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Abstract 

Automated behavior mode identification and clustering are potentially valuable 

additions to the analysis toolset of a system dynamics (SD) modeler. The key 

component for such tools is the feature vector construction; selecting a set of features 

to represent the dynamic behaviors to be classified or clustered. In this study, we 

evaluate a set of alternative feature vectors in clustering basic behavior modes 

encountered in SD practice. As the first case, coefficients of the polynomials fitted to 

the dynamic behavior are used as the features. In the second case, a given set of 

curves are fitted to the dynamic behavior, and the degree of fit to these curves are 

used as the features. The third case constructs feature vectors based on the changes in 

the signs of slope and curvature of the behavior. In other words, the feature vector 

represents the original behavior as a sequence of atomic behavior modes. In our 

preliminary evaluation, the third approach outperformed the former two. Later, we 

propose a set of extensions to the third approach in order to improve its performance 

while dealing with oscillatory behaviors. The modified version of the third approach 

is evaluated to perform better than the original one in clustering both non-oscillatory 

and oscillatory dynamic behaviors. 

 

Key words:  Pattern recognition, clustering, system dynamics, dynamic behavior 

pattern 

1. Introduction 

In simulation modeling a modeler needs to evaluate the output of a model for 

purposes like parameter estimation, calibration, scenario analysis and policy analysis. 
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In system dynamics modeling, the aim is to analyze the dynamic behavior pattern of 

the outputs, not to develop a point prediction as regression models intend to. For 

example, in sensitivity analysis, it would be a great help if one had the chance to 

specify a range for a certain parameter set; use an algorithm to group the outputs in 

terms of dynamic behavior patterns and obtain a classification indicating which set of 

parameter values yields which dynamic behavior pattern (e.g. goal seeking increase). 

Currently, for doing such a comprehensive parameter space search, one needs to 

evaluate every combination of the parameters by running the model once for each 

parameter set, and then labeling the resulting dynamic behavior by manual inspection. 

The cost of conducting such a comprehensive analysis in terms of both time and effort 

is apparent to any SD modeler.  

Imagine a tool in your toolbox such that you feed the real data that represents the 

main dynamics you wish to reproduce with your model. Then this tool provides you a 

range of values for a set of preselected model parameters that will lead to a similar 

dynamic behavior. This is possible with the use of algorithms that can identify and 

label our model output in terms of their dynamic pattern features. We are not at that 

stage yet. But integration of new optimization tools to SD method and software has 

been listed as one of the key future challenges of the field. (Richardson 1999; Coyle 

2000).  In the literature there are many examples of implementations regarding the 

classification and clustering of dynamic behaviors.  

Barlas and Kanar (1999) proposed a supervised algorithm for dynamic pattern 

classification. They obtain the output behavior of a model and run their algorithm for 

classifying the dynamic pattern. Using the mean, slope, and curvature information of 

the behavior, the algorithm classifies the output. The output behavior belongs to one 

of the 17 behavior patterns. This classifier is used for structure-oriented model 

validation purposes, in which model generated behavior pattern is evaluated against the 

modeler’s expectation under certain extreme conditions (Barlas 1996).The fundamental 

behavior patterns are presented in Figure 1. 

Using the dynamic pattern classifier of Barlas and Kanar (1999), Yücel and Barlas 

(2011) created a model calibration tool called Pattern-oriented Parameter Specifier 

(POPS). The user specifies the desired behavior and provides an initial set of feasible 

parameter values. POPS uses the initial set to create new sets of feasible values and 

reports the solution set which best fits to the desired output behavior. The search of 

the feasible parameter space to find the best parameter values is done with a genetic 

algorithm which is an optimization heuristic. 

These tools are designed for classification purpose. There are only 17 dynamic 

patterns that can be recognized by the algorithms. For a given output, the algorithms 

determine which of the 17 classes the given output belongs to. In pattern recognition, 

besides classification, there is a method called clustering for grouping the similar 

instances. Yücel (2012) uses this method and proposes an approach for clustering the 

behaviors. The clustering algorithms measure the differences between instances and 

groups the similar ones in the same cluster. In clustering, the algorithm does not need 

to know the labels of the behaviors. Every kind of behavior can be clustered with the 

similar behaviors. In other words, the classification algorithms will fail to classify a 

behavior which has an unusual shape that it is not possible to label before observing 

it, since it does not belong to any of the 17 dynamic pattern classes. However, with 

clustering, one can group model outputs that carry the characteristics of this unusual 



pattern together, though not being to name this group. The algorithm can provide the 

parameter value range yielding that unusual dynamic output behavior. 

