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Abstract 

 

The concept of terrorist organizations as complex adaptive systems (CAS) has 

generated an abundance of models focused on understanding the inherent structural 

strengths and weaknesses of the organizations with the ultimate goal of disruption and 

defeat. However, in-depth theoretical analyses combining first-principles of CAS to 

understanding terrorist organizations as dynamical systems remain few.  Specifically, 

while most experts acknowledge the key role that innovation and learning play in 

providing terrorist organizations with the capacity to adapt, there is a paucity of 

systematic treatment of the topic of what influences innovation and learning – and the 

difference between the two - in these covert organizations.  This paper reviews the 

organizing principles, behavior characteristics, and mechanisms of learning and 

innovation in complex adaptive systems; discusses how other authors have applied these 

principles to understanding terrorist organizations; and introduces the constraints 

imposed by the need for secrecy in these covert organizations.  In doing so, I provide a 

theoretically grounded framework that combines understanding of innovation and 

learning within covert organizations from a system dynamics perspective with first 

principles of complex adaptive systems to predict under what conditions innovation is 

likely to occur within terrorist organizations. Historical evidence of terrorist 

organizations and their activities over more than thirty years supports the qualitative 

predictions of the framework.  

Introduction 

This paper is motivated by the observation that, while the consideration of terrorist 

organizations as complex adaptive systems (CAS) has become routine within the security 

community, the evidence suggests that the majority of terrorist organizations and their 

operations show surprisingly little of the type of innovation that is often characteristic of 

CAS.  Key principles of system dynamics are reviewed in the first section of this paper to 

generate criteria for applying the paradigm to terrorist organizations.  In the second 

section, a generalized conceptual framework for innovation and learning within CAS are 
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presented. The third section brings these ideas together in a conceptual systems model for 

examining learning and innovation within terrorist organizations.  The fourth section 

discusses empirical evidence in support of this model, next steps for further research, and 

broader implications for other types of covert organizations 

1. The Basics 

 

A system is an internally organized whole, where elements are so intimately connected 

that they operate as one in relation to external conditions and other systems (Meadows & 

Wright, 2008).  A set of objects or a collection of people is not a system unless in regular 

interactions resulting in system behavior as a whole. An important criterion for applying 

the CAS paradigm to terrorist organizations, therefore, is that entities within the terrorist 

organization must be in regular interactions that lead to system behavior as a whole.  

While this may seem obvious, many instances of terrorist activities do not meet this 

fundamental criterion.  Some terrorist attacks are actions of “lone wolfs” such as the 2011 

car bombing attack of Anders Breivik in Norway.   Many others have no known 

organizational association.  According to the Global Terrorism Database at the University 

of Maryland, approximately 7,600 of 98,000 terrorist events since 1970 are in the latter 

category(Global Terrorism Database, 2012). 

 

Additional criteria for applying the CAS paradigm to terrorist organizations derive from 

system properties.  Systems can be linear or non-linear, open or closed, and simple or 

complex depending on the nature of the interactions between actors within the 

organization and between actors external to the organization (Bertalanffy, 1980; Laszlo, 

2001; Legasto, Forrester, & Lyneis, 1980). Within terrorist organizations, these 

properties may change significantly over time, which in turn significantly impacts rates 

of learning and innovation. Behavioral models of terrorist organizations need to explicitly 

account for these state properties and how they change in response to the environment.  

 

A linear system is one in which one or more perturbations to parts of the system evoke a 

response of the system as a whole that is linearly proportional to the stimuli.  Cause and 

effect are easy to observe, as big changes result in big and proportionate responses.  In 

non-linear systems proportionality and summation no longer hold: small changes in 

initial conditions or interventions can result in massive changes to the system, and vice 

versa. Nonlinearity makes the relationship between causes and effects difficult to 

observe, which can be a problem when trying to validate models of innovation in 

complex adaptive systems, especially those which may be relatively closed, such as some 

covert terrorist organizations. 

 

A closed system is one that is fully self-contained, and does not interact with its 

environment. Many systems studied in physics are closed systems.  The law of maximum 

entropy obtained in these systems dictates that they will always be moving in time 

towards increasing disorder, absent any outside forces. In contrast, open systems support 

ongoing exchanges of materials and information with the environment.  This allows for 

negative entropy to be maximized; that is, for order to develop without external 

intervention, as CAS self-organize to find optimal positions in fitness landscapes 

(Kauffman, 1993) All else being equal then, both open and closed systems can have 



mechanisms that act in opposite directions to impact learning and innovation, depending 

on the structures that develop and whether they impede or amplify the inflow and 

transmission of information and resources.  

 

Open systems can interact with unorganized elements of the environment or with other 

systems.  When interacting with other systems, one has a system of systems (SoS).   

