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Abstract: Rabies is a viral fatal disease transmitted to humans mainly from dogs. 

Human deaths due to rabies have been increasing in recent years, especially in Africa 

and Asia where socioeconomic factors play an important role in the revival of the 

epidemic. In the current situation, it is unknown how the epidemic will evolve and which 

policies can prevent undesired futures. Therefore, the dynamics of rabies are 

investigated with a system dynamics model and several policy options are tested in this 

study. An exploratory approach is adopted to deal with uncertainties associated with 

model formulation, lack of data and the epidemic characteristics. The results showed a 

wide variety of future dynamics for possible human deaths, and following dog culling, 

human vaccination resulted to be the best policy to decrease the maximum possible 

number of casualties. However, when the cost effectiveness is taken into account, high 

rates of dog vaccination and high levels of human hospitalization upon exposure to a 

dog were found as the policy that maximizes the number of future favorable cases in 

terms of human casualties and costs. Future research can include extending the model 

with underlying socioeconomic factors and multiple species.            

Keywords:  Rabies, epidemics, system dynamics, exploratory modeling and analysis, uncertainty, 

model structure uncertainty 

1. Introduction 

Rabies is a viral zoonotic disease that has threatened human health throughout history. 

It is transmitted to humans from warm-blooded animals, mainly from dogs due to their 

intense interaction with humans. The rabies virus is almost entirely fatal once it enters 

the body, unless a Post-exposure Prophylaxis (PEP) treatment is applied to prevent the 

virus from reaching the brain.  

Despite the eradication of the virus in North America and Europe, the World Health 

Organization reported 61000 human deaths due to rabies in 2010, of which 95% was in 

Africa and Asia (WHO, 2013). Increasing numbers of canine-related human rabies 

cases especially in India and China in recent years have drawn worldwide attention and 

revealed the complexity of the problem. On the one hand, the epidemic is attributed to 

several socioeconomic and cultural factors. In China, pet ownership attempts of the 

growing middle class which result in more stray dogs when the attempts fail is 

mentioned as an important factor (McKenna, 2013), whereas poor waste management 

systems which attract dogs to garbage mounds and facilitate dog-human interaction in 
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India are acknowledged as the problem underlying the rabies epidemic (Harris, 2012). 

On the other hand, policy makers face several problems in decision making, such as 

cultural and religious factors that oppose culling of dogs, and the dilemma of 

vaccinating dogs or humans, before or after exposure to a rabid animal. Yet, the major 

problem of policy making is the lack of data which stems either from unreported cases 

due to people’s religious beliefs or ignorance, or from the absence of expensive 

surveillance activities (Knobel et al., 2005; Beyer et al., 2011; Lembo et al., 2010).       

Quantitative modeling has long been used to investigate the dynamics of rabies and to 

compare the well-known policy options such as culling and vaccination. Early models 

were based on ordinary differential equations (ODE’s) and the well-known Susceptible-

Infected-Recovered (SIR) framework for epidemic models. Anderson et al. (1981) 

presented a simple but useful model based on this framework of density-dependent 

transmission for fox rabies in Europe. This approach has been adopted by several recent 

studies, especially for canine rabies (Zhang et al., 2011; Zhang et al., 2012; Hou et al., 

2012; Zinsstag et al., 2009; Deal et al., 2000). Among these, only Deal et al. (2000) and 

Zinsstag et al. (2009) used system dynamics tools (software) although the models were 

not built with a system dynamics perspective. Stochastic inference and simulation 

models based on state-space distribution or Bayesian networks, have constituted the 

second major branch of rabies models, and are used mainly to deal with the absence of 

reported data (Hampson et al., 2009; Beyer et al., 2011). For a more detailed review of 

mathematical models built for rabies, the reader is referred to Sterner and Smith (2006) 

and Panjeti and Real (2011). These studies indicate a wide variety of modeling 

methodologies that can be used and a high complication level that can be represented 

thanks to the advancements in computation technology. However, as Panjeti and Real 

(2011) argue, the availability of data lags behind the advancement in modeling 

techniques, and this impedes providing improvement over the early simple ODE 

models. 