Providing a limitless output pattern evaluation opportunity, clustering seems 

promising as an addition to the analysis toolset of an SD modeler. In this study, a 

clustering algorithm is implemented and a set of alternative feature vectors in 

clustering basic behavior modes encountered in SD practice are evaluated. As the first 

case, coefficients of the polynomials fitted to the dynamic behavior are used as the 

features. In the second case, a given set of curves are fitted to the dynamic behavior, 

and the degree of fit to these curves are used as the features. The third case constructs 

feature vectors based on the changes in the signs of slope and curvature of the 

behavior. In other words, the feature vector represents the original behavior as a 

sequence of atomic behavior modes. 

 

Figure 1: The fundamental behavior patterns that can be recognized by the algorithm of Barlas and Kanar 

(1999) 

2. Pattern Recognition 

Pattern recognition is the assignment of a label to a given input value by an algorithm. 

The inputs, which are called data instances, have certain patterns. Pattern recognition 

algorithms are trained with the past observations or some common features of 

instances. Then the algorithms are used for labeling future data instances. There are 

two main categories of pattern recognition methods. The first one is supervised 

pattern recognition where the aim is to learn a mapping from the input data instance to 

an output label whose correct values are provided by a supervisor. For example, a car 

seller can project what kind of a car the next customer may want to buy by 



considering his/her certain features. If the customer has children and has a good 

income, he may prefer a high class family car while if he is young and rich, then his 

preference is most probably a sports car. Once the algorithm learns the ranges of 

features that result in each kind of cars, labeling the next customer with a car is done 

by the algorithm. In this example, each customer is an instance, the car types are the 

labels and the attributes of the customers (age, income, family size) are the features. 

The aim is to find the correct label for each instance using the features. This 

procedure is called classification where the class labels and their features are trained 

to the algorithm. The Hidden Markov Model-type classifier proposed by Barlas and 

Kanar (1999) makes a classification based on three features; mean, slope, and 

curvature of behavioral outputs of models. The algorithm is trained using a set of pre-

labeled behavior instances (e.g. positive exponential growth, negative exponential 

growth). The second type is the unsupervised pattern recognition. In unsupervised 

learning, there is no supervisor. The algorithm only has the input data. The aim is to 

find the regularities in the input. Clustering is a commonly used unsupervised pattern 

recognition technique. In clustering, the aim is to find clusters or groupings of input 

based on the similarities of the instances. The algorithm learns how to calculate the 

distances between the instances and makes the clustering accordingly. The method 

explained by Yücel (2012) is a clustering algorithm using the information of 

sequential atomic behavior modes as the features of instance.  

In classification, number of classes is definite. The algorithm learns the classes, and 

labels each instance as belonging to a particular class. In clustering, the algorithm 

learns only how to measure the distance between two instances. The instances which 

are close to each other in terms of the defined similarity measurement are grouped in 

the same cluster. So the instances in one group are more similar to each other than 

instances in different groups. In the problem of dynamic-pattern recognition, when we 

apply clustering, we do not need to know the classes beforehand. The behavior can be 

an exponential growth, an S-shaped growth or a completely different shape for which 

we don’t have a name.  

The similarity measurement is composed of a number of features of the instances 

which contain the necessary information to be used in determination of the similarity 

and dissimilarity of the instances.  The vector comprises the features is called the 

feature vector. 

In this study, an Agglomerative Hierarchical Clustering algorithm is used for 

clustering the instances. The algorithm starts with N groups where N equals to the 

number of instances. At each step, two groups are clustered until there is a single 

cluster.  

For selecting the new groups to be clustered at each iteration, three approaches are 

tried.  

i. Single-link clustering: the distance between two groups is the smallest 

distance between all possible pair of elements of the two groups.  

ii. Complete-link clustering: the distance between two groups is the largest 

distance between all possible pairs. 

iii. Centroid: the distance between two groups is the distance between the 

centroids (means) of the two groups.  