Emergent properties will obtain from a SoS different than those of the constituent 

systems themselves.   

Complexity 

There are many different reference frames for conceptually differentiating simple systems 

from complex, drawing on analogies from thermodynamics, information theory, 

structural mechanics, and graph theory.  Crutchfield has demonstrated that deterministic 

conceptions -- such as temperature, information density, and entropy  -- are in reality 

different measurements of the underlying order, or randomness, in the 

system(Crutchfield, 2003). This is illustrated graphically in Figure 1. 

 

 

 
Figure 1 System complexity is a function of both structural organization of interactions between entities in a 

system and the randomness of the individual entities. The concept of complexity can be likened to the statistical 

concept of entropy. 

At one end of the spectrum in Figure 1, simple periodic processes with high order and 

low randomness have negative entropy and low structural complexity.  At the other end, 

there is no order to cause and effect and all outcomes are equally likely in the short term.  

This is the regime of chaos.  Complex systems arise between these extremes and are an 

amalgam of predictable and stochastic mechanisms.   

 

Bar-Yam describes the transition from simple to complex, and from complex to chaotic, 

with a quadratic equation to describe any system as a collection of interacting agents 

(Bar-Yam, 1997). 

 

f(s) = as (1-s),     Eq. 1 

 



where s is an infinite sequence of binary variables, and 0<a<4.   In simple systems, 0<a<1 

and all agents interact in the same and predictable manner.  In complex systems, 1<a< 3, 

where multiple agents interactions change dynamically in fluctuating and combinatorial 

ways that follow simple rules (e.g., maximize utility, maintain likeness to neighbors).  

There is a bifurcation point between 3 and 4 where all order breaks down, however, and a 

chaotic system ensues.  Rogers et al. al argue that the likelihood of innovation increases 

as one approaches this bifurcation point in a system, but decreases beyond it(Rogers, 

Medina, Rivera, & Wiley). 

 

Both conceptions of complexity depend on the structure and dynamics of the interactions 

(information and/or material flow) between the fundamental units, or agents, in the 

system.  Using classical systems theory, one can describe the effects of these interactions 

on system properties as a series of different equations.   Let Qi (i=1, …,n) be the measure 

of some property of n elements in a finite system.  Then the change in Qi over time is 

given by solving the simultaneous set of equations:  

 

 

dQ1  =f1 (a11Q1, a12Q2, a13Q3, …..a1nQn)   

  

dt 

 

dQ2  =f2 (a21Q1, a22Q2, a23Q3, …..a2nQn)  Eq. 2

 Eq 2. 

dt 

………………………………… 

dQn  =fn (an1Q1, an2Q2, an3Q3, …..annQn) 

dt 

 

 

System complexity is introduced by allowing self-organizing interaction between the 

elements. This results in a variety of models of cooperation or competition.  In one such 

model, the predator-prey, the system is capable of reaching a quasi-equilibrium state that 

is regulated by the interaction between the two elements in mutual dependency.  

However, in other models of competition no such regulation occurs and the system may 

become unstable.   

Evolution and Adaptation, Innovation and Learning in Complex Systems  
Adaptation, evolution, learning and innovation are key features of complex adaptive 

systems(Bar-Yam, 1997; Bonabeau, Dorigo, & Theraulaz, 1999; Holland, 1995; Jantsch, 

1980) that can be conceptualized as the response to feedback from, and interactions with, 

the environment (Crutchfield, 2003; Sterman, 2000).  These behaviors are self-organizing 

mechanisms by which a system responds to disequilibrium states resulting from initial 

conditions, from internal drivers (such as competitive goal-seeking) that change resource 

utilization distributions and impact production/dissolution rates, and from external forces 

or shocks.  

  



Evolution is the process of natural selection of “accidents”, such as mutants, based on 

their ability to improve the overall fitness of the system relative to its goal (Jantsch, 

1980).  Evolution occurs over long periods of time through successive generations, as 

those with the mutation are more successful in surviving and repopulating themselves 

than those without. Co-evolution may occur, in which the existence of one element (such 

as a species) is tightly bound up with the existence of another.  In the context of Eq 2, 

evolution is modeled as a gradual change in fi (i=1,n) over successive generations, due to 

higher regeneration rates of the mutant Qi. 

 

Adaptation through learning and innovative occurs on a much different time-scale than 

evolution.  Both involve information exchange with the environment and with elements 

within the system.  Learning is the process of modifying existing knowledge, behaviors, 

skills, values, or preferences.  Learning involves synthesis of different types of 

information.  Imitation occurs by mimicking the activities of others due to observed cause 

and effects of their actions; whereas repetition generates learning through feedback on 

one’s own actions.  Learning can occur at the individual element level or at the system 

level.  In the context of Eq 2, learning by element Qi results in a change in its potential 

contribution to all other elements of the system and to the system performance as a 

whole.  Whether or not this occurs depends on the interaction functions fi (i=1…n), and 

reaction coefficients aij of element Qi with the rest of the system.  System level learning 

occurs when a previously unused element Qi is adopted for use within the system for the 

same purpose observed in other systems.   In the context of Eq 2, this is likened to 

changing a reaction coefficient aij from a zero to nonzero value for Qi, keeping the 

functional form of the use of Qi the same as in the observed system.   