System dynamics has been successfully implemented to several epidemic diseases such 

as dengue (Ritchie-Dunham and Mendez Galvan, 1999), AIDS (Roberts and 

Dangerfield, 1990; Lounsbury and Levine, 2002) and flu pandemics (Eskici and 

Turkgulu, 2007; Pruyt and Hamarat, 2010; Duggan, 2012). These studies generated 

useful insights for understanding the transmission dynamics and comparing policy 

options. Following this, it is believed that system dynamics can also assist decision 

making to deal with rabies, and a twofold purpose for this paper is set: Firstly, this study 

aims at capturing additional nonlinearities present in the rabies transmission mechanism 

which are not included in the early ODE models found in the literature. The second 

purpose of this study is to use this model to explore future dynamics and relative 

performance of policy options in these futures, in order to deal with the uncertainties 

caused especially by the lack of data.  

With these purposes, first, the system dynamics model developed for rabies will be 

described in the next section. The base run behavior of this model will be discussed in 

Section 3, with a comparison to the behavior of existing rabies models based on ODE. 

In Section 4, an uncertainty analysis for the exploration of future dynamics and 

comparison of several policy options will be presented. The paper will end with 

discussions and conclusions in Section 5.    
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2. Model Description 

Since this paper is focused only on the canine rabies and its effects on human 

population, other species that can infect humans or dogs with rabies virus are excluded 

from the model scope. Therefore, only human and dog species are included in this study 

and the model is divided into two main parts, namely the ‘dog’ and ‘human’ sub-

models: 

- In the ‘dog’ sub-model, transmission within the dog population is modeled as a 

Susceptible-Exposed-Infected-Vaccinated (SEIV) model, which is a modified 

version of SIR model but assumes a 100% mortality rate of infected dogs, hence 

no recovered population. 

- In the ‘human’ sub-model,   the rabies epidemic in the human population is also 

modeled as a SEIV model, but another stock variable is added to represent the 

Hospitalized population group.  

The link between the two sub-models is certainly the transmission of the virus from 

dogs to humans through biting.    

Dog sub­model 

The stock-flow diagram of this sub-model that shows the susceptible, exposed, infected 

and vaccinated (immune) population groups and movements between these can be seen 

in Figure 1. Rabid animals exhibit three different behaviors during the disease 

(Hemachudha et al., 2002). Upon infection, they enter the prodromal phase associated 

with shyness and isolation. After that, they become furious and exhibit high 

aggressiveness. Lastly, they enter the paralytic stage and die. Since their contact 

behavior is very different, the infected population is divided into two groups for 

prodromal and furious dogs. The paralytic stage is excluded since dogs are assumed not 

to bite any human or dog under paralysis.  

 
Figure 1: Stock-flow Diagram of the Dog Sub-model 

All normal death, vaccination, immunity loss, furiousity and rabies-related death rates 

are formulated fractionally or as a first order material delay. Infection rate is formulated 
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as a fraction of exposed population, where this fraction is the infectivity, and divided by 

the average duration of incubation, as Equation 1 shows.  

                       
                            

                         
  [Dogs/year] (1) 

 

 “Dog No Infection” shows the rate of dogs that are not actually infected after being 

exposed and join the susceptible group again. It is formulated as:  

                      
                               

                         
 [Dogs/year] (2) 

In several ODE models found in the literature (Zhang et al., 2011; Zhang et al., 2012; Hou 

et al., 2012; Zinsstag et al., 2009; Deal et al., 2000), the birth rate is assumed to be a 

constant rather than a fraction. Although this formulation is expected to yield unrealistic results 

when the dog population decreases and cannot reproduce to the extent assumed by the constant 

value, the ability of these authors to use their modes successfully is interpreted as an uncertainty 

in the model formulation. Therefore, two alternative formulations of birth rate are assumed as 

follows: 

                                          [Dogs/year] (3) 

                       (               ) [Dogs/year] (4) 

In Equation 4, bdog is the birth rate constant and only susceptible (Sdog) and immune 

(Vdog) dogs are assumed to be included in the reproductive population. 

