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Abstract 

Mizoram, a state in the Northeast of India, is affected every half-century by cycles of crop 

damages and famines. These events - locally known as Mautam - have been hypothesized to 

follow the periodic flowering of bamboo forests and subsequent rodent outbreaks. As such, the 

1958-1960 Mautam resulted in a significant loss of lives; more recently, a 2007-2008 outbreak 

caused heavy damages to crops. However, the dynamics of the bamboo and rodent ecosystems 

remain poorly understood, as are their interrelationships with Mizoram’s agriculture. This draft 

paper therefore presents an exploratory System Dynamics model of Mizoram’s Mautam 

phenomenon, focusing on the application of a systematic framework for uncertainty analysis. 

Furthermore, a representative set of policies was tested under deep uncertainty to evaluate possible 

outcomes. Preliminary results indicate that although the model is highly sensitive to the properties 

of the human and rodent population subsystems, emphasizing market connectivity to facilitate 

food imports may be a promising and robust policy. 

1. INTRODUCTION 

Mizoram, a state in the Northeast of India, is affected every half-century by cycles of crop damages and famines. 

These events have been hypothesized to follow the periodic flowering of bamboo forests and subsequent rodent 

outbreaks.  The state is inhabited by approximately 1 million people, and ranges across 21,000 km
2
 of heavily 

forested mountainous terrain between Bangladesh and Myanmar; notably, Mizoram’s vegetation is dominated by 

a bamboo forest which covers 26,000 km
2
 of the north-eastern Indian states (Aplin & Lalsiamliana, 2010). The 

most common bamboo species is Melocanna baccifera, which flowers almost fully synchronically every 48 

years. A few months after flowering, this species produces huge quantities of fruit - up to 80 tons/hectare - and 

dies off. The black rats that are endemic to the region benefit from this increase in food supply and quickly 

reproduce, dramatically increasing their population and eventually turning to human food supplies. Although rats 

may typically cause losses of 5% of the crop harvest in a given year, this figure can increase by an order of 

magnitude after the bamboo flowering (Aplin & Lalsiamliana, 2010). The combination of all these processes is 

called Mautam and causes the cyclical famines. The 1958-1960 Mautam was associated with the death of 

approximately 5% of the population (Nag, 1999), and led to significant political disturbances; although the most 

recent 2007-2008 event was better controlled, it nonetheless yielded significant crop losses. 

Due to the dynamic complexity of the system and its variety of feedback loops, System Dynamics modelling can 

be used to explore the system. Furthermore, due to the uncertainty that surrounds these problems, Exploratory 

Modelling and Analysis can help in developing a deeper understanding of the possible system behaviours. The 

goals of this research are thus to model the dynamic behaviour of the system under deep uncertainty, applying 

the framework of Exploratory System Dynamics Modelling and Analysis (ESDMA) to identify particularly 

critical variables and relationships (Pruyt, Kwakkel & Hamarat, 2013).  Various policies have been developed by 

the Indian government to reduce the impact of the Mautam; a simplified representation of these policies will be 

tested to evaluate their effectiveness and advise on further actions.  
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Section 2 follows this introduction and explains the research framework. Section 3 quickly describes the model 

outline and assumptions, after which section 4 applies the research framework to the given case. Section 5 draws 

conclusions and provides directions for further research.  

2. RESEARCH FRAMEWORK 

As described by Aplin & Lalsiamliana (2010), the basic drivers of the Mautam phenomenon are a clear example 

of a "pulsed resource", which, in terms of outbreak ecology, essentially yields predictable aggregate outcomes. 

However, the authors note the variability of small-scale impacts across geographical locations, and a lack of 

knowledge regarding several causal relationships between the tightly coupled systems of rat ecology, bamboo 

growth, and human agriculture. 

As such, system dynamics is an appropriate modeling method to represent the dynamic complexity of the 

Mautam phenomenon, as well as its strongly time-dependent behavior. However, the system is subject to deep 

uncertainty (Kwakkel, Walker & Marchau, 2010; Lempert, Popper & Bankes, 2003): a multitude of potential, 

plausible outcomes can be enumerated at a lower scale of aggregation, yet their likelihood under local conditions 

is difficult to assess - as are the exact underlying causal drivers. This uncertainty can be traced to the natural 

variability of the processes involved, and to the epistemic uncertainty (Walker et al., 2003) caused by a lack of 

empirical research data. 