The first two methods are the most frequently used measures to choose the two 

closest groups to merge (Alpaydın, 2010). In this study, all the three distance 



measurement methods are applied and the best solutions are reported if there is any 

superiority.     

For calculating the distance between each instance, Euclidean distance between the 

values of feature vectors is employed. Euclidean distance is calculated as follows; 

            
    

 

   

   

       

where,  

      : feature vectors of  two instances, 

  
    

 : distance between j
th

 dimension of    and   , 

    : number of dimension of the feature vector. 

3. Different Approaches for Selecting Features from Data 

The success of a clustering algorithm mainly depends on measuring the distances 

between the instances correctly, which in turn reduces to the problem of correctly 

determining a suitable set of features from data. The instances that are to be clustered 

in this problem are the outputs of system dynamics models, which are curves. So, the 

instances are essentially time-series data. The feature vector can be the time series 

data itself, or it can be composed of some features of the curves which represent the 

overall behavior pattern. 

In this study, three approaches are tested for defining the feature vectors. First, 

various orders of polynomials are fitted to each instance (i.e. dynamic model output). 

The coefficients of the polynomials are taken as the features. Second, different kinds 

of curves (such as exponential curve) are fitted to each instance. The R-squared value 

of each curve-fitting is considered as one feature of the instance. Third, the slope and 

curvature information is used for forming the feature vector. This method is proposed 

by Yücel (2012). 

In order to evaluate these three different feature vector construction approaches, we 

created a sample set of dynamic patterns (i.e. instances to be clustered) representing 

hypothetical model outputs. These instances are presented in the following figure. 

There are 24 data instances to be clustered. In the ideal case, we expect to achieve a 

clustering result as given in the figure. 

 

3.1. Polynomial Curve Fitting  

A polynomial curve is fit to each instance and the coefficients of the polynomial are 

taken as the features. In the first trial, a third order polynomial is fit. The following 

equality represents a third order polynomial.  

     
     

         

 

  



Table 1: Sample Data Instances 

  

  

  

  

 

The coefficients   ,           are the features of each instance.    is not taken as a 

feature because it represents the starting point of the curves. Since the important 

character is the shape of the curve not the scale, it is better to ignore this information.  

In Table 2, one can see the clusters obtained using these features. As may be apparent, 

this clustering is significantly different from the desired clusters. 
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Table 2: Clusters obtained by third order polynomial curve fitting 

  

  

 

Increasing the order of polynomial curve fitting does not provide better clusters. In 

Table 3, the clusters obtained by taking the coefficients of a 6
th

 order polynomial are 

seen. The equation below represents a sixth order polynomial. Coefficients 

    through     are taken as the features and    is ignored.  

     
     

     
     

     
         

It is possible to understand the reasoning behind the weakness of the method by 

analyzing the polynomial curves fit to the instances. In Figure 2, the coefficients and 

R
2
 values of third order polynomial curve fitting are seen. The first curve with number 

10 has a steeper slope than the curves with number 11 and 12. The R
2
 of curve 10 is 

lower than the others. If one visually examines the trend line on the curve, it is 

obvious that the polynomial trend line has a completely different shape than the 

curve. The situation is not the same for the curves 11 and 12. The R
2
 values are much 

better and the trend line seems to fit well to the curves. The coefficients of the trend 

lines provide information as well. The coefficient behind the x0 term (the rightmost 

coefficient in the trendline equation) is not considered since it represents the starting 

point of a curve. The first coefficient taken as a feature is the coefficient behind the x 

term. The first feature of curve 10 is 13.13. For the curves 11 and 12 that coefficient 

is around 8. This coefficient is a kind of a measure of the steepness of the slope.  All 

the other coefficients (the coefficients behind x2 and x3 terms) are close to zero. 

