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Abstract: Rockström et al. (2009) introduced the concept of a safe operating space for 
humanity that will not push the planet out of the ‘Holocene state’. These limits are being 
investigated for various earth bound systems. Estimates of these limits are plagued by 
uncertainty. In case of the limits to the world water system, these uncertainties arise out of 
conflicting models, regional variations, limitation of expansion of water use through financial 
and institutional capacity, uncertainty about the realization and efficiency of trans-boundary 
water transfers, and interdependency between the water system and other earth systems. This 
paper aims at investigating the limits to global freshwater use. To this end, the behavior of a 
System Dynamic model of the world water balance is explored across a wide variety of 
uncertainties. Active non-linear testing is used to identify the best case and worst case for 
water stress and world population. We find counter intuitive results related to the occurrence 
of maximum water stress, conclude that global limits can be investigated with a spatially 
aggregated model and are strengthened in our hypotheses that exploratory modeling adds to 
the understanding of complex and uncertain issues in a way that predictive approaches cannot.  
 
Keywords: ANEMI, system dynamics, exploratory modeling and analysis, world water 
models, safe operating spaces, Holocene state 

1 Introduction 
In the Nature article ‘A safe operating space for humanity’, Rockström et al. (2009) introduce 
the concept of a safe operating space for humanity. A safe operating space is the space for 
human activities that will not push the planet out of the ‘Holocene state’ that has seen human 
civilizations arise, develop, and thrive. The concept is inherently anthropocentric and excludes 
non-human events and processes that could push the planet out of the Holocene state. 
Rockström et al. have identified nine earth-system processes and associated thresholds which, 
if crossed, are expected to generate unacceptable environmental change. These include climate 
change, rate of biodiversity loss, interference with the nitrogen and phosphorus cycles, 
stratospheric ozone depletion, ocean acidification, global freshwater use, change in land use, 
chemical pollution, and atmospheric aerosol loading. For all nine earth-system processes 
identified associated preliminary boundaries are given by Rockström et al. (2009). However, 
for only three of them, notably, climate change, rate of biodiversity loss, and the nitrogen 
cycle, these boundaries are substantiated theoretically and methodologically. The thresholds 
for the other six, including the global fresh water cycle, are tentative ‘best guesses’ 
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(Rockström et al. 2009). For water, Rockström et al maintain that the boundary must be set to 
safely sustain enough green water for moisture feedback while allowing for terrestrial and 
aquatic ecosystem functioning and as a first attempt propose runoff depletion in the form of 
consumptive blue water use as a proxy. Based on global fresh water cycle assessment studies, 
Rockström et al set the threshold for global fresh water use at a range of 4000 to 6000 cubic 
kilometers per year. The current (2009) global fresh water use is estimated at 2600 cubic 
kilometers per year (Rockström et al. 2009). 
 
Although we do subscribe to Rockström et al.’s ambition and concepts, there are nevertheless 
several problems associated with the approach they advance. A first problem is the ambiguous 
treatment of reductionism . While the authors clearly recognize thresholds and threshold 
behavior as a systemic and emergent property, Rockström at al. embark on a reductionist 
approach by reducing the earth system to nine biophysical processes and define planetary 
boundaries internal to these subsystems. Such an approach is bound to overlook the impacts of 
the dynamic interactions between the subsystems. To this, Molden (2009) adds that the 
concept of a global limit overlooks the importance of local conditions, regional variations, the 
role of management, and financial and institutional capacity in magnifying or ameliorating 
problems. Moreover, the estimate of the global limit for blue water use is based on a limited 
number of studies extrapolated beyond their original intentions (Molden 2009). Furthermore, 
structural uncertainties exist in the relation between climate change and renewable fresh water 
resources (RFWR) (Oki and Kanae 2006).  
 
From the foregoing, we conclude that the hypothesis of Rockström et al. that humanity may 
soon be approaching the boundaries for global freshwater use is uncertain and disputed. Most 
of the uncertainty is located in the data on the fresh water cycle and the scale at which they 
should be evaluated. Much of e  the dispute relates to uncertainties in the interaction between 
socio-economic and physical factors in the approach used for establishing the safe operation 
space with respect to water use and the consequences of climate change. That is, the limits on 
fresh water use cannot be established without considering related subsystems and the wide 
variety of uncertainties. The reductionist and complex dynamics issues are tackled by utilizing 
an integrated System Dynamic models of the planetary fresh water cycle that takes into 
consideration the non-linear and dynamic feedback relationships between physical 
characteristics of water balance and population growth; development of agriculture and 
industry; technological development and use of other resources. The issue of uncertainty is 
addressed by applying Exploratory Modeling and Analysis (EMA), a research methodology 
that uses computational experiments to analyse complex and uncertain systems (Agusdinata 
2008; Bankes 1993). More specifically, we perform a directed search using Active Non Linear 
Testing (ANT) ‘to enhance the exploration of ensembles of models that incorporate a variety 
of plausible underlying assumptions’ (Miller 1998, : 821). The remainder of this paper is 
structured as follow. Section 2 outlines the method in more detail. Section 3 contains the 
application and results. Section 4 contains an extended discussion of the results. 
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2 Method 