In this context, Pruyt, Kwakkel & Hamarat (2013) present Exploratory System Dynamics Modeling and 

Analysis (ESDMA) as a useful tool for systematically exploring the outcomes of a model under deep 

uncertainty. This paper therefore applies a basic analysis framework based on ESDMA, structured as follows 

(Logtens & Pruyt, 2012): 

 Open exploration of the model's uncertainties in a baseline scenario, and visualization of key outcomes 

using envelope graphs and a kernel density estimator; 

 Classification of the data set over key performance indicators, and application of machine learning 

algorithms to identify the individual contribution of different uncertainty ranges to this classification; 

 Identification of uncertainty subspaces which yield undesirable (or favorable) dynamics for key 

performance indicators through a given combination of uncertain parameters; 

 Activation of a set of static policies within the model, and iterated open exploration in order to evaluate 

policy interventions under uncertainty. 

Given the preliminary nature of the model, the analysis is limited to a simple application of the ESDMA 

methodology. Further steps could apply optimization techniques to evaluate policy performance and tradeoffs 

under uncertainty, as well as techniques for adaptive policy design. 

3. MODEL OUTLINE AND ASSUMPTIONS 

The model created consists of 4 subsystems: the human population, agriculture, bamboo area and rat population. 

These structures are coupled through various feedbacks, which are summarized in the causal loop diagram 

below: 
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Figure 1: Aggregated causal loop diagram with policies 

 

The human population consists of healthy and malnourished subpopulations, with “normal” birth and death rates 

being modelled according to current demographic patterns (which show a growing, but relatively stable, 

population). Malnourished people are assumed to die at a higher rate, and people flow between the healthy and 

the malnourished subpopulations based on food availability. 

Food availability is determined by the in-state food production and imports. Low supply increases imports and, 

over time, yields an increase in land cultivation. However, after a few cycles of jhum cultivation, the land is 

assumed to lose its fertility and new cultivation area has to be developed from the bamboo forest. The low-fertile 

land eventually recovers and returns to bamboo forest. Crops are planted on cultivated land in spring and 

harvested in autumn, after which it is stored. This structure causes seasonality in the food availability, food being 

abundant just after harvest and become scarcer over the year. Both the growing crops and stored crops are 

affected by a base loss rate, and additional losses which are a function of the rat population. Food shortages may 

be overcome by increasing imports of food from neighboring areas, but due to the poor infrastructure and rugged 

terrain, imports may not cover the full shortage. 

The rat population is highly dependent on fruit available from the bamboo forest. The fruit availability during 

Mautam drives up birth rates and decreases death rates, generating a sharp increase in rat population. After 

eating the easily available bamboo fruit, the rats turn to the human food stocks. The fruit is produced during 

well-defined cycles of approximately 48 years in the bamboo forest that largely covers Mizoram. Flowering 

starts in autumn, after which fruit is produced during spring. The plants die after producing fruit, making way for 

new stands.  

These seasonal patterns are key to the underlying dynamics of the Mautam-driven famine. The figure below 

graphically summarizes a hypothesis which may explain different outcomes of the Mautam, as observed in two 

localities (Aplin & Lalsiamliana, 2010); although the timing of crop planting and harvest were essentially 

similar, the observed rat population and crop damages were significantly higher in the village of Tlangkhang. 

The authors explain these results by focusing on the timing of bamboo fruit production, which was advanced by 

at least six weeks around the region of Tlangkhang. This indicates that a detailed representation of seasonal 

dynamics may be crucial to evaluate potential outcomes and policy interventions. 
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Figure 2: Hypothesized seasonal drivers of the Mautam famine (Aplin & Lalsiamliana, 2010)  

In order to follow the run-up period and aftermath of a Mautam, twenty years of model time are investigated, 

with the Mautam starting in year 2.  

 

4. APPLICATION OF FRAMEWORK 

This section will summarize the results obtained by investigating a stock-flow model of the Mizoram case, using 

a set of Python scripts interfaced with Vensim Professional through the EMA Workbench
*
. 