Therefore the dominant factor in distance calculation is the first coefficient (the 

coefficient behind the x term). This is an indication of the fact that when the 

coefficients of the polynomials are taken as the features of the instances in clustering, 

curves with steep slopes are to be labeled different than the curves  with flat slopes. 
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Table 3: Clusters obtained by sixth order polynomial curve fitting 

  

  

 

 

In Figure 3, the fitting results of sixth order polynomials are seen. All of the R
2
 values 

are 1. However, when the coefficients behind the x terms are examined, it is seen that 

curve 10 with coefficient 22.536 seems different than curve 11 with coefficient 

10.141 and curve 12 with coefficient 9.1086. So it can be concluded that the 

polynomial curve fitting provides a clustering based on the steepness of the slopes. 

  

 

Figure 2: Third order polynomial curve fitting to a goal seeking increase 
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y = 0.0118x3 - 0.6997x2 + 13.13x + 21.343 
R² = 0.9802 

y = 0.005x3 - 0.3477x2 + 8.543x + 22.072 
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Figure 3: Sixth order polynomial curve fitting to a goal seeking increase 

 

Observe the S-shaped growth curves. In Figure 4, the third order polynomial fit to 

curve 8 with a very low R
2
 value.  The shape of the trend line is completely different 

than the shape of the curve. As in the negative exponential growth case in the figure 

above, the S-shaped growth with number 8 is steeper than the other two. The 

polynomial curve fitting method fails to fit to this curve. In Figure 5, the sixth order 

polynomial curve fittings are seen. The R
2
 values are better. However, the coefficients 

are far from being informative in terms of similarity. 

 

 

Figure 4: Third order polynomial curve fitting to an S-shaped growth 
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Figure 5: Sixth order polynomial curve fitting to an S-shaped growth 

 

3. Goodness of Fit 

Different curves are fitted to data and the R-squared values of each curve fitting are 

taken as a feature. Power, Exponential, Linear (Polynomial 1), Third order 

polynomial and Gaussian curves are fitted.  R-squared values are taken as the features 

of the instances. 

The clusters obtained by this method are much more successful than the clusters 

provided by the polynomial curve fitting method which is explained in section 2. The 

algorithm provides 7 clusters that you can see in Table 4. The first four clusters are 

correct. The last two have problems. Instance 10 is clustered in a single group. Some 

variations of the method are also tried as keeping only the maximum R
2
 values and 

equating the other values to zero; keeping only the maximum two R
2
 values and 

equating the others to zero. None of the trials provided a better clustering. 
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Table 4: Clusters obtained by the goodness of fit method 

  

  

  

 

3.3. Slope & Curvature information 

Yücel (2012) proposes a method for measuring the similarity of the instances based 

on qualitative features of these instances. He emphasized the fact that the 

characteristic of a curve lays in the sequence of atomic behavior modes that it consists 

of. Each atomic behavior is represented by a slope and curvature pair. The sign of 

slope and curvature is sufficient to define an atomic behavior. The numeric values of 

slope and curvature provide information regarding the steepness and speed of a curve. 

If one wants to cluster the curves only with respect to the shape but not the steepness 

and speed of the shape, then only keeping the sign information of slope and curvature 

is sufficient. The sequence of the slope-curvature pairs determines the complete 

behavior. There are a limited number of atomic behavior modes as shown in Table 5. 
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Table 5: The atomic behavior modes (Yücel, 2012) 
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Any curve must be composed of a sequencing of the atomic behavior modes. For 

example, in an S-Shaped growth, there are three of the atomic behavior modes in 

Table 1. An S-shaped growth starts constant (0,0), continues with an exponential 

increase (+,+) and ends with a goal seeking increase (+,-) atomic behavior. So, an S-

shaped growth is represented with (0,0), (+,+), (+,-). Each of the signs can be taken as 

a feature. A (+) sign can be quantified by (1) and a (-) sign can be quantified by (-1). 

So the feature vector of an S-shaped growth would be in the following form; 

[0,0,1,1,1,-1]. Each curve can be represented as a sequence composed of 0, 1 and -1.  

 

Figure 6: An example dynamic behaviour 

The slope and curvature is approximated from the time series data. The following 

equations are proposed by Yücel (2012) for the approximation. 

 

                      

                                  

 

The number of repeating atomic behavior modes of the curves other than the 

oscillations, are at most 4. An instance with only one atomic behavior has only two 

features. For example the feature vector of an exponential growth is (1,1). However, 

an S-shaped growth has three atomic behaviors leading to six features (0,0,1,1,1,-1). 

