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Abstract 
Analysis of model behavior is mainly conducted in a pattern-based manner in system dynamics (SD) 

methodology. In pattern-based evaluation of model outputs, similarity of the overall behavior pattern 

(e.g. S-shaped-growth, oscillations) and of specific pattern characteristics (e.g. inflection points, periods, 

amplitudes) are more important than point-by-point similarity measures such as sum-of-squared errors. 

Although some output analysis tools/software that address this special pattern focus are available, they 

lack usability and are fragmented. In this study, new standalone analysis software, namely Behavior 

Analysis and Testing Software (BATS), is developed. It integrates a pattern classification algorithm and a 

set of statistical methods for analysis of steady-state behaviors. Apart from enabling comparison of 

behaviors with these algorithms/methods, BATS includes structured processes that enable user to 

conduct automated hypothesis testing, behavior space exploration, and sensitivity analysis. In its current 

state, BATS can seamlessly communicate with SD modeling software (Vensim) and other common data 

sources. This study provides illustrative examples of how BATS can assist the modeler and/or analyst in 

various phases of modeling; indirect structure testing, output evaluation, sensitivity analysis, policy 

analysis. Considering its pattern-orientation, user-friendly interface, and communication with modeling 

software BATS can be an important contribution to the analysis toolset of SD methodology. 
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Introduction  
One of the key characteristics of the system dynamic approach that distinguishes it from other 

simulation-based approaches is the emphasis on dynamic model behavior, rather than events or system 

states at specific time points. Dynamic behavior of a model can be described as the output patterns that 

are generated by the operation of model variables over simulated time. Behavior analysis is encountered 

in various stages of a modeling study. In model construction, it is important for parameter estimation 

and calibration of the model according to the historical data or some desired behavior. Model validation 

can be discussed in two categories; structural validity and behavior pattern validity  (Barlas, 1996). In 

structural validity there are certain tests that involve simulation (e.g., extreme condition tests), in which 

comparing the model performance with the hypothesized real behavior is essential. In behavior pattern 

comparison, the similarity of pattern related characteristics such as trends, means, periods, amplitudes 

between model output and real life data is important. In sensitivity analysis, there is a need for 

categorization of large numbers of model outputs with respect to certain rules and purposes (e.g., find 

the parameter range that eliminates oscillations). Finally, in policy analysis and design, the outputs are 

analyzed subject to certain policy objectives based on pattern related information. Table 1 summarizes 

these stages and typical behavior related questions that characterize each one. 

Table 1. Stages  of system dynamics  methodology that involve output eva luation . 

 

Owing to the long-term policy orientation of system dynamics modeling, the task of dynamic behavior 

analysis or model output evaluation necessitates special care. It should be done in a pattern -oriented 

manner, i.e. the primary concern is on pattern related measures. For example, whether the behavior is 

an s-shaped-growth pattern or not is more important than the exact value at a certain point in time. In 

the absence of formal methods for pattern evaluation, all the aforementioned stages of a modeling 

study that require output evaluation are prone to being subjective and qualitative. This necessitates 

development of formal output analysis methods in order to provide stronger basis for SD studies. This 

need has also been discussed by several authors (Richardson, 1996; Barlas, 1996, 2007; Sterman, 2000). 

Moreover, a set of attempts has been made towards developing such methods, tools and procedures 

(e.g. Forrester and Senge 1990; Barlas 1996; Ford and Flynn, 2005; Kampmann and Oliva, 2006; Phaff, 



2006; Yücel and Barlas 2011) but a brief literature review reveals that they are utilized at a much less 

then desired or deserved level in practice.  

The aforementioned underutilization can be attributed to several factors one of which is the difficulty of 

conducting the particular analysis method for SD practitioners. This study primarily aims to address this 

issue. Based on a review of SD literature, we compile a set of tools/methods that have been proposed for 

pattern-oriented output analysis. Based on this compilation, we aim to develop a user-friendly 

environment that will enable SD practitioners to easily apply these formal methods during different 

stages of a modeling study.  