2.1 Modeling the world water cycle 
There are various modeling approaches that can be used to model the planetary fresh water 
cycle. One modeling approach that fits with the suggested holistic approach is System 
Dynamics (Sterman 2000; Forrester 1968). At present, several integrated System Dynamics 
water cycle models exist. These models have been used to define global limits to the use of 
blue water. AQUA (Hoekstra 1998) and WorldWater (Simonovic 2002) are the best known 
models. ANEMI is a more recent model in this same tradition (Davies and Simonovic 2010, 
2011). These models deviate from other world water models such as WaterGap (Alcomo et al. 
2003) and PCR-GLOBW (van Beek and Bierkens 2009) in that the various feedbacks between 
the water cycle, water use, socio economic developments, the climate, etc. are endogenous to 
the model. In contrast, in WaterGap for example, scenarios for population development, GDP, 
and electricity production are necessary inputs. This implies that models like WaterGap cannot 
be applied to investigate the impact of water shortages over time on how population or GDP 
evolves, nor can it cope with human adaptation to water shortage. For example, WaterGap will 
overestimate irrigation consumption in case of water shortage (Hunger and Döll 2008). This 
advantage of integrated dynamic world water models, however, comes at the price of not 
being geographically explicit.  

2.2 Coping with uncertainty 
The issue of uncertainty is addressed by applying EMA. EMA can be contrasted with the use 
of models to predict system behavior, where models are built by consolidating known facts 
into a single package (Hodges and Dewar 1992). When experimentally validated, this single 
model can be used for analysis as a surrogate for the actual system. Where applicable, this 
consolidative methodology is a powerful technique for understanding the behavior of complex 
systems. Unfortunately, for many systems of interest, the construction of a model that may be 
validly used as surrogate is simply not a possibility. This may be due to a variety of factors, 
including the infeasibility of critical experiments, impossibility of accurate measurements or 
observations, immaturity of theory, openness of the system to unpredictable outside 
perturbations, or nonlinearity of system behavior, but is fundamentally a matter of not 
knowing enough to make predictions (Cambell et al. 1985; Hodges and Dewar 1992). For such 
systems, a methodology based on consolidating all known information into a single model and 
using it to make best estimate predictions can be highly misleading.  
 
EMA can be useful when relevant information exists that can be exploited by building models, 
but where this information is insufficient to specify a single model that accurately describes 
system behavior. Under these conditions, models can be constructed that are consistent with 
the available information, but such models are not unique. Rather than specifying a single 
model and treating it as a reliable image of the system of interest, the available information is 
consistent with a set of models, whose implications for potential decisions may be quite 
diverse. A single model run drawn from this potentially infinite set of plausible models is not a 
“prediction”; rather, it provides a computational experiment that reveals how the world would 
behave if the various guesses any particular model makes about the various unresolvable 
uncertainties were correct. By conducting many such computational experiments, one can 
explore the implications of the various guesses. EMA is the explicit representation of the set of 
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plausible models, the process of exploiting the information contained in such a set through a 
large number of computational experiments, and the exploration and analysis of the results of 
these experiments. In this way, EMA aims at offering support to decision making, without 
falling into the pitfall of trying to predict the unpredictable. 
 
EMA takes a particular stance on how models can be usefully applied to inform 
decisionmaking despite their limited predictive power. This stance is independent of the type 
of modeling paradigm that is being used. EMA researchers have utilized agent based models, 
spreadsheet models, operation research models, and domain specific modeling approaches. 
Recently, there has been an upsurge in combining EMA with exploratory System Dynamics 
models. EMA and System Dynamics are perfect partners (Pruyt 2010, 2010; Pruyt and 
Hamarat 2010; Pruyt 2007). System dynamics is traditionally used for modeling and 
simulating dynamically complex issues, analyzing the resulting non-linear behaviors over 
time, and developing and testing structural policies. Most dynamically complex problems are 
characterized by deep uncertainty, since in case of dynamic complex issues the cause effect 
relations are subtle (Senge 1990). The omnipresence of uncertainty has been recognized by 
many system dynamicists  and is the underlying motivation for interpreting the quantitative 
results of system dynamics models qualitatively (e.g. in term of modes of behaviors or 
behavioral trajectories) (Meadows and Robinson 1985; Pruyt 2007). This qualitative 
interpretation of model results is compatible with the interpretation of model results in EMA.  
 