“Dog Exposure Rate” is one of the most important formulations since it directly 

determines how the virus is transmitted among dogs. In the existing ODE models 

(Zhang et al., 2011; Zhang et al., 2012; Hou et al., 2012; Zinsstag et al., 2009; Deal et 

al., 2000), this rate is formulated as a fraction of all possible contact between 

susceptible and infected populations. In other words, the exposure rate is assumed to be 

equal to the multiplication of susceptible and infected population variables by a constant 

determined by statistical approximation. However, in the system dynamics studies on 

epidemics, the transmission or infection rate is formulated in a density dependent 

manner, with the most well-known form being 

                         
    

 
             [Dogs/year] (5) 

 

in the simple SIR model (Sterman, 2000, pp. 303). In this formulation, IR stands for the 

infection rate, S for the susceptible population, I for the infected and T for the total.   

This duality in the existing transmission formulations indicates another model structure 

uncertainty, and the following two formulations are assumed to be the two alternatives 

of the Dog Exposure Rate. 
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                                            [Dogs/year] (6) 

                                    
       

       
 [Dogs/year] (7) 

 

In Equation 6, β1,dog stands for the transmission fraction, so does β2,dog in Equation 7 for 

the contact rate. In Figure 2, the addition of a positive feedback loop by the density-

dependent formulation besides a positive loop via susceptible population and a negative 

one via infected population can be seen. The interaction of these three loops is expected 

to create the dynamics of the exposure rate.    

 
Figure 2: Causal loop diagram for the exposure rate with two alternative formulations 

In addition to these two alternatives for the dog exposure rate, we propose a third one, 

which takes the differences in the behavior of dogs in the prodromal and furious stages 

of rabies into account. (Note that in the previous formulations Idog refers to the sum of 

prodromal and furious dogs.) Due to the timid behavior of dogs in the prodromal stage 

and the aggressive behavior of the ones in the furious stage, the contact rate used in the 

density-dependent transmission formulation (Equation 7) is assumed to be a variable 

which depends on the fraction of prodromal or furious dogs in the total population. In 

the formulation of this contact rate variable, the normal contact rate is multiplied by the 

effects of prodrome and furiousity, which are formulated as lookup functions of which 

inputs are the fractions of these dog groups in the total dog population. Following this, 

the third alternative of dog exposure rate can be denoted as: 

                    

         (          
     

       
           

     

       
 ) 

[Dogs/year] (8) 

                
    (

     

       
) 

[1/year] (8) 

                
    (

     

       
) 

[1/year] (8) 

   

fp and ff are the lookup functions used to represent the effect of prodrome and furiousity 

on the contact rate, respectively, and they can be seen in Appendix I. 
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Human sub-model 

 
Figure 3: Stock-flow diagram of the human sub-model 

The structure of the human sub-model is different from the dog sub-model in terms of 

having an additional stock variable for the hospitalized population, and a single stock 

variable for the infected population since interspecies transmission does not exist for 

humans. Infected people are assumed not to be hospitalized, because once the virus 

reaches the brain and people are counted as infected, hospitalization cannot provide 

recovery. All the rate variables in this sub-model are formulated similar to those of 

dogs, with fractional or durational parameters which can be seen in Appendix I. 

As for the dog birth rate, human birth rate has two alternatives: A constant birth rate as 

used in some rabies models in the literature, and a fractional birth rate as used in the 

system dynamics literature. 

The three alternative formulations for the dog-to-dog exposure rate listed above hold for 

the dog-to-human exposure rate, too. Whether it is not density-dependent, density-

dependent or stage-dependent, the exposure occurs due to the infected dogs biting 

susceptible humans. The formulations for these three alternatives can be seen in the 

equations below.  

                                              [Humans/year] (9) 

                                      
       

       
 [Humans/year] (10) 

                      

         (          
     

       
           

     

       
 ) 

[Humans/year] (11) 

                
    (

     

       
) 

[1/year] (11) 

                
    (

     

       
) 

[1/year] (11) 
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3. Comparison of the Base Run Behavior of Alternative Model 

Formulations  

As mentioned before, there are several ODE models that have been built to study the 

transmission dynamics of rabies, and we proposed three alternative formulations to 

these models: First, density dependency of the transmission rate, second, fractional dog 

and human death rates instead of constant ones, and third, different contact behavior of 

dogs in different stages of the disease. To demonstrate the effects of these alternative 

formulations on the behavior, we use the data set of Zhang et al. (2011) and compare 

our model results to theirs. We calibrated our contact rate parameters and graphical 

function (β2,dog, β
*
p,dog, β

*
f,dog, fp, ff, β2,hum, β

*
p,hum, β

*
f,hum ) by using the optimization tool 

of Vensim DSS with respect to the historical data of 14 years Zhang et al. (2011) used. 