4.1 Open exploration 

 

As a first approach to uncertainty analysis, a baseline case without exogenous policies was defined with the 

following parametric ranges: 

 

Table 1: Uncertainty ranges for the base scenario  

Variable Min Max Unit 

Base consumption rate 4.38 6.57 Kg/rat/Year 

Base crop consumption per capita 140 180 Kg/person/Year 

Base food crop loss rate 0.04 0.06 1/Year 

Base fruit supply 9.44E+06 1.42E+07 Kg 

Base rat death rate 0.8 1.2 1/Year 

Base rat population 1.20E+06 1.80E+06 Rats 

Base stored crop loss rate 0.04 0.06 1/Year 

Cyclical flowering fraction 0.48 1 - 

Decomposition delay 0.3 0.7 Year 

Deforestation rate 0 0.02 1/Year 

Flowering cycle length 0.1 0.14 Year 

Fraction of young rats vs adults 0.6 1 - 

                                                           
*
 Available from http://simulation.tbm.tudelft.nl/ 
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Variable Min Max Unit 

Base fruit production 30,000 70,000 Kg/Ha/Year 

Initial malnourished population 45,000 105,000 Person 

Initial stored food crops 1.80E+08 4.20E+08 Kg 

Litter size 5 8 Rats 

Litters per year 1.5 3 1/Year 

Malnourishment death rate 0.06 0.14 1/Year 

Malnourishment time 0.3 1.4 Year 

Offcycle flowering fraction 0.0015 0.0035 - 

Recovery time 0.2 0.9 Year 

Regrowth delay 3 7 Year 

Time for land use conversion 1.5 2.5 Year 

Time to sexual activity 0.25 0.35 Year 

Young rat consumption rate 1.64 3.83 Kg/rat/Year 

Cycle length 2.4 5.6 Year 

Land recovery time 6 14 Year 

Planting time of year 0.15 0.35 Year 

Crop growth time 0.24 0.56 Year 

Short growth time rice 0.15 0.35 Year 

Base growing crop fraction accessible 0.6 1 - 

Base stored food fraction accessible 0.3 1 - 

Death delay after fruit growth 0.09 0.21 Year 

Fruit growth time 0.18 0.42 Year 

Variation in fruit growth time 0.04 0.06 Year 

Impact of healthy fraction on productivity 0 1 Interpolated lookup 

Non-linear lookup for rat births 0 1 Interpolated lookup 

Non-linear lookup for rat deaths 0 1 Interpolated lookup 

 

As a first approximation, the uncertainties typically correspond to a range of +/- 20%; several variables for 

which empirical data was readily available (i.e. the current population, or the bamboo area) were excluded from 

the uncertainty analysis. 

Considering the objectives of the model, the key performance indicators used for the analysis largely concern the 

population model: as such, the main parameters are the Healthy fraction (i.e. the ratio between the healthy and 

malnourished populations) and the total Deaths from malnourishment, which are closely related due to the 

structure of the model. For clarity, the latter is further detailed through Relative deaths from malnourishment, 

which corresponds to the ratio of deaths under a given run under uncertainty, relative to a baseline run using the 

initial assumptions for the model's parameters.  

To support the analysis of causal relationships between the submodels for agricultural production and 

bamboo/rat ecology, the other selected outcomes were the Bamboo fruit production, the Food crop area, and the 

Rat population. Based on this setup, a sample of 2000 cases was then defined using Latin Hypercube sampling. 

The figures below first present a set of line graphs for the base ensemble, including the Gaussian kernel density 

estimator at the end state of the simulation: 
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Figure 3: Line graphs for 2000 runs of the base scenario  

The indicator for Healthy fraction shows a strong and consistent cyclical component, due to the seasonal 

planting and harvest patterns: the malnourished population consistently increases in late summer prior to the 

harvest, as stocked crops tend to be depleted.  

It can be noted that the Rat population indicator yields some significant and unrealistic outliers, with a 

population exceeding a billion rats in some cases. The uncertainty ranges within the rat submodel should thus be 

refined. Nonetheless, the relationships between the bamboo flowering (which typically peaks at 1.8 years), the 
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increase in rat population (which reaches a maximum roughly half a year later), and the impacts on the human 

population (which are most apparent in the summer following the Mautam), are a clear indicator of the dynamics 

reported in the literature. 

The outcomes for the Healthy fraction and total Deaths from malnutrition can be examined in more detail by 

plotting the evolution of the kernel density estimator over time: 

 

 

Figure 4: Kernel density estimator over time for key outcomes 

The incidence of the Mautam thus has a clear impact on the Healthy fraction, which is approximately centered 

around 85% at the peak of the famine. Although estimates of the total population affected in the last Mautam are 

variable, this is generally consistent with values reported in the literature  (Aplin, K., & Lalsiamliana, J., 2010). 

