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Abstract 

We take a production economics perspective to formulate a sales generating function that 

incorporates traffic and labor in retail stores. The estimation of this function is the basis for the 

development of a full system dynamics model that will enable managers to take a holistic view on 

labor planning process. To recover the structural parameters, we compare regression-based 

estimation and optimization-based calibration. This comparative approach allows us to assess the 

usefulness and applicability of new econometric estimation paradigms in the context of system 

dynamics modeling. We conclude by briefly describing possible extensions to our modeling efforts, 

expected outcomes, and methodological implications in terms of calibration. 
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1. Introduction  

It is widely acknowledged that effective management of labor is critical to successful retail 

operations (Fisher et al., 2007). Staffing in the retail sector is complex because store associates 

fulfill service-related tasks (e.g., check-out, returns, shopping assistance) and production-like 

tasks (i.e., in-store logistics) (Ton, 2009). Volatile store traffic further complicates the process of 

determining staffing levels. Apparently there are intricate relationships between labor, traffic, and 

sales performance. However, limited studies have been conducted to better understand how labor 

and traffic interact with each other and further affect store sales (Lam et al., 1998). 

To fill in the gap, Mani et al. (2011) and Perdikaki et al. (2012) use a data set of high-end 

women’s retail apparel stores to empirically assess the emerging issue of labor-traffic mismatch. 

Complementary to their investigation, in this paper we develop a sales generating function 

grounded on production economics and calibrate the function using the same data set, which 

contains hourly observations of traffic, sales, and labor hours over a whole year. The estimation of 

this function is the basis for the development of a full system dynamics model that will enable 

managers to take a holistic view on labor planning process. 

To calibrate the proposed formulation, we adopt various econometric models to estimate the 

function and identify algebraic relationships to recover structural parameters. We show that 

optimization-based calibration and regression-based estimation have comparable performance. 

More importantly, the sales generating function has fairly strong explanatory power of sales 

variation. This comparative approach allows us to assess the usefulness and applicability of new 

econometric estimation paradigms in the context of system dynamics modeling. We conclude by 

briefly describing possible extensions to our modeling efforts, expected outcomes, and 

methodological implications in terms of calibration.  
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2. A sales generating function in retailing  

Grounded on neoclassical economic theory, previous studies (e.g., Lam et al., 1998, Mani et al., 

2011) capture the generation of sales by employing a production function to operationalize how 

traffic and labor are converted into store sales. The transcendental production function used in 

those studies generalizes the popular Cobb-Douglas production function without assuming 

constant elasticity of substitution (Griffin et al 1987). In this study we first specify a generalized 

power production function (Janvry 1972) that is highly flexible and subsumes the transcendental 

production function. The sales-generating function is specified as: 

 
 *

t

t tS N e
    (1) 

t t t t t twhere t: day index, S : Sales, N : Traffic,  = L /N  and L : Labor . 

In line with recent empirical findings (Perdikaki et al., 2012), we posit that the labor-to-traffic 

ratio ϕt is a key element of sales generation, that is, what matters is not the labor available per se, 

but how labor compares to the store traffic. While ϕt will normally take small values—in many 

store formats customers can find merchandize without the support of a sales representative—

formulating the ratio as Lt/Nt makes it an increasing function of labor. The effectiveness of ϕt will 

depend on how much it deviates from the reference point ϕ
*
, which defines the base labor effects 

and results in $1 sales per customer when ϕt = ϕ
*
. The formulation ϕt/ϕ

* 
constitutes labor adequacy 

that drives retail store sales because it affects both service and conformance quality (Oliva and 

Sterman, 2001). Nonetheless, Sterman (2000, Ch. 14) proposes an alternative formulation that is 

more robust and easier to interpret. The formulation is intuitive in that ϕt=ϕ
*
 leads to the natural 

reference line (i.e., $1 sales per customer), unlike the exponential function in which the basis has to 

depend on γ even when ϕt=ϕ
*
. Accordingly, we revise the generalized power function to:  
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The above function is well-behaved and has the desired properties. The right panel of figure 1 

illustrates the response of sales to tN . The parameter α is the elasticity of traffic. Since an increase 

in traffic should only increase sales at a diminishing rate (Mani et al., 2011), we expect 0<α≤1, 

where α=1 leads to constant return-to-scale. The second factor of equation (2) denotes the effect of 

labor-to-traffic ratio on sales. The left panel of figure 1 shows how the effect of labor on sales 

varies with ϕt. A higher γ implies that the transaction value is more responsive to changes in ϕt, and 

the reference point ϕ
* 
is the point at which sales per customer transaction is 1.   