This data for the Infected Humans in China from 1996 to 2010 can be seen in Figure 4.   

 
Figure 4: Data values for the Infected Human for 14 years (Zhang et al., 2011) 

In Figure 5, Line 3 belongs the dynamics of the model of Zhang et al. (2011), which 

shows fading oscillations following an overshoot-and-decline. A density-dependent 

formulation for the transmission rate soothes these oscillations as Line 2 shows, since 

the fraction of infected dogs in the total population remains stable as they die and the 

transmission rate is stabilized. As for the fractional formulation of birth rates, as Line 1 

shows, the number of infected humans eventually reaches zero, since infected dogs 

demonstrate the same behavior and susceptible dogs reach zero as well due to low birth 

rates. In Figure 6, the behavior of the model when these two modifications are 

simultaneously applied can be seen. In this case, the peak is delayed, the time span in 

which infected people exist is prolonged, but still the number of infected people reaches 

zero eventually.               
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Figure 5: Dynamics of the Infected Humans resulting from the original model (3), density dependent 

transmissions (2) and fractional birth rates (1) 

 
Figure 6: Dynamics of the Infected Humans when density-dependency and fractional births are implemented 

together (1) compared to the original model (2) 

The third alternative formulation we proposed is the distinction between the stages of 

rabies in dogs since their contact behavior is different in each stage. Line 1 in Figure 7 

shows the outcome of this formulation in addition to the density-dependency and 

fractional birth rates. This formulation yields a more rapid increase in Infected Humans 

although the rabies epidemic lasts shorter compared to previous versions of the model.     
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Figure 7: Dynamics of the Infected Humans in the case of staged infected population (1) compared to the 

original model (3) and the model with density-dependency and fractional births (2) 

As seen in the figures above, these alternative formulations generate considerably 

different dynamics on one hand, especially in terms of the eradication of the virus or the 

continuation of the epidemic in a stable manner. On the other hand, they are all able 

generate outcomes sufficiently resembling the available data. Since the data is available 

for a rather short period and does not provide any information about long-term 

dynamics, and the proposed alternative formulations are successfully used in previous 

system dynamics studies, there is no indication of which model structure better 

represents the rabies epidemic. This uncertainty in the model structure, together with 

other uncertainties related to the characteristics of rabies and to the initial conditions 

which are not fully known due to lack of reporting, makes it possible to observe various 

dynamics and prevents reaching a ‘best-estimate’ future with a simulation model. Due 

to these uncertainties, the model-based comparison of policies based on a single future 

is not expected to yield reliable insights. Therefore, we adopt an exploratory approach 

in order to generate several possible and plausible dynamics of the rabies transmission 

and to compare policies based on their ability to deal with uncertainty, which will be 

delineated in the following section.                  

4. Uncertainty Analysis 

In this section, to deal with uncertainties associated with the characteristics of rabies and 

data problems, we follow an Exploratory Modeling and Analysis (Bankes, 1993; 

Bankes et al., 2013; Agusdinata, 2008) approach. This approach is based on Bankes 

(1993) who state that a ‘best estimate’ future can be reached neither with an extensive 

modeling study nor with stochastic methods under deep uncertainty. Therefore, the 

future should be explored rather than estimated by comprehensively taking uncertainties 

into account. In the system dynamics field, Exploratory Modeling and Analysis (EMA) 

has raised interest in recent years. Being based on causal relations, system dynamics 
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models enable exploring the future by generating plausible future dynamics, therefore 

they can be reliably used for exploration purposes. In addition to Kwakkel and Pruyt 

(2013a, 2013b) who discussed the benefits of this approach and presented several cases 

to demonstrate these benefits, more studies in which EMA is used can be found in the 

system dynamics literature of the past few years (Auping et al., 2012; Eker and Daalen, 

2013; Pruyt and Hamarat, 2010).  