 

Bonabeau et al (1999) explain learning as emergent collective intelligence within groups 

of simple agents among which decision rules based on autonomy and distributed 

functioning replace control, preprogramming and centralization.  Through computational 

experiments, they showed that such systems perform sub-optimally on regular structures 

but perform well on complex structures.  

 

Innovation involves the incorporation of a previously unused element into the system, or 

the recombination of existing elements in new ways (Holland, 1995). Specialized 

elements are recombined and utilized differently, as reflected in changes to both the 

functional forms of Eq 2 and the reaction coefficients.   As will be discussed in a later 

section, CAS are postulated to provide optimal conditions for innovation to emerge when 

channels for information exchange exist with diverse external communities, and the 

opportunities to exploit new information are not constrained by the internal structure of 

the system. Even so, the process of emergence of an innovation is not yet well 

understood. 

 



 Networks, Evolution and Adaptation, Innovation and Learning 
A key hypothesis is that network structures that evolve from system dynamics influence 

and constrain the processes of evolution, adaptation, innovation and learning in terrorist 

organizations through information exchange mechanisms.  

 

Random networks in which there is equal probability, p, of a connection between any two 

nodes, result in short average and overall path lengths, providing robust and efficient 

means of information exchange.  However, random graphs evolve slowly, and it is 

difficult for outliers (where many innovations occur) to have much of an impact on the 

rest of the network.  Even so, there is a critical threshold value of p, related to the number 

of nodes, n, in the network beyond which a cascade effect will generate a single large, or 

even “giant” component (Figure 2). In this case, innovations developed by outliers 

rapidly spread through the network.  Research into collaboration networks validates the 

existence of random networks with giant components among diverse communities of 

social actors, such as scientists, movie actors, and board directors(Newman, Watts, & 

Strogatz, 2002). Empirical data suggests the existence of giant components in several 

“dark” networks, e.g., Islamic jihadists, drug rings, and criminal organizations(Xu & 

Chen, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 2 Enros-Renyi Random Network  Figure 3 Scale-Free Network 

At a societal level, terrorism may be viewed as emergent phenomena presenting a 

solution to an otherwise intractable problem to certain subsystems that perceive 

themselves as disadvantaged and otherwise disempowered within a greater system 

(Hayden, 2006).  As self-organized subsystems, organizations employing terrorist 

operations seek to create disequilibrium and change the basic functions and 

distributions of resources within the system to advantage themselves and others.  The 

fact that terrorist organizations have tended to be conservative in their operations, and 

have not exhibited a propensity to use weapons of mass destruction, in spite of rhetoric 

threatening to do so, presents a puzzle to the communities of terrorism research 

scholars and to the national security community alike:  when do terrorist organizations 

use learning and innovation to achieve their goals, and why do we not see more of it?  

This paper uses system dynamics to explore this question.   



Scale-free networks (Figure 3) are those in which the distribution of connections within 

the network follows the power law:  

 

P(k) = ck
-

 
 Eq 3. 

 

where P(k) is the fraction of nodes in the network having k connections to other nodes, c 

is a normalization constant, and  is a parameter with values typically between 2 and 3. 

Preferential attachment and evolutionary processes are mechanisms that can generate 

scale-free networks. Computer simulations have shown that scale-free networks are able 

to evolve to perform new functions more rapidly than random graphs with equal 

probability of connections. Scale-free networks are resilient to accidental, random 

failures.  However, they are more vulnerable to directed attacks than random networks.  

Theoretically, learning and innovation in scale-free networks should exhibit behavior 

patterns indicative of diffusion and natural evolution mechanisms.  While scale-free 

networks are one of the most ubiquitous in natural, social, and technological systems, 

they are not prevalent among terrorist organizations. 

 

Small world networks (Figure 4) are characterized by higher clustering coefficients than 

random graphs while maintaining the same median shortest path length for the overall 

network.   