Background and Objectives 
SD model output is a typical time-series, i.e. collection of data points over a time interval. The 

straightforward approach to measuring similarity or dissimilarity of two time-series is to compare their 

single statistics such as means, variances, and final or cumulative values. Another approach might be to 

consider every pair of data points and obtain a time-series of functions of pairwise differences, which is 

the basis for point-based metrics such as sum of squared errors (SSE), mean squared error (MSE), R2, and 

Theil statistics (Theil, 1966; Sterman, 1984). However these approaches have a potential of yielding 

incorrect results. For example, let us consider MSE, a frequently used statistical metric calculated by the 

formula:      
 

 
∑       

  . The inappropriateness of arbitrarily using MSE for comparison of 

behavior patterns is illustrated in Figure 1. In this plot, an arbitrary negative exponential curve 

outperforms the model output when their proximities to reference oscillatory behavior are measured by 

MSE. Here, small phase and bias shift results in a large penalty due to the point-based orientation of the 

technique. However, from a pattern-based perspective it is visible that this model behavior has similar 

pattern characteristics with the actual data; they belong to same behavior class (constant oscillation) and 

have similar periods and amplitudes. 

 

Figure 1. I l lustrative example for showing the inapproprianteness  of MSE. 



In order a formal approach to be relevant for the SD practice, it should have the capability to capture the 

pattern-wise similarity of model output to the actual output given in Figure 1. As discussed in the 

previous section, there are various attempts to this pattern-orientation issue in methodological SD 

model analysis literature. In this study, we focus on two of them; multi-step procedure for behavior 

comparison and ISTS algorithm for behavior classification. In the following sections we briefly describe 

these two previous studies, identify the problems encountered in model analysis practice, and propose 

motivations for this study. 

Multi-Step Procedure for Behavior Comparison 
In the previous section, it is illustrated that individual statistical methods are not suitable to be used 

directly for evaluation of dynamic behaviors. Nevertheless, with appropriate ordering and organization 

available statistical methods can be beneficial. An attempt to come up with a relevant set and logical 

ordering of methods has been made in a series of research, namely multi-step procedure (formerly 6-

step) by Barlas (1996). This procedure contains the following functions and methods; trend regression, 

autocorrelation, spectral density, amplitude estimation by trigonometric function fitting and winters 

forecasting, calculation of mean and variance, cross correlation, and calculation of discrepancy 

coefficient. Interested reader may refer to the following studies that build on this procedure for further 

information; Barlas (1989, 1990, 1996); Barlas and Erdem (1994); Barlas et al. (1997); Bozyayla (2001). It 

is appropriate to note that the methods presented here are specifically relevant for comparison of 

steady-state periodic behaviors. They are originally developed for testing behavior validity of SD models, 

and for this specific purpose the logical ordering depicted in Table 2 can be followed. In addition to this 

usage principle, these methods can also be useful for other model analysis purposes such as model 

calibration, sensitivity analysis, and policy analysis since each individual step enables extracting 

information on pattern related components of a dynamic behavior.  

Table 2. Multi -s tep procedure. 

 

ISTS Algorithm for Behavior Classification 
This algorithm was developed by (Kanar, 1999; Kanar and Barlas, 1999) originally for structure-oriented 

behavior testing (Barlas, 1996), especially for extreme-condition testing. It takes a time-series as input 



and returns a table of likelihoods for similarity to generic behavior patterns that are frequently 

encountered in theory and practice. These patterns are from six behavior families; constant, growth, 

decline, growth-and-decline, decline-and-growth, and oscillatory. Including variations, the total number 

of behavior classes that can be recognized and classified by ISTS Algorithm is twenty -five. They are 

illustrated in Figure 2. Behavior classes are labeled, e.g. plinr represents positive linear growth (complete 

list of descriptions of these labels can be found in the appendix). The algorithm is a supervised one, 

namely it can recognize classes that it is previously trained to do so. In the training process, training set 

includes variants of the basic pattern class with noise and this set is used to estimate the transition 

probabilities that represent the class the best. The procedure is repeated for all basic behavior patterns 

to parameterize hidden Markov models.  