The graph for Food crop area over time illustrates the delayed feedback which is driven by the Mautam-related 

reduction in the supply/demand ratio for crops: the cultivated area typically peaks three years after the Mautam, 
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in response to the perceived need for an increase in food production, after which some of the newly created jhum 

areas are abandoned or degraded as the food supply stabilizes. 

4.2 Random forest and feature selection for individual uncertainties 

 

The previous section presented results for the full range of uncertainties, disregarding their individual 

contribution for total outcomes. However, sampling the complete set of parametric ranges introduces significant 

(and potentially unneeded) constraints on computation time and model analysis. Classification algorithms can 

therefore provide a useful tool to rank the importance of given uncertainties and exclude a subset of less relevant 

parameters from the analysis. 

The tables below present the results obtained with the Random Forest and Feature Selection algorithms, as 

implemented in the EMA Workbench through the Orange library. The parameters are thus ranked for each 

algorithm, according to their contribution to a classification for the Total cumulative deaths from 

malnourishment, and limited to the top 20 variables: 

Table 2: Scores for random forest and feature selection algorithms  

Total deaths from malnourishment 
     

Random Forest Score 
 

Feature Selection Score 
Average 

rank 

Malnourishment time 7.2994002 
 

Malnourishment time 0.1255935 1 

Recovery time 6.6498487 
 

Recovery time 0.1127755 2 

Malnourishment death rate 3.2025601 
 

Malnourishment death rate 0.0474782 3 

Base fruit production 0.2957467 
 

Crop growth time 0.0424255 - 

Short growth time rice 0.1679983 
 

Base rat death rate 0.0249826 - 

Initial stored food crops 0.1652558 
 

Planting time of year 0.0204092 8 

Variation in growth time 0.1340293 
 

Base fruit production 0.0195389 5.5 

Fruit growth time 0.1218364 
 

Initial malnourished population 0.0167951 13.5 

Base food consumption per capita 0.1166219 
 

Fruit growth time 0.0162214 8.5 

Planting time of year 0.1159143 
 

Decomposition delay 0.0161385 - 

Cycle length 0.1131857 
 

Cycle length 0.0159402 11 

Impact of healthy fraction on productivity lookup 0.0978446 
 

Time for land use conversion 0.0151901 13.5 

Non-linear lookup for rat deaths 0.0891394 
 

Base food crop loss rate 0.0150589 - 

Base stored food fraction accessible 0.0458213 
 

Regrowth delay 0.0141972 - 

Time for land use conversion 0.0409815 
 

Base growing crop fraction accessible 0.0140676 - 

Base rat population 0.0407493 
 

Non-linear lookup for rat deaths 0.012568 14.5 

Young rat consumption rate 0.0297463 
 

Non-linear lookup for rat births 0.0115752 - 

Base stored crop loss rate 0.0264189 
 

Flowering cycle length 0.0108436 - 

Initial malnourished population 0.0190676 
 

Base fruit production 0.0096614 11.5 

Litter size 0.0185185 
 

Base consumption rate 0.0091081 - 

 

Given the structure of the model, the parameters which directly affect the stock for the malnourished population 

(Malnourishment time, Recovery time and Malnourishment death rate) are logically the most influential. 

However, it is interesting to note that parameters in the submodels for bamboo and rat ecology (highlighted 

respectively in green and orange) remain fairly significant. This further illustrates the close couplings between 

the subsystems.   
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4.3 PRIM and classification tree for combinations of uncertainty 

 

Given these interrelationships between the subsystems, the uncertainty analysis should be extended to cover 

combinations of uncertainties which yield outcomes of interest. As such, the Patient Rule Induction Method 

(PRIM) is applied for the key outcomes of Deaths from malnourishment and Healthy fraction, in order to 

identify subsets of uncertainties which lead to particularly undesirable results after the Mautam. Using a 

classifier threshold to identify cases with a final end state of over 150,000 cumulative deaths, the following 

results are first obtained (with the graphs showing normalized uncertainty bandwidths for each variable): 

Table 3 : PRIM results for Deaths from malnourishment  

 