 

     
 

 

 

 

 

 

 

 

 

 

Figure 4 Small World Network       Figure 5 Core Periphery Network        Figure 6 Ring Network 

 

The clustering coefficient measures the degree to which all nodes within a neighborhood 

are connected to all other nodes in that neighborhood (where a neighborhood of a node j, 

is comprised of its immediately connected neighbors).  The four “weak links” connecting 

neighborhoods in Figure 4 are critical to maintaining a short average path length.   Like 

scale-free networks, small world networks are ubiquitous in self-organizing natural 

systems.  As one might intuitively expect, learning and innovation in small world occurs 

in spurts, through a type of punctuated equilibrium process that is highly vulnerable to 



the existence of the weak links(Filk & Muller; Gould & Eldrige, 1977). Less obvious is 

the mechanism for formation and reconstitution of these weak links.  Many of the Islamic 

terrorist organizations today exhibit small-world network properties. 

 

As with scale-free and small-world networks, the core-periphery network exhibits a high 

degree of clustering. However, as shown in Figure 5, the clustering is confined to a 

densely connected core surrounded by sparsely connected peripheral nodes. Core-

periphery networks evolve as elements on the periphery join the core to exploit 

economies of scale, or as cores expand into outlying neighborhoods for resource 

exploitation.  Political examples are band wagoning and colonization, respectively.  

Social examples are found in friendship networks, voting networks, transportation 

networks(Rombach, Porter, Fowler, & Mucha, 2012). Information diffusion and virus 

propagation on many on-line networks exhibit core-periphery structures(Gomez-

Rodriguez, Leskovec, & Krause, 2010). Terrorist organizations that enjoy state 

sponsorship, such as Hezbollah, are more likely to evolve into core-periphery networks.  

 

Recent studies on the spread of complex contagions suggest that core-periphery 

structures can have much higher transmission rates than small worlds.   A complex 

contagion is one requiring multiple exposures for the contagion to spread(Damon & 

Macy, 2007). High-risk contagions – such as the purchase of an expensive piece of 

equipment, the participation in a risky political action, or the adoption of an unproven 

technology – require multiple “social proofs”.  In small world networks, the linkages 

between community structures are long (which increases effective transmission rates) but 

“thin”.  The thinness of these linkages slows the spread of risky contagion.  In contrast, 

the multiple short paths between nodes in overlapping community structures build many 

“wide” bridges in the core-periphery network, creating high effective transmission 

rates(Reid & Hurley, 2011). This has significant implications for state-sponsored terrorist 

organizations, which enjoy both the resources and the network structure to support 

innovation against adversaries.   

 

Ring networks (Figure 6) are simple structures in which each node connects to exactly 

two other nodes, forming a single continuous pathway for transmission events through 

each node.  Obviously, these networks are highly vulnerable to the removal of any one of 

the links.  Typically, this vulnerability is managed through redundancies - by sending 

simultaneous, duplicative transmissions in opposite directions and by utilizing secondary, 

overlapping and counter-rotating rings.   The idea is that not all transmissions will get 

through all rings, but that the probability of complete system failure is low, as every node 

has the information necessary to be transmitted and it does not require a central node to 

manage the system.  For networks of small numbers, ring networks have been shown to 

provide optimal configuration to protect secrecy while maintaining operational 

efficiency, if not robustness, but do not facilitate learning and innovation(Lindelauf, 

Borm, & Hamers, 2009).
 
This finding has implications for small covert terrorist cells, 

where n may be less than ten, or terrorist organizations in start-up stages, and is 

consistent with the large numbers of short lived terrorist organizations.  

 



For networks of more moderate size between 20 and 40, the “windmill” and “reinforced 

wheel” networks shown in Figure 7 have been shown to be most efficient for the 

achieving the dual objectives of secrecy and efficiency(Lindelauf et al., 2009). The 

network topologies in Figure 7 are variations on the familiar hub-and-spoke pattern of 

many distribution systems.  These structures were generated in computer experiments to 

optimize network structures for dual objectives of secrecy and information efficiency in 

covert networks discussed in the following section. Hub-and-spoke networks evolve 

naturally to optimize  

 

 
Figure 7 Windmill and Reinforced Wheel Networks 

self-organizing distribution systems.  Complicated operations that are identically required 

by every node can be carried out at the hub.  Drawbacks include the longer path lengths 

required for distribution to every node, and the inflexibility of the hub to adapt quickly to 

changing environmental conditions, constituting a single point of failure for the system.  

In spite of these drawbacks, the hub-and-spoke paradigm remains ubiquitous in systems 

that can realize high improvements in efficiencies with centralization of operations.  

2. A Framework for Innovation and Learning in Systems  
 

The study of innovation diffusion within CAS is a burgeoning academic field with 

applications in diverse fields, integrating the pioneering work of Everett Rogers(Rogers 

et al.) with developing understanding of CAS. While it is beyond the scope of this paper 

to review this literature, the Cynefin framework proposed by Kurtz and Snowden for 

innovation management at IBM is particularly relevant (Kurtz & Snowden, 2003). This 

framework provides an operative context for making sense of a situation and the 

possibility of innovation based on the system state. Namely, one must first establish 

whether or not the system is in a state of order, complexity, or disorder before one can 

study or affect innovation processes within it(Snowden & Boone, 2007).
 