 

Figure 1: Input response of proposed sales generating function 

Substituting ϕt by its constituting observable elements, we can rewrite the (2) as:  

t
t t *

t

L
S N

N







 
  

 
 

After taking the natural log and after some algebra, the function becomes: 

 *

t t tLn(S ) ( )Ln(N ) Ln(L ) Ln( )         (3) 
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which makes sales an linear function of traffic and labor that can be estimated through regression.  

 t 0 1 t 2 t tLn(S ) b b Ln(N ) b Ln(L )      (4) 

Although the reference point ϕ
*
 is not observable, since ϕ

* 
is intrinsic to the store and 

time-invariant, in principle it should be orthogonal to the noise εt. Note that the random noise εt is 

not part of the structural sales generating function (2) and requires distributional assumptions to 

facilitate empirical estimation. Thus, we can employ estimated coefficients to recover structural 

parameters α, γ, and ϕ
*
. Using (3) and (4) we obtain the following relationships: 

 * 0
1 2 2

2

b
b b ; b ; =exp( )

b
       (5) 

It might be worth noting that, since we are only estimating a single store, the b0 parameter is a 

mixture of the store fixed effects and the reference point ϕ
*
. Once we introduce more stores into the 

estimation and fully utilize the panel data set, we should be able to separate these effects and obtain 

a more accurate estimate of ϕ
*
, which is intrinsic to each store.  

In the next section we derive parameter estimates using regression-based approaches and 

model calibration (Oliva, 2003). The estimates are then used to generate simulated outcomes for 

further comparison.  

3. Estimation Results 

Figure 2 shows the sales generating function and data. The left panel represents equation (2) that 

we directly calibrate to recover those structural parameters. The system dynamics representation 

of (2) can be viewed as a micro structure of a full model so that the calibration exercise is 

essentially a partial model simulation (Oliva, 2003).  
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Figure 2: Sales generating function and data 

The right panel of figure 2 illustrates the average hourly sales on each day of a store we 

selected for testing. The horizontal line is the average sales level around $1120. Different stores in 

our data set in general exhibit similar sales pattern. There is strong evidence of a weekly cycle with 

peaks during the weekend. To tackle the noisy variation of sales, we estimate (4) using various 

regression techniques. Afterwards we obtain α, γ, and ϕ
*
 based on the algebraic relationships in (5). 

Table 1 shows parameter estimates and their corresponding standard errors (in parentheses). 

Because the estimated ϕ
*
 is a very small number, we take the natural log and report it in the 

exponential form. The first row illustrates ordinary least square (OLS) estimates with White robust 

standard error (Wooldridge, 2001). Although we found no significant collinearity, there is strong 

evidence of serial correlation in residuals that violate OLS assumptions. We resolved the issue 

using Newey-West standard error (see the second row of Table 1), which accounts for 

heteroskedasticity and autocorrelation up to certain lags (lags = 7 in our case). The corrected OLS 

estimates, however, may still be biased due to the potential endogeneity between labor and sales. 

The simultaneity bias (Wooldridge, 2001) could occur in that the labor drives sales and sales 
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affects staffing decisions. We tackled the endogeneity issue using the instrumental variable (IV) 

approach (Wooldridge, 2009). For the time series regression models, we adopted lagged labor 

(with lag = 7 days given the presence of strong weekly cycles) as an instrument.   

Table 1: Parameter estimates 

 n b0 b1 b2 α γ ϕ
*
 

OLS 361 
3.430 

(0.167) 

0.801 

(0.033) 

0.150 

(0.064) 

0.951 

(0.066) 

0.150 

(0.064) 
e

-22.876
 

OLS 

New-West  
361 

3.430 

(0.162) 

0.801 

(0.031) 

0.150 

(0.061) 

0.951 

(0.066) 

0.150 

(0.061) 
e

-22.876
 

IV (lag7_llabor) 351 
3.366 

(0.297) 

0.813 

(0.027) 

0.163 

(0.142) 

0.976 

(0.150) 

0.163 

(0.142) 
e

-20.650
 

Calibration 361    
0.989 

(0.003)† 

0.186 

(0.001)† 
e

-18.159
 

† Inferred from the MLE 95% confidence interval reported by Vensim assuming confidence intervals at ±1.96*SE.  

Note that the commonly used two-stage least square (2SLS) estimation does not account for 

heteroskedasticity and serial correlations in our data. Instead, we used an efficient and robust 

generalized method of moments (GMM) estimator (Baum et al., 2007) to obtain results reported in 

the third row of Table 1. Although the parameter estimates were slightly adjusted when we used 

the instrumental variable, in line with Perdikaki et al. (2012), the test of endogeneity did not reveal 

significant biases, and the difference in estimates are not statistically significant. Finally, in the 

fourth row of Table 1, we report calibrated estimates obtained from non-linear optimization 

algorithms in Vensim (Ventana Systems, 2010).  

    The estimates derived from regression and calibration are not identical and we are interested in 

exploring the performance of different econometric techniques to system dynamics modeling. 

With actual sales, the purpose is to see whether regression estimates provide a better/worse fit to 

historical data. Table 2 illustrates the summary of different metrics of error (simulated sales – 

actual sales) and Theil inequality statistics (Sterman, 1984).   
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Table 2: Summary statistics of historical fit 

Statistic 
Simulation 

Calibrated Est.   

Simulation  

IV Est.   