In order to explore possible future dynamics created by alternative models with possible 

values of uncertain parameters, we run 10000 simulations each with a different 

combination of the possible input values selected from their uncertainty ranges with 

Latin Hypercube Sampling. Each combination of the uncertain inputs, parameter or 

model structure, can be considered as a scenario as well. An interface written in the 

Python programming language is used to control Vensim DSS and run and analyze 

these simulations automatically. In addition to the uncertainty ranges assigned to the 

parameters which can be seen in Appendix I, we take four alternative model 

formulations into account based on the discussion in the previous section. These are: 

(1) Original model of Zhang et al. (2011). 

(2) Density-dependent transmission formulation 

(3) Density-dependent transmission and fractional birth rates of humans and dogs 

(4) Density-dependent transmission, fractional birth rates and different contact 

behavior of dogs in different stages of the disease 

Exploration 

In Figure 8, the dynamics of Infected Human generated by each model formulation can 

be seen. Due to visualization limits, only 250 simulations are shown in these figures. 

According to these results, each model repeats the base run behavior with numeric 

differences most of the time. For instance in Model 3, the number of infected humans 

becomes zero sooner or later. However, oscillatory behavior is not observed in some 

simulations of Model 1, or the decline phase is not observed in some runs of Model 2. 

Briefly, these results show that a variety of possible outcomes, not only numerically but 

also behaviorally different, is possible due to the uncertainties in the parameter values 

and model structures. In Figure 9, the grey shaded area shows the envelope that 

encompasses these 4 sets of simulations. In particular, this envelope depicts the range 

between minimum and maximum values that Infected Humans takes over 50 years in 

these 10000 experiments. Within this shaded area, 10 simulations randomly selected 

from this ensemble are shown, and at the right hand side a density graph of the end 

states of these 10000 simulations is depicted. These results indicate that there is a wide 

variety in the peak time and magnitude of the epidemic. Also, as the density graph 

shows, in the majority of the scenarios the final number of infected people is close to 

zero, which points out the eradication of rabies. However, there are still many possible 

undesirable cases in which a significant amount people are infected by the rabies virus.  
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Figure 8: Dynamics of Infected Human in 250 simulations for each alternative model formulation 

 
Figure 9: Envelope of 10000 runs and 10 exemplar behaviors of Infected Humans 
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Figure 10: Envelopes of Total Deceased Human for each model structure and the density graphs over time 

In Figure 10, the envelopes belonging to the cumulative number of people deceased due 

to rabies for each model structure can be seen. The curve generated by the maximum 

possible values over time is plotted with the color corresponding to each model 

structure. In particular, the dark blue is for the base model of Zhang, the green for the 

second alternative with density dependency, the red one for the combination of density 

dependency and fractional births, and the fourth for the addition of different contact 

behavior to these. Since the curves generated by the minimum possible values are all at 

the zero line, they are not seen on this plot. With the third and fourth model, the 

maximum number of total deaths stabilizes since the fractional formulation generates 

the eradication behavior, whereas it keeps growing with the first and second model. 

Besides, as the density graphs show, the cases in which the first and second models 

generate low numbers of deaths at any time point shown are less than the other two 

models.  

Policy Comparison 

Vaccination policies are the most common interventions to deal with an epidemic. In 

the case of rabies, it is possible to vaccinate both dogs and humans before the infection. 

Public campaigns to enhance the awareness of people to go to a hospital after exposure 

and receive a Post-Exposure Treatment are mentioned as well, as a promising policy 

option (Hou et al., 2012). Besides, culling of infected dogs is another common mean 

used by authorities or citizens to deal with rabies, although it is controversial in terms of 

animal rights. These interventions were included in the base model to some extent as a 

fraction of the corresponding stock variables, but as a policy option, we propose 
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different values to these fractions. Table 2 below summarizes the base run and policy 

values of these parameters. 