 

 

Figure 2. Generic dynamic patterns  (Kanar, 1999). 

In the classification process, the algorithm normalizes the time-series on y-axis, and splits it into six 

segments. Each segment is then characterized by a feature vector of mean, slope, and curvature. The 

fundamental principle is that the likelihood of a type of segment being followed by a particular segment 

type can be used to distinguish the generic behavior patterns. For example, in an exponential growth 

pattern, a segment with positive slope and positive curvature is most likely to be followed by another 

segment of the same character (positive slope and curvature). However, in an S-shaped growth pattern, 

the likelihood of the preceding section to have a positive slope but a negative curvature is significantly 

higher. Once the sequence of all segments is analyzed, state-optimized likelihoods for this particular 

sequence belongs to generic pattern classes are calculated and reported. This is done for all classes and 

twenty-five likelihoods are obtained. From those results, it is possible to extract meaningful information 



on the most likely pattern class to which the input behavior belongs to. A pseudo-code of the algorithm 

is given in Figure 3. Interested reader may refer to Kanar and Barlas (1999), Kanar (1999), and Soylu 

(2006) for further information on both training and classification processes related to ISTS Algorithm. 

 

Figure 3. ISTS Algori tm. 

 

Problem Description 
As discussed in the previous parts, a set of formal methods and procedures have been proposed to the 

field in order to satisfy the need for pattern-based output evaluation. Despite their availability, the 

utilization of these tools is very limited. In that respect, it is possible to discuss that there are some 

barriers between SD practitioners and these formal analysis methods and procedures.  

Firstly, there is a usability issue related with these tools.  They are fragmented, separated, and lack 

organizations that brings them together. Some of these methods require familiarity with advanced 

software or programming environment such as Matlab (Yücel and Barlas, 2011) and Matematica 

(Kapmann and Oliva, 2006), which may lie outside the expertise of certain SD practitioners. It is also 

observed that these applications require several intermediary preparation/transformation steps in order 

to actually run the tool and get the results. This lack of automation makes the analysis process time-

consuming, especially when lots of experiments are involved. The time-consuming problem is discussed 

in detail by several authors (Hearne, 1985; Drechsler, 1998; Miller, 1998). 

The second issue is related with connectivity and compatibility. Lack of communication of the developed 

tool with modeling software (e.g. Stella, Vensim) brings forth burden to overall analysis process. The 

significance of this integration is mentioned in the literature (Barlas, 1996; Richardson, 1999; Ekşin, 2009; 

Yücel and Barlas, 2011). Establishing this connection eliminates the requirement for adoption of a new 

analysis language and possible transfer errors. It also enables to preserve SD specific modeling 

techniques, e.g. graphical/table functions and delay formulations, and maintains numerical consistency. 

The third issue is the lack of user-friendliness, which is encountered in the available software 

development attempts. There are two software applications from the literature that we decide to 

mention in this context. The first one is Behavior Testing Software - BTS (Barlas et al., 1997) based on 



multi-step procedure described above, and the second one is SiS (Boğ and Barlas, 2006) built upon ISTS 

Algorithm. As the modern software standards and design principles constantly develop and there is a 

necessity for the analysis software to fol low them. The available projects in the literature fail to satisfy 

certain requirements such as efficient graphical user interface, multi-tasking, elaborate design, 

customization, cross-platform compatibility (i.e. works on Windows and Mac), being able to export 

quality graphs, and so on. 

