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Motivation	


Designing a  
Sustainable  
Water System 

•  Average water level decline of 2 to 
3 m / year in non-replenishable 
aquifers   (FAO 1996) 

•  Approx. 50 % of water supplied is 
desalinated   (MoWE 2010) 



Presentation Outline 

•  Motivation    Sustainable water system design 

•  Research Question  Evaluating policies under uncertainty 

•  Case context   Saudi Arabia 

•  Approach    Integrated uncertainty + system dynamics 

•  Analysis    Multi-attribute performance over time 

•  Implications   Policy prioritization 
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Research Question 

How do different investment and operating policies 
alter the trajectory of system performance over 

time and under uncertainty? 
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Framing	




Sustainability and Trade-offs 

•  Sustainability is defined as a measure of multi-generational, 
comprehensive wealth   (Arrow et al. 2012, UNU-IHDP 2012 ) 

•  ‘Multi-generational’ – time is an important factor 

•  ‘Wealth’ – natural resources and infrastructure have socioeconomic 
value 

§  May be quantified, but not straightforward 
§  But value varies with time and circumstances-> an implicit 

discount rate! 

•  ‘Comprehensive’ – wealth can increase or decrease in a number of 
ways 

•  Ex. by consuming water for agriculture, industry 
•  Trade-offs between low value and high value uses 
•  Both total value and pathways are important! 

•  Sustainability is thus a relative measure of system performance across 
alternative pathways of consuming and generating valuable 
resources      (El Serafy 2013) 5 

Framing	




Water System Planning under Uncertainty 

•  Long-term planning assumes forecasts for water system services (de Neufville & 
Scholtes 2011, Qi & Chang 2011) 

•  Forecasts can be deterministic or stochastic 

•  Example: Municipal water demand depends on varying population growth 
(persons) and per capita demand (LCD) 
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Framing	




KSA Water System Risks – and Policies  

Uncertain Drivers Potential  
Socio-technical Levers 

Demand-side 
Municipal 

 
Agricultural 

 
 

Industry 

Population growth (persons) 
 
Precipitation & evapotranspiration 
(mm/yr) 
 
Economic water intensity (MCM  /
GDP) 

Per Capita Demand (LCD) 
 
Crop-type & production (yield) 
 
 
Industry-type (capacity) 

Supply-side 
Groundwater 

 
 

Treatment 

Recharge rate; Unknown non-
renewable supply (MCM/yr) 
 
Water for resuse (MCM/yr) 
 

Withdrawal rate (MCM/yr) 
 
 
Water collection (MCM/yr) 
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Approach	




Assessing System Performance 

•  System performance can be compared using Key Performance 
Indicators (KPIs) 

§  Economic:    ex. annual system costs, contribution to GDP 
§  Environmental:   ex. CO2 emissions, volume of effluents 
§  Equity:    ex. demand shortfalls, health impacts 
§  Technical:   ex. desalination output, % water treated 
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Approach	




Valuing Water Resource Productivity 

•  Water is one of many inputs in agriculture and economic activities 

•  Contribution to GDP of these activities is an indicator of the socio-
economic value of water 
§  Imprecise indicator: many interactions and links between water and other 

inputs (ex. water, electricity, fertilizers and labor in agriculture) 

§  Partial indicator: many aspects of the social value of water are not 
‘priced’ /valued in to GDP 

      ex. health benefits 

•  However, GDP is a reasonable 
proxy for measuring ‘wealth’ 
over time 

•  KSA water productivity in terms 
of GDP is two orders of 
magnitude higher in  non-agri, 
non-oil sectors, than in agri 
sector 
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Log scale – two orders of  
magnitude difference! 

Approach	




High Level Architecture 
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Scenarios are studied using an Integrated Uncertainty-System 
Dynamics model  

•  Multidimensional Hierarchically Integrated Framework (MDHIF) 
implemented in AnyLogic ™  (AlAbdulkareem et al 2013) 

Approach	


•  System dynamics 
model nested in agent-
based hierarchy 
(Borschev & Filippov 2004, 
Schieritz & Milling 2003) 

•  “Fuzziness” in 
parameters to 
introduce stochastic 
variation (Altunkaynak et al 
2005) 

•  Monte Carlo simulation 
(Khatri & Vairavamoorthy 
2009) 



System Dynamics 
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Example: Groundwater sub-system 
Approach	




Deterministic Scenarios 
 

•  Deterministic scenarios for initial exploration (2010 – 2035; 25 year horizon) 

§  Reference Scenario - a benchmark scenario to indicate the status quo 

§  Average per capita demand – 230 LPCD 
§  Population growth – 2% / year 
§  Agricultural consumption grows at 2010 levels 
§  Desalination meets 50% - 60% of municipal demand 

§  Demand Management – actively influence demand-side changes 

§  agricultural demand reduces by 3.7 % / year 
§  Average per capita demand reduces by 10 % from 230 LPCD to 210 LPCD  
§  Treatment and reuse of wastewater increases by 1.5 % / year 

§  Desalination Reliance – supply-side infrastructure addition 

§  80% of municipal demand to be supplied by desalination 
§  Desalination capacity and conveyance infrastructure added 
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Analysis	




Demand Management is Dominant Strategy  
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Analysis	




Including Uncertainty 
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=> High probability that existing 
desalination capacity is 
underutilized under uncertain 
demand  

Variations in recharge rates 
and agricultural, municipal 
withdrawals make net 
groundwater levels uncertain 
 
=> need to include variability 
in policy formulation 

Analysis	




Valuing Water Use Trade-offs 

•  The economic return to water use is different for different sectors, implying 
different GDP elasticities to demand (ex. 20% reduction in supply to 
Agriculture -> 1% reduction in GDP – vs 2% for Non-agri, non-oil GDP) 

•  Economic return to water use exhibits path dependence – ex. depletion or 
contamination of an aquifer for a few years may restrict ability to meet 
demand in future 
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Prioritization of Policy Levers 

•  Valuing end-use trade-offs differentiates 
high-value end uses from low-value 

•  High-value end uses tend to be those with 
high water productivity / low water intensity 

 
•  Influencing demand reductions 

(conservation) mitigates the pressure to 
always meet it, even if high-value end use 

•  Alternatively, reducing water intensity 
(efficiency) allows for supply to high-value 
end use with same water budget 

•  Uncertainty analyses help show variability of 
policy impact 
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Potential  
Socio-technical Levers 

Per Capita Demand (LCD) 
 
Crop-type & production (yield) 
 
 
Industry-type (capacity) 

Withdrawal rate (MCM/yr) 
 
 
Water collection (MCM/yr) 

Implications	
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