Two basic search strategies exist in the context of EMA: open exploration and directed search. 
Open exploration can be used to systematically explore the set of plausible models. This 
exploration relies on the careful design of the computational experiments and can use 
techniques such as Monte Carlo sampling, Latin Hypercube sampling, or factorial methods. 
An open exploration can be used to answer questions such as “What kind of behavioral 
trajectories can the system exhibit?” “Under what circumstances would this policy do well? 
Under what circumstances would it likely fail?” An open exploration provides insight into the 
full richness of behaviors that the ensemble of models can exhibit. Coupled with various 
analytic techniques, such as rule induction methods, an open exploration can also reveal the 
necessary conditions for the occurrence of a particular behavior, or the success of failure of 
policies. Directed search, in contrast, is a search strategy for finding particular cases that are of 
interest. Directed search can be used to answer questions such as “What is the bandwidth of 
model outcomes over time?” “what is the worst that could happen?” What is the best that 
could happen?” “How big is the difference in performance between rival policies?”. A 
directed search provides detailed insights into the dynamics of specific locations in the full 
space of plausible models. Directed search relies on the use of optimization techniques, such 
as genetic algorithms and conjugant gradient methods. Active non-linear test are an example 
of a directed search strategy (Miller 1998). Open exploration and directed search can 
complement each other. For example, if the open exploration reveals that there are distinct 
regions of possible dynamics, directed search can be employed to identify more precisely 
where the boundary is located between these distinct regions.  

2.3 An optimization algorithm for directed search 
A suitable optimization algorithm for directed search in the context of System Dynamics 
models should be able to cope with the non-linearity of the model, a non-linear objective 
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function, discontinuities in the search space, a search space that is rife with local optima, and 
noise (Miller 1998). In the context of EMA, two additional complications are added, namely a 
potentially very large search space, and a discontinuous search space arising out of the 
inclusion of variations in e.g. structural equations. On top of this, a suitable optimization 
algorithm should be economical. That is, it should be able to find the optimum relatively 
quickly, without requiring a very large number of computational runs. As argued by Miller 
(1998), Genetic Algorithms (GA) are a perfect candidate that is able to meet the outlined 
requirements.  
 
GA have proved to be an effective optimization algorithm for complex optimization problems 
(Goldberg 1989) due to their flexibility and efficiency in complex and irregular solution 
spaces (Chambers 1999). GA is inspired by the process of natural selection observed in 
biological systems (Fraser and Burnell 1970; Holland 1975). A GA starts with a population of 
randomly generated candidate solutions characterized by their model parameters. Each 
member of this population is a chromosome. And each chromosome consists of a alleles. Each 
allele corresponds to a particular model parameter. The fitness of the fitness of each 
population member of the initial population is assessed using a user specified objective 
function. In light of the fitness scores of the current population members, a next generation is 
created. The next generation is created ,  through evolutionary processes such as mutation and 
crossover . Mutation randomly makes alterations in candidate solutions. In crossover, more 
than one member from the previous generation are recombined into a member of the next 
generation. Once the next generation is created, the fitness calculations are computed again for 
the new population members. This process of fitness evaluation and reproduction of new 
generation is repeated until a pre-specified termination criterion is met. Possible termination 
criteria include reaching a desired solution, a fixed number of iterations, and convergence of 
the fitness scores.  

3 ANEMI 
ANEMI, an ancient Greek term for the four winds, heralds of the four seasons, links physical 
systems such as climate, the hydrological cycle and the carbon cycle with socio-economic 
systems, including economy, land use, population change and water use (Davies and 
Simonovic 2010). It was designed as an integrated assessment model that would permit the 
assessment both of socio-economic policies and uncertainties about the overall system (Davies 
and Simonovic 2010). ANEMI is a system dynamics model, focusing in particular on the 
importance of the feedback relations between the various physical and socio-economic 
subsystems, and the dynamics arising out of these feedbacks, rather than aiming at providing 
detailed predictions.  
 