The problems mentioned above reveals that without achieving certain objectives it is highly unlikely for 

any support tool to reach a wider user base. In order to overcome these problems, we propose to design 

new analysis software that has: 

 Structured and automated analysis processes 

 Communication with SD modeling software and compatibility with standard data types 

 User-friendly design for efficient human software interaction 

In other words, it is aimed to design a usable software application for the modeler/analyst to perform 

pattern-oriented behavior analysis at various steps of a modeling study/project.  

Behavior Analysis and Testing Software (BATS) 
The software developed during this study, i.e. Behavior Analysis and Testing Software (BATS), is aimed to 

support evaluation, validation, sensitivity analysis and policy analysis processes in a SD study. It has 

pattern classification capabilities and consists of various statistical analysis tools for comparison of time -

series. BATS is written on pure Python1, which is an object-oriented, dynamically typed, high-level 

programming/scripting language. In its current form, BATS is standalone software that is delivered in 

single executable file. It naturally involves intense user interaction and this need is addressed by 

designing and building an effective user-friendly Matplotlib embedded wxPython based graphical user 

interface (GUI).  BATS’ GUI implements an IDE-style tabbed document interface framework, which 

enables a tabbed working environment that is widely used in new generation of software (e.g. Chrome, 

Firefox, Matlab, etc.). In addition, Matplotlib offers high-quality graphical output capabilities that allow 

print-quality exporting of results. Using its tabbed interface it is possible to work with multiple 

operations and customize screen views. BATS makes use of Numpy for algebraic and matrix 

computations. Numpy is the fundamental scientific computing package of Python which allows fast, 

convenient and efficient computation. BATS is extensible and designed for becoming a platform for 

future extensions. In Figure 3, several screen shots from BATS are illustrated in order to provide an idea 

about its interface to the reader. 

As mentioned earlier, ability to communicate with potential data sources is an important requirement 

for software like BATS to be useful. In that respect, BATS is able to import external data from 

spreadsheets and text files, and moreover communicate directly with Vensim via Vensim DLL. The 

important contribution is that models developed on Vensim can be directly controlled with BATS by 

sending commands (e.g. set parameter value, run) and importing outputs. These outputs can be used for 

                                                                 
1
 Available at http://www.python.org 



all analysis features included in BATS. Lastly, it is possible to manually input time-series into BATS using 

its drawing pad feature. 

 

 

Figure 4. Custom screen views  of BATS. 

BATS covers functionalities of two aforementioned model analysis software applications (BTS and SiS) 

and also introduces new procedures and features. In summary, operations of BATS can be grouped 

under three categories; behavior input and preprocessing, behavior analysis, and model analysis. 

Behavior inputting features include reading from external files, drawing a new data, splitting/cropping 

existing data, extracting selections of data, applying exponential smoothing and moving average filtering 

techniques. Behavior analysis features include behavior classification, trend regression, autocorrelation, 

spectral densities, amplitude estimation, cross-correlation, summary statistics, and graphical 

comparison. Model analysis features include a general purpose model docking window, hypothesis 

tester, behavior space classifier, and behavior class mapper. In Figure  5, current features and 

functionalities of BATS are illustrated. 



 

Figure 5. Overview of Features  of BATS. 

In the Figure 6, brief information on software architecture is provided. Different building blocks, their 

interaction and the flow of information between them, as well as communication with Vensim, Excel and 

user are compactly illustrated in this figure. 

 

Figure 6. Communication capabi l i ties  with external  software and internal  operations  of BATS. 

 

In the following sections of this paper, alternative usage modes of BATS are demonstrated. 
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BATS for Structure-oriented Behavior Testing 
Structure-oriented behavior tests are strong behavior tests that can provide information on potential 

structural flaws (Barlas, 1996). Extreme condition testing is one of the important and widely used 

techniques in this group of model evaluation methods. In order to demonstrate BATS in this usage mode, 

we use density-dependent growth model (Barlas, 2002, p. 22 and Sterman, 2000,p. 118). The stock-flow 

diagram of the model can be seen in Figure 7 and model equations can be seen in the appendix.  