In calculating the distances between instances, we employed Euclidean distance as 
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explained in section 2. The length of the feature vectors should be the same for 

distance calculation. In order to equate the lengths of the feature vectors, the short 

feature vectors need to be lengthen. Yücel (2012) proposes a sister creation method 

for this purpose. A sister of an original feature vector is identical to the original one in 

terms of the sequence of atomic behaviors but it is longer in length. Yücel (2012) 

proposed to create sisters from each atomic behavior, and then to select one of the 

sisters. In this study, we created sisters only from the last observed atomic behavior 

and we experimentally found that this is sufficient for the sake of clustering, besides 

being more timesaving. The maximum number of atomic behaviors in a curve is 4, 

having 8 features. So we extend each feature vector to 8 dimensions. The last 

observed atomic behavior is repeated until completing 4 atomic behaviors. For 

example, for a curve having an exponential increase behavior, the original feature 

vector is (1,1). We add three more (1,1) at the tail of the feature vector to complete 

the dimension to 8. Similarly suppose there is a curve with the following three atomic 

behaviors; (1,1), (+1,-1), (-1,-1). We add the last observed atomic behavior which is (-

1,-1) and make it an 8-dimensional feature vector. In Table 6, example feature vectors 

are provided. 

Table 6: Example feature vectors of instances 

Original atomic behavior mode sequence Extended feature vector 

[1,1] [1,1, 1,1, 1,1, 1,1] 

[1,-1] [1,-1, 1,-1, 1,-1, 1,-1] 

[ 1,1, 1,-1,]    [ 1,1, 1,-1, 1,-1, 1,-1] 

Using the extended feature vectors, the hierarchical clustering algorithm clusters all 

the instances correctly.  

4. Improvements in Slope-Curvature Method 

The feature selection method proposed by Yücel is found to be successful in 

determining features. However, the algorithm proposed by Yücel (2012) does not 

recognize the oscillatory behaviors correctly.  In order to visually examine the mis-

clustering of the instances by that method, a 24-instance data set is created and his 

algorithm is run. The resulting clusters are seen in Table 7. The four of the clusters in 

the table are correct. But the oscillatory behaviors are considered as single clusters. 

The algorithm cannot recognize the similarity between the oscillating instances. In 

this section a method for recognizing and clustering the oscillations is proposed using 

the slope and curvature information as the features of the instances. 

  



Table 7: Clusters obtained by Yücel (2012) with the 24-instance data set. 

  

  

  

  

  

A preprocessing phase is designed for detecting the oscillatory instances and defining 

suitable feature vectors for them. First, the algorithm is trained for detecting if an 



instance is an oscillatory one. For all of the dynamic behaviors other than oscillations, 

the number of sign changes is limited. If the number of sign changes is more than a 

threshold value, the algorithm labels the instance as an oscillation. A new feature 

column is added to the feature matrix for labeling a behavior as an oscillation or not. 

The oscillatory instances have value 1 and the others have value 0 in that column.  

There are various kinds of oscillations. The amplitude of an oscillation can be 

increasing (growing oscillation), constant (constant oscillation), or decreasing (stable 

oscillation). Moreover, an oscillation can have an upward or downward trend. For 

keeping track of these two features, two more columns are added to the feature 

matrix.  

The new features, defined specially for the oscillatory instances, are trend and 

amplitude. The features, taking +1, 0, -1 values, are explained in Table 8.  

Table 8: Trend and Amplitude Change quantization of oscillatory behaviors.  