ANEMI is a System Dynamics model. Central to System Dynamics models is the endogenous 
point of view (Richardson 2011). According to this view, the dynamic behavior of a system 
arises within the internal structure of a model. This view implies a closed system boundary, 
where the behavioral dynamics of the system arise out of interacting feedback loops. Thus, in 
System Dynamics, a system is viewed as an ongoing interdepended, self-sustaining, dynamic 
process. That is, the observed behavior of a system is to be understood as arising out of the 
internal structure of the system. This internal structure of a system is conceptualized using 
stocks and flows, and relations between them. System Dynamics is a modeling method for 
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understanding the behaviors of nonlinear, dynamic and complex systems and for policy 
analysis and design (Sterman 2000). 
 
ANEMI is composed of nine subsystems: climate, carbon cycle, economy, land-use, 
population, agricultural production, natural hydrological cycle, water use, and water quality 
(Davies 2007; Davies and Simonovic 2008, 2011). Figure 1shows the main feedback structure 
of the model. The positive or negative sign associated with each arrow indicates the direction 
of change one model component has on the other model component. The names next to each 
arrow indicate which aspect of the model component causes a change in the other model 
component. The closed loop structure of the model implies that model behavior emerges 
endogenous feedbacks (Davies and Simonovic 2010). The model has been validated through 
comparison with government statistics, scientific data, results from other models, and socio 
economic data (Davies 2007; Davies and Simonovic 2008, 2010, 2011). 

 
Figure 1: Model components and their feedbacks (Davies and Simonovic, 2011) 

The climate sector is an upwelling diffusion energy balance model based on the box advection 
diffusion model of Harvey and Schneider (1985). The carbon cycle is based on Goudriaan and 
Ketner (1984), where the oceanic sector is modified based on Fiddaman (1997). The land use 
system is based on Goudriaan and Ketner (1984). The population component is based on 
Nordhause and Boyer (2000) and Fiddaman (1997). However, the dynamics are endogenous 
by including water stress (Davies and Simonovic 2010). The economic components is inspired 
by the updated DICE model (Nordhaus 2008). The three water parts and the agricultural 
production are unique to ANEMI, but build on earlier work (e.g. Shiklomanov 2000; 
Simonovic 2002). The water use model is similar to WaterGAP 2 (Alcomo et al. 2003). Water 
quality is comparable to how it is handled in WorldWater (Simonovic 2002). Surface flow, 
and the hydrological cycle are influenced by Chanine (1992), Shiklomanov (2000), and 
Simonovic (2002). The agricultural component is the latest addition to ANEMI and is based 
on Bouwman et al. (2005), Siebert and Döll (2010), and FAO data (Davies and Simonovic 
2011). ANEMI is implemented in Vensim (Ventana Systems Inc. 2011).  
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4 Results 

4.1 Defining the search space 
Table 1 contains an overview of the parameters and their ranges that constitute the search 
space. For this paper, we concentrated on parameters related directly to water use. The 
documentation of the model was reviewed and parameters that were either explicitly denoted 
as a guess or assumption, or for which divergent possible values were named, were included in 
the analysis. The parameters include various time series that describe developments over the 
full runtime, such as the changing demand for food per person per year. These time series 
were replaced with sigmoid functions:  
 

 
 
Here, α, β, γ, δ, are uncertain parameters that can be explored; α and β control the upper and 
lower limit of the sigmoid, γ controls when the sigmoid is half way between the two limits, 
and δ controls the slope. In this way, structural uncertainty related to the parameterization of 
table functions is included in the analysis.  
 

Table 1. The uncertainties and their ranges 

uncertainty description range 

Agricultural Blue Water 
Dilution Factor 

factor for dilution of polluted agricultural blue water 5-10 

Agricultural Polluted 
Fraction 

percentage of return flow of agricultural blue water that is polluted 0.7-0.95 

Average Virtual Water 
Content of Crops 

virtual water in crops in m3/Gcal 400-500 

Average Virtual Water 
Content of Fodder 

virtual water in fodder in m3/Gcal 200-300 

Base Specific Water Intake base value for water intake in agriculture in m3/ha/year 9000-12000 
Base Returnable Water base value for water return flow from agriculture in m3/ha/year 10-50 
Base Precipitation Multiplier increase of precipitation due to increasing global temperature in %/Celsius 3-4 