 

Figure 7. Stock-flow diagram of dens i ty-dependent growth model . 

In order BATS’ model analysis features to be utilized , as a preparatory step, the model developed on 

Vensim should be published as (.vpm) file. In this demonstration for structure-oriented behavior testing 

with BATS we use Hypothesis Tester feature (see Figure 8 for screenshot of Model menu group). 

 

Figure 8. Screenshot of Model menu group. 

After the feature is selected and the Vensim model is connected to BATS, the settings dialog box for the 

method appears (see Figure 9), in which test name, parameter name, parameter value, outcome variable 

of interest, and hypothesized behavior for the outcome variable are specified by the use r.  



 

Figure 9. Settings  dia log box for Hypothes is  Tester feature. 

Here in this example, the nexdc label represents a hypothesized behavior pattern of negative 

exponential decline (or goal-seeking decay) if the birth fraction is set to zero. Hypothesis Tester uses ISTS 

Algorithm and calculates likelihoods for all twenty-five behavior classes. If the likelihood value for the 

hypothesized behavior pattern is higher than the confidence level (currently set as -3), conclusion 

PASSED is filled in the corresponding test row. It is also possible to observe all the likelihood values by 

looking at their labels and exporting that particular simulation run to internal data keeping system for 

further analysis (see Figure 10). 

 

Figure 10. Results  of the fi rs t hypothes is  in Hypothes is  Tester. 

Hypothesis Tester stores the results of the previous tests, so that overall assessment of the structural 

validity of the model can be made in a user-friendly manner. A representative analysis session that 

involves six experiments is illustrated in Figure 11.  



 

Figure 11. Screenshot for Hypothes is  Tester after a  representative  extreme condition testing process . 

BATS for Behavior Pattern Comparison 
Behavior pattern comparison is conducted differently with for transient and steady state modes. For 

steady-state behaviors or parts of behaviors, the multi -step procedure can be utilized, whereas for 

transient behaviors graphical measures can be applied (Barlas, 1996) . In this demonstration two time-

series are imported from an Excel and a .txt file using Load from File option (see Figure 12 for screenshot 

of Data menu group).  

 

Figure 12. Screenshot for Data menu group. 

The screenshot in Figure 13 displays the all behavior analysis features currently available in BATS. These 

menu items correspond to individual methods in aforementioned multi -step procedure and ISTS 

algorithm. In addition to them a new feature called graphical comparison is included, which enables 

manual comparison of behavior patterns.  



 

Figure 13. Screenshot for Analysis menu group. 

Throughout this demonstration, the two time-series are referred as actual and model. In Figure 14, a 

screenshot of the workspace of BATS during this demonstration is pictured. The naming convention and 

outputs of operations can also be visualized in this figure. As the operations are held, new data series are 

created and stored, and for every item in the workspace statistical  summary information is displayed in 

order to provide quick feedback to user. 

 

Figure 14. Workspace of BATS during behavior pattern comparison demonstration . 

After successful import, the initial step is to visualize the data using the Plot feature (see Figure 15).  



 

Figure 15. Two patterns  that are used for behavior pattern testing. 

It is observed that both of the two data series involve a transient phase. In order to analyze behavior 

patterns transient and steady-state parts should be analyzed separately (Barlas, 1996, p.  195). These 

two parts are separated using the Split feature and steady-state parts of the behavior patterns are 

obtained (the reader may refer to Figure 14 for updates in the workspace). 

 

Figure 16. Trans ient s teady-state behavior s pl i tter tool . 

After the separation of transient phases from the behavior patterns, it is  now possible to conduct multi-

step procedure in Table 2 (also see Barlas, 1996, p. 195). First step of the procedure is to estimate and 

compare trends (see Figure 17). The linear trend is estimated and removed by using the Trend feature, 

and trend related information (slope and intercept) is stored for comparison of patterns. 

 

Figure 17. Trend estimation. 



The final transformed states of the behavior patterns, after transient phase removal and de-trending, 

can be seen in Figure 18.  