Total deaths from 
malnourishment 

    
Box Mean Mass Coverage Density Restr. dimensions 

1 1 0.13 0.32 1 7 

Rest 0.33 0.87 0.68 0.33 0 

 

Uncertainty ranges 
Box 1 Rest 

Min Max Min Max 

Malnourishment time 0.3 0.78 0.3 1.4 

Malnourishment death rate 0.09 0.14 0.06 0.14 

Recovery time 0.43 0.9 0.2 0.9 

Initial malnourished population 48633 99985 45037 104983 

Variation in growth time 0.04 0.06 0.04 0.06 

Base rat population 1225191 1799724 1200381 1799724 

Base food crop loss rate 0.04 0.06 0.03 0.06 

 

The algorithm appears to perform reasonably well, identifying 32% of the outcomes of interest with logically 

consistent results: most of the cases yielding high cumulative deaths involve a combination of low 

malnourishment time (which corresponds to the delay before people transition to the malnourished population), a 

high death rate for the malnourished population, and a high recovery time from malnourishment. However, the 

uncertainty ranges for the other parameters do not significantly contribute to the combined outcome. Similarly, 
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the following results are obtained by targeting outcomes with a minimal Healthy fraction below 0.75 over the 

time of the simulation : 

Table 4: PRIM results for Healthy fraction  

 

Healthy fraction 

    Box Mean Mass Coverage Density Restr. dimensions 

1 1 0.17 0.45 1 5 

Rest 0.25 0.83 0.55 0.25 0 

 

 

Uncertainty ranges 
Box 1 Rest 

Min Max Min Max 

Malnourishment time 0.3 0.7 0.3 1.4 

Recovery time 0.49 0.9 0.2 0.9 

Litters per year 1.75 4 1.5 4 

Base consumption rate 4.38 6.43 4.38 6.57 

Decomposition delay 0.32 0.7 0.3 0.7 

 

Although the first two variables remain the same, it is interesting to note that the parameter for Rat litters per 

year, which was not part of the 20 most significant individual uncertainties, contributes to negative outcomes for 

the Healthy fraction due to its contribution in increasing the rat population (and thus crop losses).  Furthermore, 

this parameter was not identified by the PRIM algorithm for the cumulative deaths indicator; this can perhaps be 

explained by the arbitrary classification thresholds, as well as the different behavioural pattern of the two time 

series. 

4.4 Base policy testing 

The government of Mizoram set out a package of policies to decrease the impact of the last Mautam. They 

defined the following goals: “The ultimate objective of the scheme is to combat bamboo flowering and famine, 

including control of rodent population through proper means.” (Government of Mizoram, 2004). The scheme 

describes 8 sub-programmes:  
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I. Promotion of rodent control, including education about control measures and deployment of traps 

around crop fields.  

II. Promotion of crop diversification into bamboo shoots; this policy aims at the use of bamboo sprouts as 

a food source decreasing overall malnourishment.  

III. Promotion of early maturing rice; this rice can be harvested earlier in the year, before the rats arrive.  

IV. Promotion of alternative crops, creating a more varied way of income.  

V. Promotion of agriculture mechanisation, increasing productivity.  

VI. Promotion of rain water harvesting ponds, increasing productivity.  

VII. Promotion of market connectivity, making the area more easily accessible for imports. 

Analysing the proposed policies results into the following policies that can be tested in the model: Policy I: crop 

protection; policy III, promotion of early maturing rice; policy V and VI, increasing productivity; and policy VII, 

increasing market connectivity. Next to these proposed policies, 3 other simple policies are tested: heavy rat 

control programs (decreasing the overall rat population, instead of simply protecting growing crops), increased 

protection of stored food, and clearing of flowered bamboo area before they are able to produce fruit. This leaves 

us with 7 policies that will be tested separately at this stage. Table 5 shows the practical implementation of the 

policies into the model. The small rates of 5% in the rat control and bamboo clearing policies are deliberately 

chosen because of the large quantities of effort that needs to be put in to achieve these rates. The rat control 

policy implies that a total of 30 million rats are caught within 2 years after the Mautam; the flowered bamboo 

clearing implies clearing 4000 hectares of land within half a year, which is highly unlikely as only 5% of the 

total area is easily accessible (Government of Mizoram, 2004). 