This is relevant 

to organizations concerned with discovering when, why, and how terrorist organizations 

learn and innovate.  

 

Each domain in the framework represents a different system state of order, resulting in 

different behavior patterns and requiring different actions to understand and manage the 

processes occurring within them.  The simple and complicated domains both exhibit 

order where cause-effect relationships can be known. This ability to perceive cause and 

effect is an essential feedback mechanism for learning the “right” answers to problems or 



discovering optimal solutions through adaptive goal seeking, presuming that those 

solutions are known to exist.  Complex and chaotic domains present no opportunity for 

such deterministic resolution of cause and effect, and paths forward emerge holistically 

following innovative leaders. 

 

Systems theory teaches that, all else being equal, closed systems will move towards 

increasing disorder, absent intervention.   In contrast, open systems will move towards 

increasing order.   Thus, one should expect that within a system of systems (SoS) there 

might be dynamic movement between these subsystem domains, even while maintaining 

equilibrium at the system level.  Indeed, studies of many organizational, social, 

biological, and physical systems bear this out.  The behavior patterns of these movements 

between domains, in turn, are domain dependent, as postulated by the Cynefin 

framework.   

 

Kurtz and Snowden postulate that different characteristic network structures will be 

associated with each of the domains.   Simple domain networks provide the most efficient 

structures for learning, through the process of sensing the environmental state, 

categorizing the information received according to previous knowledge, and responding 

accordingly.  However, these responses will obviously not be sensitive to changing 

environmental conditions.   In the complicated domain, the network structures are highly 

connected with a central hub, as in random graphs with giant components.   Here, cause 

and effect is separated in time, and discoverable along some finite possibility paths with 

some analysis.  Hierarchical networks and learning through incremental improvements is 

characteristic of information transmission between ordered states.  The most likely 

adaptation mechanism in this case should logically be natural evolution or systematic 

trial-and-error, and innovation is unlikely.   This is the path followed by organizations 

that are low-risk either by structural design or culture, such as the Irish Republican Army 

(IRA).   

 

In both complex and chaotic domains cause and effect are not knowable a priori and 

underlying structure constrains the available system response within some bounded set of 

possible outcomes.  It is necessary to probe the system to discover how the structure is 

likely to respond.   In chaotic systems, observed responses can be the result of many 

different initiators.  In this domain, sense-making requires that one takes action, senses 

the response and adjusts accordingly in a continuous, iterative pattern of actions and 

reactions.    

 

In contrast, adaptive learning and/or innovation transfer is highly likely to occur within 

and between systems in the complicated domain and the complex domain.  Innovation 

will most likely emerge within the complex subsystem.  The complicated system sense 

explores the complex domain for new and novel ideas.  Since cause and effect can be 

determined with in the complex domain, these ideas can be analyzed for their potential 

effect within the complicated domain before adoption. This is the process followed by 

organizations that provide an internal entrepreneurial unit with self-organizing freedoms 

(e.g., complexity) to foster discovery.  Discoveries in the complex domain are monitored, 



and analyzed for potential improvements to overall performance of the complicated 

domain.   

 

Hub-and-spoke structures can be ideal for SoS that strive to maintain order and reduce 

exposure to risk while allowing for creativity and discovery.   If the complex subsystem 

fails to perform, the overall system does not suffer, but innovations made within the 

complex can be quickly distributed to all other spokes if they prove to be advantageous.   

For terrorist organizations such as Al Qaeda, the existence of safe havens facilitates this 

kind of innovation and learning.  

 

Using the principles of the previous discussions on network structures and general 

systems theory, innovations should be most likely to emerge from small world networks 

characteristic of the complex domain. The individual clusters in a small world network 

undergo continual learning and increasing specialization.  At some point, randomly 

generated long connections between previously unconnected clusters will lead to 

discoveries of these differentiated skills and whole clusters can experience a step-change 

in functionality by whole-sale adoption of the discovery.  When enough of these 

connections happen with complementary discoveries, non-linear, holistic systematic 

change may occur in “epochal” leaps, yet remain as small worlds.   Such organizations 

are highly conducive to constant innovation, taking advantage of the diversity of the 

skills and resources of the constitutive clusters.   The Liberation Tigers of Tamil Eelam 

(LTTE), which is exhibit this innovative behavior innovative terrorist  

 

Alternatively, if the structure of the complex system is scale-free, there will be 

preferential attachments to new ideas generated by particular nodes, resulting in 

swarming behaviors, with the swarm following new initiatives of a small number of 

nodes.  These initiatives may or may not be the most optimal solutions for the system. 