 Trend 

-1 0 +1 

Amplitude -1 Stable Oscillation with 

decreasing trend  

Stable Oscillation 

with no trend  

Stable Oscillation with 

increasing trend  

0 Constant oscillation 

with decreasing trend 

Constant oscillation 

with no trend 

Constant oscillation 

with increasing trend 

+1 Growing Oscillation 

with decreasing trend 

Growing Oscillation 

with no trend 

Growing Oscillation 

with increasing trend 

For determining the trend and amplitude position of the instances, the following 

attributes of the instances are used;  

first max: the value of the curve at the first maximum peak  

first min: the value of the curve at the first minimum peak  

last max: the value of the curve at the last maximum peak 

last min: the value of the curve at the last minimum peak 

max: the maximum value of the oscillation  

min: the minimum value of the oscillation 

If the amplitude of the first period (peak period), which can be calculated as “first 

max-first min”, is not 15% greater than the amplitude of the last period, than the 

oscillation is stated as a constant oscillation.  If difference in the amplitudes is greater 

than 15%, than the algorithm checks the difference between first amplitude (first max 

– first min) and the maximum amplitude (max - min).  If the first amplitude is larger 

than the maximum amplitude, than the oscillation is a stable oscillation. If the first 

amplitude is smaller than the maximum amplitude, than the oscillation is a growing 

oscillation. 

The trend position of the instances is determined as follows; if the value of the center 

of the first period is at least 4.5% greater than the value of the center of the last 

period, than the oscillation has a downward trend. In the opposite way; if the value of 



the center of the first period is at least 4.5% less than the value of the center of the last 

period, than the oscillation has an upward trend. If the difference is lower than 4.5%, 

the oscillation has no trend. 

For every kind of oscillation, the features representing the atomic behaviors are set 

the same sequence of atomic behavior modes which is (0,0),(-1,-1),(-1,+1),(0,0). This 

sequence of atomic behaviors stands for the behavior in Figure 7, which is a common 

component in each oscillation. 

 

Figure 7: A short dynamic pattern piece common in all of the oscillations. 

The trend and amplitude features are also added to the feature vectors of other 

instances. All the trend and amplitude values are assigned “0” in the preprocessing.  

The final feature matrix, which is composed of each feature vector, is presented in 

Table 9. 

 

Table 9: Feature Matrix Format 

    Atomic Behavior Modes 

Instances 

Nodjgdjgrı

jgırjgırjgır

jgjgerıgjeı

rjgııjNNo

N  

Oscillation Trend Amplitude 

change 

Atomic 1 Atomic 2 Atomic 3 Atomic 4 

Instance 1 

Instance 2 

…….. 

Instance n 

       

In Table 10, there are examples of feature vectors of oscillating and non-oscillating 

instances. The amplitude and trend elements of the feature vectors are shown bold and 

red. 
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Table 10: Example feature vectors and corresponding behaviors 

 Feature vector Shape 

Growing 

Oscillation with 

no trend 
[1,1,0,0,0,-1,-1,-1,1,0,0] 

 

Constant 

oscillation with 

increasing trend 
[1,0,1,0,0,-1,-1,-1,1,0,0] 

 

Non-oscillating 

behavior 
[0,0,0,-1,1,-1,1,-1,1,-1,1] 

 

In summary, some of the values of the feature matrix are filled in the preprocessing. 

The oscillation feature is first assigned 1 or 0 according to being an oscillating or non-

oscillating instance. The trend and amplitude features of non-oscillating instances are 

assigned 0. The atomic behavior modes features of oscillations are assigned the signs 

of a portion of a one period-oscillation.  

At the end of the preprocessing, the whole feature matrix is ready to be used in the 

clustering algorithm. A 300-instance data is used for validation. The algorithm 

successfully clusters the data. For visual examination, the 24-instance sample data set 

which is presented at the beginning of this section is clustered with the new algorithm. 

The final clusters are presented in Table 11. The algorithm clusters the instances 

perfectly.  

A second improvement of this algorithm is that the number of clusters is determined 

automatically by the algorithm. In the algorithm, the mean and variance of each 

cluster is calculated at each iteration (each addition of a new instance into a cluster). 

Mean of each cluster is a vector composed of the means of each feature of the 

instances in that cluster. Variance is defined to be the sum of the differences of each 

instance from the mean of the cluster. A maximum number is assigned for the 

maximum allowed variance and the variance of each cluster is kept under the 

maximum allowed variance value. The method stops with a reasonable number 

clusters.  
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Table 11: Clusters obtained by the final clustering algorithm 

  

  

  

  

Discussion 

As the features of the instances, using the slope and curvature pairs representing the 

atomic behavior modes is found to be the best-working method out of the methods 

analyzed in this study. The challenging issue in this method is the correct-

determination of the atomic behavior modes. It is impossible to use the raw data 

because of the inherent noise. The data needs to be filtered/smoothed. Though, the 

filtering mechanism used in this study is a limited one.  It may not be sufficient to 

smooth a noisier data set. Various filtering methods are examined in the study. 