 

Figure 18. Plot of de-trended s teady-state parts  of behavior patterns . 

Autocorrelation results show that both signals have a period of 20 (see Figure 19).  

 

Figure 19. Autocorrelation function results . 

Periods can also be estimated using spectral density function as in Figure 20. The results are in 

coherence with the results of autocorrelation method. The highest energy content is observed at lag 20, 

which indicates the primary period. In this demonstration the behavior patterns do not involve multiple 

periodicities so either autocorrelation or spectral density function can be utilized for period estimation. 

For estimation of periods from behavior that involve multiple periodicities spectral density function 

offers more extensive results (Bozyayla, 2001). 



 

Figure 20. Spectra l  dens i ty function results . 

Autocorrelation test constructs a confidence interval around differences of autocorrelation lags. In this 

example the differences lie inside the confidence region (see Figure 21). This indicates that 

autocorrelation patterns of these two time-series are quite similar, and there is nothing that suggests 

that they are different (for further information on this test the reader may refer to Barlas, 1990). 

 

Figure 21. Autocorrelation test results . 

The amplitudes are estimated using trigonometric function fitting. The amplitudes are found as 2.04 and 

1.95 respectively. The values can be read from the plot and also from the log keeping system in BATS 

(see Figure 22). 

 

Figure 22. Ampl i tude estimation us ing tri gonometric function fi tting. 



Cross-correlation function measures the phase shift between two signals. In this example , maximum 

value is observed at lag 0, which indicates that the signals are in phase (see Figure 23). 

 

Figure 23. Cross  correlation function results . 

The means and variances are calculated using Summary Statistics feature, and reported to the user in the 

logging system (see Figure 24). This feature also calculates the coefficients of similarity, namely 

discrepancy coefficient (U) by Barlas (1989) and Theil statistics by Sterman (1984). U value takes values 

between 0 and 1, and rather large values are accepted if the other steps of the procedure designate that 

the behaviors are pattern-wise similar (0.3790 in this example). 

 

Figure 24. Summary s tatis tics  results . 

In addition to application of multi-step procedure on the steady-state parts of the signals, the Graphical 

Comparison feature can be applied to transient parts. In this feature the user can manually indicate 

relevant custom key characteristics. These key characteristics can either be points or intervals, and either 

be on the x axis or y axis. In Figure 25, four different measures, namely minimum level, maximum level, 

time between min and max, and overall change in level, are calculated and compared. This new feature is 

implemented in BATS in order to enable performing flexible and manual comparison of pattern 

components such as maxima, minima, inflection points, equilibrium levels, durations, distances, and so 

on. 



 

Figure 25. Comparison of trans ient parts  of behaviors  and i l lustration of Graphica l  Comparison feature.  

The results of all operations used in this demostration are summarized in Table 3. 

Table 3. Summary table for behavior va l idi ty pattern tests . 

 

BATS for Sensitivity Analysis 
In this demonstration, behavior sensitivity analysis of an SD model is analyzed using Behavior Space 

Classifier feature of BATS (see Figure 8 for the corresponding menu item). This feature finds behavior 

pattern sensitivity of the model with respect to changes in parameters. For this demonstration we use 



the temperature adjustment model. This is a model for the stock control problem under the presence of 

two types of delays. The first one is the material delay and it represents the delay occurs due to the flow 

of hot/cold air in the air-conditioner system. The second one is the information delay and it represents 

the perception delay of the human being while feeling and measuring the actual temperature. The stock-

flow diagram of the model can be seen in Figure 26.  

 

Figure 26. Stock-flow diagram of temperature adjustment model . 

  

Figure 27. Workflow of Behavior Space Class i fier. 

Model file, output variable, sensitivity parameters and their ranges are collected as inputs from the user. 