Eventually such systems may become increasingly ordered and act more like hierarchical 

systems.  The widespread adoption of tactics first used by Hezbollah is an example of this 

type of behavior, and indicates the interconnection between terrorist organizations 

themselves as a SoS.  

 

Chaotic systems are breeding grounds for innovation but require some degree of order to 

effect optimal benefit within the system.  This can be affected by self-organized 

convergence resulting in a state of complexity, as shown in Figure 11, or through the 

imposition of order to a state of simplicity.   The emergence of improvised explosive 

devises (IEDs) in Iraq, and subsequent regularization of their production, use, and 

continual improvements is an example of this type of innovation pattern of convergence 

from a chaotic to complex to complicated state.   

 

Once an innovation has occurred, the five-step process of diffusion within the system has 

been well characterized. Each of these steps involves interaction and information 

exchange with the external environment.  First, an agent acquires knowledge of an 

innovation.  This is followed by a period of actively seeking more information.  In the 

subsequent decision stage, an agent accepts or rejects based on the relative advantage, 

compatibility, ease of use, possibility for experimentation, and visibility of the 



innovation.  These are all behaviors that are well represented within the framework of 

self-organizing, goal-seeking CAS.   

 

3.  An integrative CAS Framework for Innovation and Learning within Terrorist 
Organizations  
 

In this section, concepts from general systems theory and purposive CAS are informed by 

empirical studies of learning and innovation in terrorist organizations to develop an 

integrated framework for exploring the complex dynamics within different organizations 

in different contexts.  This framework provides insights into who might innovate in the 

future, under what conditions, and optimal intervention mechanisms.  

 

Previous authors have introduced fundamental principles of CAS – such as emergence, 

adaptation, and tipping points - as they apply to terrorist organizations (Ahmed, Elgazzar, 

& Hegazi, 2005; Hayden, 2006; Lichtblau, Haugh, Larsen, & Mayfield, 2006; Marion & 

Uhl-Bien, 2003; Subrahmanian, Mannes, Sliva, Shakarian, & Dickerson, 2013). Citing 

(Fonseca, 2002), Marion & Uhl-Biem (2003) point out that complexity theory is 

primarily about the dynamics of networks and how self-reinforcing, interdependent 

interaction creates evolution fitness, innovation, and emergent group knowledge. They 

derive a model of leadership in complex systems whereby leaders are created by the 

system through a process of aggregation and emergence that fosters interconnectivity and 

dynamic systems behavior, and argue that this model helps to explain the success of the 

Al- Qaeda organization.  

 

Starting from the assumption that terrorists are complex adaptive systems, Ahmed et al 

(2005) apply conceptual learning models from evolutionary game theory and percolation 

theory in complex adaptive systems to the problem of propagation of terrorist acts among 

a sympathetic populace to argue that terrorism can at best be contained, but never 

eradicated. Hayden (2006) conceptually frames terrorism as an emergent phenomenon of 

a larger system plagued by “wicked” problems in which dynamic responses to 

interventions create new problems to be addressed, and in which system state, structure, 

and behavior co-evolve. Lichtblau et al (2006) explore the question of whether 

organizations or groups that pose asymmetric threats to the US, such as terrorists, are, 

indeed complex adaptive systems and therefore amenable to analysis for defense 

purposes through the paradigm of complexity science.  They conclude that the analytic 

paradigm may be useful for strategic purposes to understand the dynamics and underlying 

law-like rules of systems behaviors governing the threats, but provides little for attaining 

tactical advantages within constrained timeframes for the operations research community.   

Subrahmanian et al (2013) use agent-based computational simulations of the Lashkar-e-

Taiba group to explore the shifting nature of the group over time from a strict hierarchy 

controlled by Pakistan to a loosely organized international network, and the effect of 

those changes on the group’s tactics and campaigns over a twenty-year period.  

 

These studies notwithstanding, terrorism experts generally agree that for the most part, 

terrorist organizations of the past fifty years display surprising lack of creativity, and that 

most tactical and technological advances are incremental in nature(Clarke, 2004; Dolnik, 



2009; High-Tech Terrorism, 1988; Horgan & Braddock, 2012; Martin, 2003). Terrorist 

operations are most often characterized by conservatism, advancing existing technologies 

to improve the use of conventional methods.  Key variables that influence the choice of 

methods and tactics are ideology and strategy, leadership style, group dynamics (within 

internal organizational structures and external interactions with other groups), targeting 

logic, and resources(Rasmussen & Hafez, 2010).  