Table 1: Policy Variables and Their Values 

Policy Corresponding 

Parameter 

Target Population 

Groups 

Base Value 

(No policy) 

Policy 

Value 

Dog Vaccination 
Vaccination Fraction of 

Dogs 

Susceptible and Exposed 

Dogs 
0.09 0.5 

Human 

Vaccination 

Vaccination Fraction of 

Humans 
Susceptible Humans 0.54 0.8 

Human 

Awareness 

Hospitalization Fraction 

of Humans 
Exposed Humans 0.5 0.9 

Dog Culling 

Culling Rate of Furious 

Dogs and Prodromal 

Dogs 

Infected Prodromal and 

Furious Dogs  
0 

0.6 and 

0.5 

  

In Figure 11, the influence of these policies on the uncertainty range of Cumulative 

Deceased Humans can be seen, when the four models are used as alternatives together 

with all other uncertain parameters to create this range. Each color corresponds to a 

policy and each line shows the upper border of the envelope encompassing 2500 

simulations. Dog Culling (dark blue line) results to be the most effective policy to 

reduce the uncertainty range as its envelope shows, and to increase the number of 

simulations resulting in lower deaths as the density graphs indicate. Human Vaccination 

(light blue line) is the second most effective policy, followed by Dog Vaccination 

(green line) and Human Awareness (red line), while the last two do not considerable 

differ from the No Policy (pink) case.               
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Figure 11: Effects of Policies on the Uncertainty Range of Cumulative Deceased Humans 

 

 
Figure 12: Effects of Policies on the Uncertainty Range of Total Costs 

Besides the effect of them on the mean outcome of interest, which is the total number of 

human deaths, the costs of these policies are also an important measure policy makers 
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take into account to compare them. We assume the (cumulative) Total Cost of policies 

to be the sum of dog vaccination costs, human vaccination costs and human PEP 

Treatment costs, excluding the relatively low costs of dog culling and public campaigns. 

Having the cost of vaccinating a dog 2 USD (Kayali et al., 2006), that of a human 40 

USD and the cost of PEP Treatment 49 USD (Zinsstag et al., 2009), dog vaccination, 

culling and human awareness policies yield the same cost values as the ‘no policy’ 

option, as can be seen in Figure 12 where they overlap on the lower (pink) line. This 

finding is interesting for the Dog Vaccination policy, because it implies that the 

expenses of dog vaccination covers the costs of human PEP treatment in the case of no 

dog vaccination, which means that human deaths are reduced, although the money spent 

is not more than the amount spent in the case of no policy. Despite its higher 

effectiveness in terms of reducing human deaths, the uncertainty range of the costs of 

the Human Vaccination policy (upper, light blue line) is wider than the other four 

options, and as the density graphs show, the simulations tend to accumulate around 

higher values.  

To compare these four policy options, we chose to have a specific value of the policy 

leverages. However, different values, for example a higher dog vaccination or a lower 

human vaccination, could as well yield different results. In order to investigate the 

effects of different policy leverage levels, which are fractional parameters in this case, 

we ran the model(s) 5000 times, each with a different combination of the uncertain 

parameter values and a different value of the corresponding fractional policy parameter 

sampled for the range [0, 1]. The results are illustrated in Figures 13a-d as scatter plots 

of the total number of human deaths in 50 years and the corresponding fractional 

parameter of each policy. Looking at these figures, only human vaccination can be said 

to create more desirable results, namely lower deaths, as the vaccination percentage 

increases. Since there is no evident trend for the other policy variables, insights derived 

from these scatter plots are not adequate to determine vaccination fraction values which 

perform best under uncertainty. Therefore, to determine the values of policy parameters 

that perform well under uncertainty, we adopt a robust optimization approach 

(Rosenhead et al., 1972; Lempert et al., 2006). Specifically, we follow a cardinality-

based robustness approach where the performance metric is the ratio of the number runs 

that meet certain thresholds to the total number of runs. These certain thresholds in our 

case are chosen as the final value of Cumulative Deceased Human being less than 1000 

people, and the total costs of the policies being less than 1000 billion USD. These 

thresholds are chosen based on the uncertainty ranges of Figure 11 and 12. The decision 

variables are ‘Dog Vaccination Fraction’, ‘Human Vaccination Fraction’ and ‘Human 

Hospitalization Fraction’, excluding ‘Dog Culling Fraction’ due to its controversy. The 

list of equations in Figure 14 summarizes this optimization model. 
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Figure 13: Scatter plots of policy parameters and Cumulative Deceased Humans 
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Figure 14: Robust optimization problem 

We solved this optimization problem by following the robust optimization procedure in 