Simulation 

 OLS Est.  

R-square 0.678 0.677 0.676 

Mean Abs. Percent Error 0.199 0.194 0.194 

Mean Square Error 62911.262 63424.487 64087.700 

Root Mean Square Error 250.821 251.842 253.156 

Theil’s Bias 0.000 0.006 0.013 

Theil’s Variation 0.099 0.106 0.128 

Theil’s Covariation 0.901 0.888 0.859 

 

In spite of its slightly higher mean absolute percent error, calibration-based simulation 

outperforms IV- and OLS-based simulation in nearly all dimensions listed in Table 1. However, the 

large mean square errors and Thiel statistics imply that we need to expand the generating function 

to better explain sales dynamics. Interestingly, unlike Morecroft (1977) who showed that OLS 

outperformed 2SLS-IV in simulation experiments, we found that robust GMM IV estimates result 

in slightly better simulated outcomes than OLS estimates. Even though we detected no significant 

evidence of endogeneity empirically, conceptually the endogeneity is not uncommon in estimating 

production function estimation with observational data (Varian, 1991). The concern of 

endogeneity supports why system dynamics calibration may preferred to over regression-based 

approaches to estimate the sales generating process since system dynamics is by design to address 

bi-directional interactions of causes and effects. Therefore, the concern of simultaneity (Wooldrige, 

2001) that makes IV often preferred over OLS in empirical economics is not indeed a validity 

threat to system dynamics modeling.  

Although simple, this preliminary function captures a fair amount of sales variation in the 

absence of feedback loops and additional controls. We are aware that the proposed sales generating 

function has not fully captured salient features of store operations, and we are currently working 

on a more comprehensive model to better approximate the data generating process and explain the 
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macro-behavior of store operations. Natural extensions will be the full use the panel data that we 

have available (45 different stores) as well as for controlling for different fixed store characteristics 

and time variant factors due to seasonality. 

Our work aims to shed light on the negative impact of myopic workforce allocation. Our 

model tackles understaffing, which is driven by minimizing payroll expenses and becomes so 

common in retailing. Seeing the empirical evidence that increasing the amount of labor at a store 

enhances conformance quality and indirectly improves profitability (Ton, 2009), we hope to 

identify staffing policies that are economically favorable and improve store execution. Salmon 

(1989) argues that retailing has shifted into the age of execution and the quality of execution will 

distinguish winners from losers. We posit that store labor is key to execution, which “makes what 

should happen in retail stores actually happen” (Fisher, 2004). Our analysis hopes to derive some 

useful insights for organizational design in the retail sector.  

Although the current results are preliminary in terms of the development of the full model, we 

believe our findings from estimation and calibration trigger some interesting methodological 

insights that we discuss in the closing section. 

4. Methodological implications 

In this paper we compared optimization-based calibration with regression-based estimation using 

observational data. We took a structural approach promoted by empirical economists who are in 

favor of calibration (e.g., Kydland and Prescott, 1996; Dawkins et al., 2001). We first developed 

the intuition for what the generating function of sales ought to be, and we brought econometric 

rigor into the process of estimating model parameters. The preliminary finding that OLS and IV 

did not provide superior performance has important implications because system dynamics has 

been accused of a lack of statistical foundation by economic modelers since its infancy (Barlas, 
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1996). In response to those critics, system dynamicists have attempted to improve model validity 

by incorporating various statistical techniques (Sterman, 1984; Dogan, 2007). Our perspective is 

slightly different from the traditional thought and we want to show that calibration actually has a 

strong empirical foundation as pointed out by leading econometricians (Hansen and Heckman, 

1996; Dawkins et al., 2001). 

The system dynamics community should recognize that calibration is more than a testing 

strategy and potentially can make system dynamics an eligible tool to answer empirically 

interesting questions in positive economics. Moreover, system dynamics is able to specify the 

social process that accounts for how causes bring about their effects, unlike regression analysis 

that does not entail on any particular data generating mechanism (Morgan and Winship, 2007). It is 

the ability to mimic the data generating process that enables calibration and simulation to address 

what-is, what-might-be, and what-should-be that cannot be evaluated under an ordinary regression 

modeling framework (Kydland and Prescott, 1996; Burton and Obel, 2011). We simply want to 

highlight the fact that calibration is more than a validity test and it is a reasonable strategy to 

empirically derive key parameters of the micro-structure of the model (Oliva, 2003). 

Once the model is fully articulated, we also intend to explore the possibility of conducting a 

two-step calibration. While a well-developed system dynamics model has high face and internal 

validity, high external validity is not easy to achieve in general. Hansen and Heckman (1996) 

discuss a two-step scheme in which only part of the empirical data is used to infer structural 

parameters in the first step called ‘calibration’. In the second step called ‘verification’ the model is 

simulated and the results are compared to the hold-out part of the data to better evaluate external 

validity. We have time-series data of different operational metrics on a daily basis throughout a 

whole year. So, we may be qualified to perform the two-step procedure without losing too much 
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information in step-one calibration.  
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