 

These variables combine and interact in complex ways to shape the behavior patterns that 

emerge in achieving the group’s goals as shown in Figure 8.  The key variables interact 

with each other as shown, and are each at the center of feedback loops that result from 

those interactions.   This model draws on three different “levels” of learning: Level 1 

corresponds to natural evolution (e.g., incremental improvements), Level 2 corresponds 

to adaptation, and Level 3 corresponds to innovation.  The likelihood of the learning level 

can be estimated by considerations of CAS structure and system state. 

 

 
Figure 8 General Innovation and Learning Model within Terrorist Organizations in which successes have both 

positive and negative reinforcing feedback loops on continued use of existing methods and need for innovation 

Strategic Purpose: The strategic purpose (ideology) is in a positive, reinforcing feedback 

loop with the tactics of the operations by way of the impact of successful operations that 

foster support for the cause.  If these operations fail, support does not increase, but 

neither does it decrease. Purpose receives initial input from leadership, but may change 

over time.  

 

Four primary purposes are generally agreed to among terrorist experts. Strategic 

organizational goals are:  



 

1. Provocation of external actors (especially democratic regimes subject to public 

opinion) to overreact.  Examples are the Al Qaeda bombing of the World Trade 

Center, the ETA campaigns in Spain, and the National Liberation Front (FLN) in 

Algeria.  

2. Polarization (in divided societies) to entice attacks against “the other”, thereby 

reducing support for moderate policies.  Examples are the LTTE attacks that 

incited Sinhalese in Sri Lanka, the IRA attacks that divided Catholics and 

Protestants in Northern Ireland, and attacks in Western Europe to divide Muslim 

and non-Muslim communities.  

3. Mobilization and competition to recruit supporters and develop constituencies.   

Examples are the attacks by Palestinian terrorists on Israeli athletes at the 1972 

Munich Olympics; and competition between Hamas, Palestinian Islamic Jihad, 

and the Al Aqsa Martyrs Brigade.    

4. Compellence, whereby a government’s commitment to a policy extracts such a 

high price in the public high that it will be abandoned.  Examples are the 1980 

bombings in France intended to erode support for the Iran-Iraq war, the Chechens 

in Russia, and post-2003 insurgent attacks in Iraq.   

 

 

Leadership: conceives, articulates and transmits the initiating purpose and goals of the 

organization; leadership nature (e.g., risk averse or risk tolerant; early adapter, etc.) 

shapes the environment that dictates the Level of learning for tactical innovation, for 

setting strategic objectives and strategies, and for identifying the need for strategic 

innovation, which may include reformulation of the purpose and goals.   The latter 

mechanism is driven by a feedback loop with the outcome of operations.  If successes 

lead to extreme repression and/or hardened targets, new strategic objectives and/or 

tactical innovations may be formulated.  

 

Group Dynamics: are driven by the goal and shaped by the CAS organizational structure.  

As discussed in the previous sections, this structure will present itself in a network that 

may be constraining or facilitating to innovation and learning, as discussed in the 

previous sections. Interactions with outside organizations are represented as linkages to 

external resources.   The purpose of the organization also impacts the structure and 

provides constraints for secrecy.   

 

Methods:  include an integrated choice of weapons, attack types, and targets. Statistical 

analysis of the Global Terrorism Data Base (discussed in the next section) shows that 

choices of attacks, and targets over the past 40 years are complex.  However, once a 

choice is made, terrorist groups tend to continue to use them unless some contravening 

event occurs. Such a contravening effect is provided in the framework by competing 

feedback loops that result from success. With tactical successes, there is a reinforcing 

feedback loop to continue to use them, as shown on the right hand side of the figure.  

Continual learning and refinement occurs, which in turns increase the likelihood of 

success.   At the same time, however, successes generate a response in the form of 

hardened targets and/or other interventions such as interruptions to supply chains.  These 



responses form negative feedback loops.  The comparative rates of feedback between the 

negative and positive loops that result from success determine whether more innovation 

and learning is required at the tactical level to continue to achieve successes.    

 

Resources:  are in a positive feedback loop with successes and reinforced learning, and in 

a negative feedback loop with failures and innovation.   They interact with the CAS 

organizational structure through the mechanisms discussed previously.   

 

The rates of exchanges between the elements in this framework can be estimated and 

developed into a predictive model using the theoretical construct of general systems 

theory presented in Section 1 and characteristic parameters of CAS network structures 

(e.g., clustering, connectivity, path lengths, cycle times, etc.).   While there is a large 

corpus of literature on network structures in general, more research on dark, covert 

networks would improve such models.   

 

Detailed models of the genesis of innovation in the three levels of learning and 

innovation, incorporating state-of-the-art understanding of the nonlinear aspects of 

innovation emergence, are critical to implementation of the framework. Five models are 

presented in Figures 9-14 for the different system states and network structures 

considered in this paper.  Key concepts include fitness landscapes and punctuated 

equilibrium previously mentioned.   These build from ideas contained in classic system 

dynamic models of innovation and learning(Sterman, 2000), but account for the different 

states that terrorist organizations may be in (e.g., closed, open, etc.) depending on other 

system interactions with their environment.  