(Hamarat et al., 2013) which uses the Non-dominated Sorting Genetic Algorithm-II 

(Deb et al., 2002) and generates a Pareto front that includes possible 60 (population size 

of the generic algorithm) Pareto solutions remained in the last generation of this 

algorithm. In this problem, all solutions resulted to be equal as seen in Figure 15, and 

the optimal values of Dog Vaccination Fraction, Human Vaccination Fraction and 

Human Hospitalization Fraction are found as 0.99, 0.06 and 0.93, respectively. This 

result can be interpreted as vaccinating almost all dogs, and increasing human 

awareness so that 93% of the people exposed to a dog bite would go the hospital creates 

favorable outcomes in terms of the human deaths and policy expenses without 

necessitating mass vaccination of humans before exposure, regardless of how future 
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will unfold. However, reaching almost 100% dog vaccination level is challenging in 

reality and this optimization procedure can be repeated by narrowing the range of Dog 

Vaccination Fraction in which the optimal value is to be searched.       

 
Figure 15: Robust Optimization results for the policy variables 

5. Conclusion 

In this paper, the dynamics of rabies are investigated with a system dynamics model 

based on the Susceptible-Infected-Recovered framework. Four alternative model 

formulations are included in the analysis of rabies dynamics and four policy options are 

tested based on these models. These models differ from each other in terms of the non-

linearity incorporated in birth rate and transmission rate formulations. The four policy 

options considered were the dog vaccination, human vaccination, dog culling and 

increasing human hospitalization. Besides the uncertainties related to the characteristics 

of the disease, the lack of reporting causes severe data problems and uncertainties about 

the transmission dynamics, especially in Africa, India and China. To deal with these 

uncertainties, an exploratory approach is adopted in this study to examine the possible 

futures that may be created by these uncertainties and the policy options are compared 

based on their effectiveness in these multiple possible futures.   

Our results showed that the different behavior patterns generated by the four models are 

similar to the overshoot-and-decline behavior of the generic epidemics model, but they 

differ significantly in the long-term. The extent of possible deaths also exhibits a wide 

variety when all uncertainties are taken into account in addition to the model structure 

uncertainty. Our findings related to the effectiveness of policies favored the dog culling 

policy, but since it is controversial due to animal rights, we preferred to focus on the 

other three to obtain favorable results. Robust optimization of the variables of these 

three policies showed that almost full vaccination of dogs (99%), low vaccination of 
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humans (6%), and 93% hospitalization of humans upon exposure yield desirably low 

number of human casualties and low expenditure on policies in the maximal number of 

possible futures.  

This study is not conducted for a particular city, region or country, although for the base 

run the data from China is used for the comparison of different model formulations. 

Yet, despite numerical differences, the structure of the models would be the same for 

any country since this framework represents the basic mechanism of the rabies 

epidemic. However, location specific models can include the socioeconomic factors 

behind the rabies epidemic, for instance the waste management system in India or pet 

abandoning in China. Therefore, studying the effects of such factors on rabies epidemics 

is a potential departure point for future research. Moreover, the rabies virus is spread by 

several other species including cats, foxes and bats. Extending the model to encompass 

more species and inter-species transmission among them could be a valuable future 

study to deal with rabies in a broader context.       
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7. Appendix I: Data Set 

Below the values of the parameters and uncertainty ranges of them can be seen. 

Parameters related to the births and transmission are given for each alternative model 

formulation. 

Parameter Unit 

Base Value 

as in Zhang 

(2011) 

Other 

Sources 

Uncertainty 

Range 

Lower 

Uncertainty 

Range 

Upper 

DOGS 

Immunity Loss Fraction of 

Dogs 
1/year 1 O.5 (Hou) 0.25 2 

Infection Fraction of 

Exposed Domestic Dogs 
Dmnl 0.4 

0.37 (Hou), 

0.49 

(Hampson) 

0.3 0.95 

Incubation Period of 

Rabies in Dogs 
Year 0.16 

0.06 

(Hampson) 
0.05 0.3 

Domestic Dog Natural 

Death Fraction 
1/year 0.08 

0.11, 0.24 

(Hou), 0.45 

(Hampson) 

0.05 0.45 

Vaccination Fraction of 

Domestic Dogs 
1/year 0.09 0.133 (Hou) This is a policy. 