Table 5: Policy implementation 

Policy option Effect on Baseline value Policy value 

Crop protection   Growing crop fraction accessible 100% 50% 

Short-growing rice Rice growth time 5 months 3 months 

Productivity  Food crop area productivity 1650 kg/(ha ∙ year) 2475 kg/(ha ∙ year) 

Import policy Import delay 5 months 1 month 

Rat control policy Rodent kill rate 0 % / (rat ∙ year) 5 % / (rat ∙ year) 

Storage protection Stored food fraction accessible 50% 20% 

Bamboo clearing Flowered bamboo clearing rate 0% / (ha ∙ year) 5 % / (ha ∙ year) 

 

The impacts of the policies are measured using the KPI of people who have died from malnourishment. Figure 5 

shows the effect of the 7 separate policies. The left side of the figure shows the effect on the total amount of 

people dying from malnourishment, and the right side of the figure shows the effect of the policies against 

normalised values. The largest decrease is caused by the import policy: shortening the import policy decreases 

food shortfalls. The productivity and short-growing rice policies decrease the total malnourished deaths during 

and directly after the Mautam; the effect is reduced in later years as the harvested food has to be stored for longer 

periods of time, increasing harvest losses. Despite the large efforts needed to apply the bamboo clearing and rat 

control policies, there is little effect on the death rate and hence these policies will not be further explored. 
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Figure 5: Effect of base policies on total deaths from malnourishment  

 

In order to complement the analysis, the classification tree below shows a sample interpretation of the ensemble 

including categorical uncertainties for policy switches, in order to trace the parametric combinations which yield 

a final end-state of over 150,000 deaths from malnutrition: 

 

Figure 6 : Classification tree for total deaths from malnutrition, including policy switches  

As described above, the import policy thus appears to play a significant role in reducing food shortfalls and 

dampening the famine, while the other contributing parameters were previously identified with the PRIM 

algorithm. 

4.5 Combined policy testing 

After this first single-policy exploration, the comparable policies are combined into policy packages to increase 

their effectiveness. The following 3 policy combinations are proposed: Increased food protection (protection of 

growing and stored crops), agricultural innovation (increase in productivity and use of early maturing rice) and 

increased import capacity (lower import delays). These policy packages are tested under uncertainty in order to 

capture their effectiveness on all plausible model outcomes.  
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Figure 7: Effect of policy on storage losses  

The different policy combinations influence different parts of the model. At first the effect of the policies on the 

effected parts are analysed, after which the effect of the policies is discussed in relation to the main KPIs: 

cumulative deaths from malnourishment, and the healthy fraction.  

Figure 7 shows the storage losses during the Mautam. The food protection package (decreasing the accessibility 

of both stored and growing crops) has a large effect on the distribution of storage losses, as can be seen from the 

kernel density graph. The other policies do not seem to have any significant effect on the storage losses.  

The policy package aimed at agricultural innovation decreases, as can be expected, the food crop area needed to 

provide the province with enough food. It shows from the kernel density graph (KDG) that protecting the food 

also decreases the necessary food crop area (most runs under the base case). This can be explained by the fact 

that rats eat less of the growing and stored crops, decreasing losses and therefore decreasing land needed for 

production. However, the KDG implies a larger spread of policy outcomes; this might be caused by 

computational limits that restricted executing more than 800 runs to test this particular policy. The import policy 

does not seem to decrease the amount of cultivated land, and therefore does not have a significant impact on the 

region's self-sustainability during times outside of the Mautam period.  
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Figure 8: Effect of policy combinations on food crop area 

The overall effectiveness of the policy combinations under uncertainty is measured using the healthy fraction 

and the cumulative deaths from malnourishment. The effects of the policy combinations on the healthy fraction 

(defined as the amount of healthy people over the total population) can be seen in Figure 6. The KDG shows the 

healthy fraction a few years after the Mautam; the effects of the policies remain visible even after the system has 

had some time to recover. At the end of the simulation, the most effective policy in terms of healthy fraction is 

the import policy. The increase in transport capabilities decreases the import delay, effectively increasing the 

import rate on the short term. This decreases the effect of the Mautam both during and after the Mautam. The 

KDG shows that agricultural innovation has no significant effect on the healthy fraction. This is caused by the 

fact that the agricultural innovation decreases the food crop area, for an equal food production. The food 

protection policy results show that although most runs end up with a higher healthy fraction, there is also more 

variability in the runs. A clear explanation for this result is not readily available; it might be caused by the fact 

that only 800 runs were explored using this policy.  