 

 
Figure 9 Learning in Simple Systems 

 

 



 
Figure 10 Innovation and Learning in Closed Systems Levels 1-2, with no input of ideas from exogenous sources 

and no ability to conduct experiments, such as in highly covert organizations 

 

 

 
Figure 11 Innovation and Learning in Closed Systems Levels 1-3, Innovation and Learning in Closed Systems 

Levels 1-2, with no input of ideas from exogenous sources but having the ability to conduct experiments in secret 

 

 

  

 



 
Figure 12 Learning in Open Systems, where ideas for new product development come in to a single organization 

from outside, and may generate new objectives and requirements  

 

 

 
Figure 13 Evolutionary Model of Innovation where learning and innovation is response to interactions with 

multiple entities outside of the organization, recognizing many different basins of attraction and increasing the 

likelihood of developing new fitness landscapes by those interactions.  This is the most creative but most risky.  

 



 
Figure 14 Adaptive Learning Between Organizations with shared goals who co-evolve in the development of new 

methods, goals, and objectives.   For terrorist organizations, this increases risk of exposure and infiltration 

5. Corroborating Evidence  
Evidence to test the model comes from case studies from the literature, the Global 

Terrorism Database for terrorist tactics and operations (Global Terrorism Database, 

2012), and the BAAD database for terrorist organizational structure and history(Asal, 

2012).  This evidence is summarized in Table 1 and Figures 15-22.  While not 

conclusive, the data corroborates the likelihood of the mechanisms hypothesized in this 

paper to differentiate innovation propensity between terrorist groups, and provides insight 

for understanding the puzzle regarding lack of WMD use by terrorists.   

 



Table 1.Terrorist organizations and their structure, age of organization, and level of innovation exhibited 

 
 

As Table 1 shows, those organizations supported by state sponsors (LeT, LTTE, and 

ELN) tend to be hierarchical and bureaucratic.  While this could provide the resources 

and support necessary to develop effective WMD use, it also constrains innovation and 

learning and fosters imitation and evolution.  In contrast, organizations such as al Qaeda, 

Ansar al Sunnah, and Hezbollah, whose structures favor more innovation, do indeed 

exhibit more propensities for innovation in their choices of targets and tactics.    

 

Figures 15-17 show the shift in target selections by terrorists over the last forty years.   

The most dramatic shift has been in the rise of attacks on civilian targets relative to 

attacks on businesses. During that same time period, there have been distinct shifts in the 

geographic locales of most terrorist incidents, as shown in Figures 18-22. Activities 

peaked in Central America peaked in 1981 in Guatemala, targeting primarily military, 

police, businesses, and utilities.  Activities in South America started to grow 1982 and 

peaked in 1984.  The last two decades have seen significant decline in activities in 

Central and South America, significant increase in the Middle East and S. Asia, and a 

relatively steady level of activity (although changing perpetrators) in Europe.  

Summary and Conclusions 
At some times, some terrorist organizations exhibit characteristics of complex adaptive 

systems.  This work has shown that as such, the degree to which they can adapt and are 

likely to exhibit innovative behavior should depend on the structure of the organization, 

which may change over time in response to system dynamics catalyzed by interactions 

with their environment.   Success by covert organizations stimulates countermeasures. 

Resiliency requires innovation in the face of countermeasures. Two counteracting 

feedback loops compete with innovation drivers to strongly influence basins of attraction 

for terrorist organizations:  (1) Need for secrecy and (2) Need for recognized successes 

(failure intolerant). The more there is a need for secrecy, the less likely innovation will 

be.  



The most likely organizations to exhibit innovation and learning will be those with core 

periphery structures, where ideas from outliers can be quickly accessed and assimilated 

and exogenous shocks can be distributed.  While statistical data trends affirm the 

conceptual model for structural influence on innovation mechanisms, detailed process 

tracing in longitudinal, comparative case studies are necessary for validation.  If 

substantiated, the effective countermeasures that decrease, not increase, network 

resiliency while suppressing innovation should be pursued.   

 

 

 
Figure 15 Global Targeting Trends 1970- 2011 



 

 
Figure 16 Global targeting trends shift in time and geographic regions 

 

 
Figure 17Selected targeting Trends 1980 – 2009 illustrate trade-off between military and civilian targets 



 

 

 

Figure 18 Global Incidents 1981 – 1983  Figure 19 Global Incidents 1984 - 1994 

  
         Figure 20 Global Incidents 1994 – 1998                 Figure 21 Global Incidents 1998 - 2007 

 

 

 
                Figure 22 Global Incidents 2007 - 2011 
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