Behavior Space Classifier produces a classifier grid drawn respect to sensitivity values of parameter 1 and 

parameter 2. In Figure 27 the workflow of this feature is illustrated. For each cell on the grid Vensim 

model is run with corresponding parameter values set and then the output is automatically obtained. For 

the model output ISTS Algorithm is called and all  twenty-five likelihood values are calculated.  The cell  on 



the grid is filled with the label of the behavior pattern class with the highest likelihood for that particular 

run. This process is automated, that is, the computations continue until all the feasible parameter range 

is searched and classified. The screenshot from the software can be observed in Figure 28. In this final 

plot, a coloring system is embedded to improve visual classification. In addition, the plot at the bottom is 

responsive, that is, as the user clicks a cell on the classifier grid, the plot updates to show the output of 

the corresponding run. In this figure, behavior when temperature adjustment delay is equal to 20 and 

perception delay is equal to 12 is illustrated (the run is also indicated by the red ellipse on the classifier 

grid). In this parameter combination, the highest likelihood value is from S-shaped growth pattern. 

Overall examination of the colored classifier grid supports the modeler/analyst while assessing sensitivity 

of behavior modes as a result of numeric parameter value changes in the model. It can be seen from the 

results that there fundamentally exists four different behavior modes. When the material delay is low 

(i.e. fast temperature change), but the perception delay is high (i.e. slow perception change) the actual 

temperature exhibits oscillatory behavior (indicated by red oscct label on the grid). Under the opposite 

conditions when the material delay is high and perception delay is low the temperature smoothly 

reaches the desired equilibrium level (green nexgr label). Following the oscillatory case, as the material 

delay increases the oscillations get weaker and the behavior becomes more like growth then decline 

behavior (yellow gr2db label). Finally, when both material and information delays are high the behavior 

become more s-shaped growth alike (blue sshgr label). The results comply with the analytical solution of 

the model and with a previous study in the literature (Yücel and Barlas, 2011). 

 

Figure 28. Screenshot for the class i fier grid and model  behavior plot of Behavior Space Class i fier. 



BATS for Policy Analysis 
In this demonstration we suppose that the desired behavior for the Actual Room Temperature variable in 

the temperature adjustment model is an S-shaped growth pattern. As in the previous example, there are 

two decision parameters of sensitivity, namely Temperature Adjustment Delay and Perception Delay. The 

feasible ranges for these parameter are determined as [1,21]. The modeler is interested in changes in “s-

shaped growthness” of model behavior with respect to parameter changes. In order to perform this task, 

Behavior Class Mapper feature of BATS is used (see Figure 8 for the corresponding menu item). This 

feature provides a method for assessing changes in the behavior mode of the model as a result of 

changes in its parameters. In the preparation step the user chooses a specific behavior pattern such as 

sshgr (s-shaped growth), as well as parameters of uncertainty and their ranges and the output variable of 

interest (actual room temperature in this case).  

 

Figure 29. Workflow of Behavior Class  Mapper. 

In Figure 29, each point on the plot corresponds to one simulation run and for each run model output is 

obtained from Vensim. For each model output ISTS Algorithm is called and likelihood value for the pre -

specified behavior class is plotted on the graph. This process is repeated for all parameter combinations. 

The intermediary parameter values are interpolated in order to obtain a contour plot with respect to 

parameter 1 and parameter 2. In this contour plot the warmer colors indicate higher likelihoods and vice 

versa. Screenshot from BATS using this feature is illustrated in Figure 30. 

By looking at this contourplot it can be concluded that in order to stasify policy objective (i.e. find the 

parameter combination that yields S-shaped growth), the area indicated with the dark red can be chosen 

for values of parameters of uncertainity. It should be noted that this feature can be used for model 



parameter calibration. Suppose that the modeler is searching for the parameter combination that yields 

S-shaped growth dynamics, then similar conclusions can be made using Behavior Class Mapper feature. 

 

 

Figure 30. Screenshot for the resulting contour plot of Behavior Class  Mapper. 