 
Figure 9: Effect of policy combinations on healthy fraction 
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Finally the effect of the policy packages on the total number of deaths from malnourishment is explored. The 

result of the 3 policy packages can be seen in Figure 10. On the left hand side the total deaths are shown, while 

the right hand side graph shows the normalised values. The normalised graph is in essence the same as the graph 

shown in Figure 5. As shown by the KDG the import policy is most effective. The peak of runs in the KDG for 

the food protection policy is almost at the same location as the import policy, but the spread is larger. The impact 

of agricultural innovation, increasing the use of short-growing rice and a higher productivity, shows little effect 

on the cumulative deaths.  

Looking at the effectiveness of the combined policy packages under deep uncertainty we can conclude that the 

food import policy is most effective.  

 

 

 

Figure 10: Effect of policy combinations on cumulative deaths from malnourishment 

4.6 Adaptive and predictive policy exploration 

Many complex dynamic systems can benefit from the use of adaptive policies (Hamarat, Pruyt & Loonen, 2013). 

Adaptive policies use information about the current state of the system to optimally time pre-specified actions. 

By only applying policies when the system shows that they are necessary, regret is minimized. Although 

adaptive policymaking is an elegant philosophy, it may be difficult to apply to the famines that have been hitting 

the province of Mizoram every 48 years: although the basic timing of the event is well-known, the state only has 

limited technical and financial resources at its disposal to react to local conditions. The main way to use adaptive 

policymaking therefore is to use the time since the last Mautam and the knowledge about the cyclical behaviour 

of 48 years. The next Mautam can be predicted with relatively high certainty, especially in comparison with the 

deep uncertainties that are used to model the system. Due to time and computational restrictions, a deep 

exploration of the possible adaptive policies was not possible within the scope of this research. Nonetheless, a 

first attempt at using the predictability of the Mautam for policymaking is presented below.  

Intuitively, one could say that knowing that a Mautam is coming increases the desire to store more food: 

therefore, in the years before the Mautam, more food crop area is needed. This is modelled using a simple policy 

switch that turns on when the Mautam is less than two years away. During these 2 years the ‘desired area for 

food production’ is doubled, increasing the rate at which crop area is developed and therefore increasing 

production. The model results of this early exploration of adaptive policymaking are shown in Figure 11. As can 

be seen from the KDG the healthy fraction after the Mautam is generally higher due to the policy. The KDG for 

the cumulative deaths shows that the variation between the runs is lower than in the no-policy case.  

This early exploration shows that adaptive (or predictive) policymaking gives promising results and therefore 

should be subject to more research. 
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Figure 11: The effect of production policy on the healthy fraction and cumulative death rate  

 

5. CONCLUSIONS 

This paper set out to research the dynamic complexity of the rodent issues that plague the state of Mizoram, 

India using system dynamics modelling. The framework of Exploratory System Dynamics Modelling and 

Analysis has been used to research plausible system behaviors and identify particularly relevant uncertainties. 

Five policies formulated by the Indian government as well as two other proposed policies were tested. Similar 

policy options were later combined into policy packages to test their combined impact on the famine under deep 

uncertainty. The most promising policy seems to be related to increasing the region's import capacity. During 

famines more food can be imported, decreasing the food shortage; the policy does not seem to have large effects 

on the internal food crop area and therefore does not affect the self-sustainability during non-famine periods. 

Besides this, the increase of food protection and better storage facilities also seems to decrease the effects of the 

Mautam. Efforts should likely not be directed at rodent control or bamboo area clearing, as this has no noticeable 

effect on the system.  

The current open exploration results still need refinement, as some less-plausible outliers have been observed. 

Although significant ranges of uncertainty were already included within the analysis, other ways of improving 

the research include the addition of a multi-model analysis. As the name implies, multi-model analysis uses 

multiple plausible models to generate system behavior and embraces the fact that uncertainty is not only in the 

parameters of a model, but also can be found in the structures and feedbacks. Besides this, due to time 

limitations, the researchers only managed to shortly explore the realm of adaptive policymaking, which, as early 

applications have shown, can be highly beneficial for ecosystem policies (Holling, 1978; McLain and Lee, 1996 

cited in Hamarat, Pruyt & Loonen). This leaves room for further research.  
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