each run model output is
obtained from Vensim. For each model output ISTS Algorithm is called and likelihood value for the pre -
specified behavior classis plotted onthe graph. This processis repeated for all parameter combinations.
The intermediary parameter values are interpolated in order to obtain a contour plot with respect to
parameter1and parameter 2. In this contour plot the warmercolorsindicate higherlikelihoods and vice
versa. Screenshot from BATS using this feature is illustrated in Figure 30.

By looking at this contourplot it can be concluded that in order to stasify policy objective (i.e. find the
parameter combination thatyields S-shaped growth), the areaindicated with the dark red can be chosen
for values of parameters of uncertainity. It should be noted that this feature can be used for model



parameter calibration. Suppose that the modeleris searching forthe parameter combination that yields
S-shaped growth dynamics, then similar conclusions can be made using Behavior Class Mapper feature.

* BATS ; g R ]
- R

File Model DOats  Anatnis Opheen  Haelp

¢ [HBATS Workspace | BehaviceSpace ALl x| BehaviorSpace.SSHGR  x  Behiviorspace.0SCCT x| BeruvioSpmeNBIGR % b #

Figure 30. Screenshot for the resulting contour plot of Behavior Class Mapper.

Conclusion

System dynamics methodology necessitates formal quantitative output analysis methods according to
the literature survey on both methodological studies and real life modeling projects. This need applies to
all steps in the methodology, including model calibration, model testing, sensitivity analysis, policy
analysisand design. Moreover, due to the policy-orientation of the approach, similarity of two dynamic
behaviors should be assessed by their pattern related features such as trends, periodicities, fluctuations,
amplitudes, etc. This renders traditional statistical curve fitting and forecasting techniques notapplicable
to behavioranalysis. Inthe model analysis literature, there exists pattern oriented formal quantitative
analysis techniques. However, these tools have not achieved large usage bases among the
modelers/analystsinthe field. Reasons behind this situation are identified as lack of automation of the
analysis methods, lack of familiarity with the specialized programming environments, lack of
communication with existing model building software and lack of user-friendliness. There are example
efforts on various levels of automation from proof of concept to packaged software; however some of
the aforementioned problems are valid also for them.

In this thesis two pattern-oriented quantitative behavior analysis methods are reviewed and integrated,
and as a result a new standalone software package, namely BATS (Behavior Analysis and Testing



Software), is developed for pattern-oriented model output analysis. In its current state, considerable
level of usability is achieved.

The new software is demonstrated in action for extreme condition testing of the density-dependent

population growth model, behavior pattern comparison of two oscillatory time-series, and behavior
sensitivity analysis of the temperature adjustment model. These demonstrations provide a guideline for
available usage modes of BATS.

In its current version BATS is distributed as freeware software to the field®. Furthermore, BATS is
designed and developed as an extensible platform. Future opportunities include integration of existing
model/behavior analysis tools /methods in the literature such as statistical screening method by Ford
and Flynn (2005), parameter specification by geneticalgorithms by Yiicel and Barlas (2011), and behavior
clustering by Yicel (2012) to BATS. Future directions also includes design related improvements,
additional connectivity with modeling software (e.g. Stella), and identification of new procedures and
functionalities.

Appendix

Equations for Density-Dependent Growth Model

bf = normal bf*effect of crowding on bf

births = Population*bf

Capacity = 200

Crowding = Population/Capacity

deaths =Population*df

df =0.06

effect of crowding on bf= WITH LOOKUP (Crowding, ([(0,0)-(2,1.33)], (0,1.33333), (0.166667,1.31667),
(0.333333,1.3), (0.5,1.25), (0.666667,1.18333), (0.833333,1.1), (1,1), (1.16667,0.883333), (1.33333,
0.745), (1.5,0.583333), (1.66667,0.4), (1.83333, 0.211667), (2,0)))

FINALTIME =300

initial population=20

INITIALTIME =1

normal bf =0.06

Population=INTEG (births-deaths, initial population)

SAVEPER =1

TIME STEP =0.125

Equations for Temperature Adjustment Model

Actual Room Temperature =INTEG (Room Temperature Change, -10)
Desired Room Temperature =0

FINALTIME = 100

INITIALTIME =0

Perceived Room Temperature=INTEG (Perception Change, 5)

% As of March 2014, the projectwebpage is under construction. Pleaserefer to main webpage of the research group
http://www.ie.boun.edu.tr/labs/sesdyn



Perception Change =(Actual Room Temperature - Perceived Room Temperature) /Perception Delay
Perception Delay =10

Room Temperature Change=(Desired Room Temperature - Perceived Room Temperature) /Temperature
Adjustment Delay

SAVEPER=1

Temperature Adjustment Delay =10

TIME STEP =0.125

Labels of generic dynamic patterns
The descriptions of labels for generic dynamic patterns in Figure 2 at page 5 are depicted in Table 4.

Table 4. Description of labels of generic dynamic patterns.

[ Class id Dewription

ZERO Zero

CONST | Constant

PLINR Linear with positive slope

PEXGR Positive exponential growth

NEXCR Vc;,mm expone tial growth
SSHGR S-zhaped growth

NLINR Linear with negative slope
NEXDC -?\:’;t;{l\t‘ e.\ponuentml decline
SSHDC S-shaped decline

PEXDC | Positive exponential decline

GRIDA | Growth with decreasing rate followed by decline to equilibrium
(growth level is less than decline le wl)

GRIDB | Growth with decreasmo rate followed b\' decline to equlhbrlum
(growth level is greater than decline level)

GR2DA S-shaped growth and decline to equilibrium (growth level is
less than decline level)

GR2DB S-shaped growth and decline to equilibrium (growth level is
greater than decline level)

DIGRA Decline with increasing rate followed by growth to equilibrium
(decline level is less than growth level)

DIGRB Decline with increasing rate followed by growth 1o equilibriam
(decline level is greater than growth level)

D2GRA -’w-~hape’d decline and grov.tb 10 equlhbnum (decline level is
less than growth level)

D2GRB | S-shaped decline and growth to equilibrium (decline level is
greater than growth level)

G1PED Growth with decreasing rate followed by positive exponential decline

G2PED S-shaped grnwth followed by positive exponential decline
DIPEG Decline with increasing rate followed by positive e\pom-mml «rrowth

D2PEG S-shaped decline followed by positive exponential growth

OSCCT Oscillation around constant mean

OSCGR Oscillati ion around linearly ;,rowmg trend
OSCDhC Oscillation around lmenrl\ daclmmg trend
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