Sometimes the shape of the curve is changed because of the filtering. An exponential 

moving average is found to be very successful method in smoothing the data but it 
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causes changes in the shape of the curves in particular cases. For example, when 

exponential moving average is applied, the head of a linear curve looks like an 

exponential growth. Similarly, a goal seeking increase gains a short-length portion of 

exponential increase and looks like an S-shaped growth. The shape of the curves 

seems to be changed but the changed portion of the curves is very short in length. It is 

possible to train the algorithm to ignore such short-length behaviors. However, this 

may cause an information loss for other curves. Remember that this algorithm is 

designed for clustering the instances so that a modeler will be able to recognize the 

resulting behavioral clusters of the output of his model. A short-length behavior may 

be important for some kinds of models depending on the purpose of the model. At this 

stage, we do not prefer to ignore these behaviors.  

A completely different method for finding the slope and curvature is presented in 

Barlas and Kanar (1999). For any instance, they divide the curve into 6 equal 

segments. They fit a first order polynomial to each segment. The second coefficient of 

the first order polynomial is taken as the slope of the segment.  Similarly, a second 

order polynomial is fit to each segment and the curvature value is obtained using the 

coefficients of the second order polynomial. This method seems promising by not 

necessitating any filtering on data. However, the method seems to need some 

improvements. Dividing a curve into equal-length segments may cause troubles. 

Based on the experience gained in this study, it is known that, the slope-sign is easier 

to determine than the curvature sign when the data is noisy. So we may use the slope-

sign as proposed in this study but determine the curvature sign by employing part of 

the method proposed by Barlas and Kanar (1999). So, the alternative method that we 

propose is to examine the changes in the sign of the slope with the method used in this 

study. Afterwards, for finding the curvature, the curves are divided into segments. 

The curve is divided from the points where a slope-sign change occurs. Between the 

slope-sign-change points, second order polynomials are fit. The curvature of each 

segment is determined by using the coefficients of the second order polynomial. 

Implementing this alternative procedure constitutes the first step in future research.  

Besides the challenges in filtering and slope-curvature determination, it is worthy to 

talk about the distance calculation. In this study, the widely used Euclidean distance 

method is employed for calculating the distance between instances. Euclidean 

distance assumes that the dominance of each feature is the same. Though, it is 

possible to assign different weights to the features and change the dominance of the 

features according to their importance in similarity measurement. The extension of 

the study includes further seeking for new features and reasonably assigning their 

weights in the weighted Euclidean distance formulation.  

5. Conclusion 

Considering the need for automatically evaluating the outputs of system dynamics 

models, we seek an algorithm for clustering a wide range of dynamic patterns. The 

crucial issue in clustering algorithm development is the design of a proper feature 

vector. The selected features of the output instances should represent the overall 

behavior pattern. Different approaches for designing feature vectors are examined 

using a sample dynamic behavior set. As the first approach, polynomial curves are fit 

to the data instances and the coefficients of the polynomials are taken as the features. 

The second approach is fitting various kinds of curves for each data instance and 

taking the R-square values as features regarding the R-square value as an indicator of 

goodness of fit. The third approach is adopted from a previous study and found to be 



the best way in designing the feature vector. This approach simply describes a 

dynamic behavior as a sequence of atomic behavior modes. The atomic behavior 

modes are represented by pairs of slope and curvature.   

Adopting the third approach for designing the feature vectors, we develop a clustering 

algorithm with a preprocessing stage for labeling the oscillatory behaviors which are 

challenging to handle. The feature vector is extended to deal with the two attributes of 

the oscillations; trend and amplitude change. The algorithm successfully clusters the 

dynamic behaviors. The validation of the algorithm is provided with a 300-instance 

data set.  

In the discussion section, possible improvements for the methods used in various 

stages of the algorithm are discussed. The future research looks promising in terms of 

successful implementation of the algorithm on larger data sets and improvements via 

alternative methods.  
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