Average Duration of 

Rabies in Dogs 
Year 1 

1 (Hou), 

0.0085 

(Hampson) 

0.008 1 

Initial Total Dog 

Population 
Dogs 3.55E+07 

 
3.00E+07 4.00E+07 

Initial Exposed Dogs Dogs 200000 
 

0 400000 

Initial Infected Dogs Dogs 100000 
 

50000 150000 

Initial Immune Dogs Dogs 200000 
 

100000 300000 

HUMANS 

Average Immunity 

Duration in Humans 
Year 1 1 (Hou) 0.5 3 

Infection Fraction Humans Dmnl 0.4 0.33 (Hou) 0.25 0.9 

Average Incubation Period 

Humans 
Year 0.16 

0.083-0.166 

(Hemachudha) 
0.08 0.2 

Human Natural Mortality 

Fraction 
1/year 0.0066 0.0046 (Hou) 0.004 0.008 

Human Vaccination 

Fraction 
1/year 0.54 0.328 (Hou) Policy 

Average Duration of 

Rabies in Humans 
Year 1 

1 (Hou), 1.75-

2.6 

(Hemachudha) 

0.5 2.5 

Initial Exposed Human Humans 250 
 

100 400 
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Initial Infected Human Humans 89 
 

No uncertainty here. 

Initial Hospitalized 

Human 
Humans 0 

 
0 100 

Initial Immune Human Humans 200000 
 

100000 300000 

Base Model of Zhang (2011) 

 

Dog Birth Rate 
Dogs/year 3.00E+06   2.00E+06 4.00E+06 

Dog Transmission Rate 

(β1,dog) 
1/(Dogs * 

year) 1.58E-07 
3.2e-007, 8e-

006 (Hou),  1.00E-07 1.00E-06 

Human Birth Rate 

Constant 
Humans 

/year 1.54E+07 
  

1.00E+07 2.00E+07 

Normal Dog to Human 

Transmission Fraction 

(β1,hum) 

1/(Dogs * 

year) 2.29E-12 

4.8e-010, 

3.6e-009 

(Hou) 

1.50E-12 3.00E-12 

Density-Dependent Transmission Rate 

Dog Birth Rate Dogs/year 3.00E+06   2.00E+06 4.00E+06 

Dog Transmission Rate 

(β2,dog) 
1/ year 6 

 
4 7 

Human Birth Rate 

Constant 
Humans 
/year 1.54E+07 

  
1.00E+07 2.00E+07 

Normal Dog to Human 

Transmission Fraction 

(β2,hum) 

1/ year 4.6E-05 

 

3.50E-05 5.50E-05 

Fractional 

 

Dog Birth Fraction (bdog) 1/year 5.00E-02   3.50E-02 6.50E-02 

Dog Transmission Rate 
1/(Dogs * 
year) 1.58E-07 

 
1.00E-07 1.00E-06 

Human Birth Fraction 

(bhum) 
1 /year 4.7E-02 

  
4.00E-02 5.5E-02 

Normal Dog to Human 

Transmission Fraction 
1/(Dogs * 

year) 6.00E-12 
 

4.00E-12 8.00E-12 

Density-Dependent and Fractional 

Dog Birth Fraction 1/year 5.00E-02   3.50E-02 6.50E-02 

Dog Transmission Rate 1/ year 4.4 
 

3.5 5.5 

Human Birth Fraction 1 /year 4.7E-02 
  

4.00E-02 5.5E-02 

Normal Dog to Human 

Transmission Fraction 
1/ year 1.05E-04 

 
8.00E-05 2.00E-04 

Density-Dependent, Fractional and with Furiousity Effect 

 

Dog Birth Fraction 1/year 5.00E-02   3.50E-02 6.50E-02 
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Dog Transmission Rate 

(β
*

p,dog= β
*
f,dog)  

1/ year 7.5 
 

5.0 10.0 

Human Birth Fraction 1 /year 4.7E-02 
  

4.00E-02 5.5E-02 

Normal Dog to Human 

Transmission Fraction 

(β
*

p,hum= β
*

f,hum) 

1/ year 3.44E-05 

 

2.50E-05 4.50E-05 

 

Effect of Furiousity:   (
     

       
) 

 

Effect of Prodrome:   (
     

       
) 

 