Conclusion 
System dynamics methodology necessitates formal quantitative output analysis methods according to 

the literature survey on both methodological studies and real life modeling projects. This need applies to 

all steps in the methodology, including model calibration, model testing, sensitivity analysis, policy 

analysis and design. Moreover, due to the policy-orientation of the approach, similarity of two dynamic 

behaviors should be assessed by their pattern related features such as trends, periodicities, fluctuations, 

amplitudes, etc. This renders traditional statistical curve fitting and forecasting techniques  not applicable 

to behavior analysis. In the model analysis literature, there exists pattern oriented formal quantitative 

analysis techniques. However, these tools have not achieved large usage base s among the 

modelers/analysts in the field. Reasons behind this situation are identified as lack of automation of the 

analysis methods, lack of familiarity with the specialized programming environments, lack of 

communication with existing model building software and lack of user-friendliness. There are example 

efforts on various levels of automation from proof of concept to packaged software; however some of 

the aforementioned problems are valid also for them.  

In this thesis two pattern-oriented quantitative behavior analysis methods are reviewed and integrated, 

and as a result a new standalone software package, namely BATS (Behavior Analysis and Testing 



Software), is developed for pattern-oriented model output analysis. In its current state, considerable 

level of usability is achieved.  

The new software is demonstrated in action for extreme condition testing of the density-dependent 

population growth model, behavior pattern comparison of two oscillatory time-series, and behavior 

sensitivity analysis of the temperature adjustment model . These demonstrations provide a guideline for 

available usage modes of BATS.  

In its current version BATS is distributed as freeware software to the field2. Furthermore, BATS is 

designed and developed as an extensible platform. Future opportunities include integration of existing 

model/behavior analysis tools /methods in the literature such as statistical screening method by Ford 

and Flynn (2005), parameter specification by genetic algorithms by Yücel and Barlas (2011), and  behavior 

clustering by Yücel (2012) to BATS. Future directions also includes design related improvements, 

additional connectivity with modeling software (e.g. Stella), and identification of new procedures and 

functionalities. 

Appendix 

Equations for Density-Dependent Growth Model 
bf = normal bf*effect of crowding on bf 
births = Population*bf 
Capacity = 200 
Crowding = Population/Capacity 
deaths = Population*df 
df = 0.06 
effect of crowding on bf= WITH LOOKUP (Crowding, ([(0,0)-(2,1.33)], (0,1.33333), (0.166667,1.31667),  
(0.333333,1.3), (0.5,1.25), (0.666667,1.18333), (0.833333,1.1), (1,1), (1.16667,0.883333), (1.33333,    
0.745), (1.5,0.583333), (1.66667,0.4), (1.83333, 0.211667), (2,0) )) 
FINAL TIME  = 300 
initial population = 20 
INITIAL TIME  = 1 
normal bf = 0.06 
Population= INTEG (births-deaths, initial population) 
SAVEPER  = 1 
TIME STEP  = 0.125 

Equations for Temperature Adjustment Model 
Actual Room Temperature = INTEG (Room Temperature Change, -10) 
Desired Room Temperature = 0 
FINAL TIME  = 100 
INITIAL TIME = 0 
Perceived Room Temperature= INTEG (Perception Change, 5) 

                                                                 
2
 As of March 2014, the project webpage is under construction. Please refer to main webpage of the research group 

http://www.ie.boun.edu.tr/labs/sesdyn 



Perception Change = (Actual Room Temperature - Perceived Room Temperature) /Perception Delay 
Perception Delay = 10 
Room Temperature Change= (Desired Room Temperature - Perceived Room Temperature) /Temperature 
Adjustment Delay 
SAVEPER = 1 
Temperature Adjustment Delay = 10 
TIME STEP  = 0.125 

Labels of generic dynamic patterns 
The descriptions of labels for generic dynamic patterns in Figure 2 at page 5 are depicted in Table 4. 

Table 4. Description of labels  of generic dynamic patterns . 
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