Domestic Dilution Factor factor for dilution of polluted domestic water 5-10 
Domestic Polluted Fraction percentage of return flow of domestic water that is polluted 90-100 
Fractional Usage of 
Desalination Capacity 

fraction of desalinization capacity that is being used 0.3-0.7 

Fcl simple area weighted cloud fraction 0.5-0.6 
Gamma d factor affecting increase in water demand per person due to gdp/capita 

increase 
2.2e-10-2.2e-06 

Industrial Dilution Factor factor for dilution of polluted industrial water 5-10 

Industrial Polluted Fraction percentage of return flow of industrial water that is polluted 38-46 
Max Groundwater 
Withdrawal 

maximum amount of ground water withdrawal in km3/Year 7-10 

Maximum Establishment of 
Desalination Facilities 

maximum amount of desalinization capacity in km3/year 25-40 

Percent Domestic 
Withdrawal 

percentage of domestic withdrawal that is consumed 80-90 

Stable and Useable Runoff 
Percentage 

fraction of runoff that can be used, taking pollution dilution into account 30-40 

Yield Ratio for rainfed to 
irrigated agriculture 

yield fraction of rain fed agriculture as compared to irrigated agriculture 0.4-0.8 

Wastewater Dilution 
Requirement 

multiplier for dilution of polluted water 6-10 
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Technological Change for 
Consumption in Agricultural 
Sector lookup 

transient scenario for technological change in agriculture affecting water 
consumption 

sigmoid function 

Technological Change for 
Withdrawals in Agricultural 
Sector lookup 

transient scenario for technological change in agriculture affecting water 
withdrawal 

sigmoid function 

Crop Productivity Gains 
lookup 

transient scenario for gains in crop productivity sigmoid function 

Percentage increase in 
irrigated area lookup 

transient scenario for increase in irrigated area sigmoid function 

Global Per Capita Food 
Consumption lookup 

transient scenario for increase in food consumption sigmoid function 

 
In order to explore the behavior of the model over the listed uncertainties, a shell written in 
Python is utilized. This shell is used for our convenience only, and not because of the fact that 
existing System Dynamics software does not allow for performing EMA. This ‘EMA 
workbench’ controls Vensim through its Dynamic Link Library (DLL). The workbench is 
responsible for generating input values for the various uncertainties, setting these values on the 
models, executing the models, and storing its results. The workbench supports parallel 
processing to reduce computational time. The genetic algorithm was based on the open source 
library PyEvolve, which was extended to fit into the overall architecture of the EMA 
workbench.  

4.2 Application of GA 
Two separate optimizations are executed. We maximize the water stress over the run and we 
minimize the terminal value for the world population. Water stress is an indicator of the 
fraction of renewable water that is being used on a yearly basis. Typically, values higher than 
0.4 are labeled as severe water stress and indicate potential local or regional shortages and 
water related conflicts (Alcomo, Flörke, and Märker 2007). A value for water stress well 
above 0.4 over the run thus indicates that a limit to fresh water usage has been passed (Alcomo 
et al. 2003). Given that the idea of planetary limits is closely tied to the thriving of human 
civilization and the world’s population, looking at the lowest value  for the world population 
in 2100 is a good proxy for having passed a limit to fresh water use. Thus, we look at two 
different ways of understanding limits to the planetary fresh water cycle.  
 
The GA was parameterized as follows. Each generation contained a 1000 population 
members. We ran the optimization for 100 generations, with a crossover rate of 0.01 and a 
mutation rate of 0.05. That is, there is a 1% chance for a random mutation for each population 
member and a 5% change of a crossover when creating the next generation. Figure 2 shows 
the evolution of the algorithm over the generations for maximizing the water stress. The line 
indicates the average score on the objective function, and the error bars indicate the minimum 
and maximum value encountered in each generation. As can be seen, the algorithm converged 
after roughly 60 generations. For the minimization of the world population in 2100, a similar 
figure emerges.  
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beta food consumption  3499.264192 3450.646339 

beta irrigated area  2.492830323 2.354092042 

beta withdrawals  0.500340128 0.833152332 

delta consumption  14.20058734 29.47769271 

delta crops  29.87094202 28.23127418 

delta food consumption  29.94513384 10.21213091 

delta irrigated area  39.78929775 28.99601442 

delta withdrawals  10.00156791 21.76345533 

Domestic Dilution Factor  5.011686103 9.824745751 

Domestic Polluted Fraction  90.00941738 97.17528749 

Fcl  0.599431203 0.591478507 

Fractional Usage of Desalination Capacity  0.698533655 0.585355964 

gamma consumption  2000.160573 2069.071024 

gamma crops  2009.940357 2009.57812 

Gamma d  4.56E-09 1.25E-06 

gamma food consumption  1959.857032 1941.496592 

gamma irrigated area  1999.999505 1998.977764 

gamma withdrawals  2047.942128 2001.943708 

Industrial Dilution Factor  5.007851723 9.196068032 

Industrial Polluted Fraction  38.0476917 39.11256461 

Max Groundwater Withdrawal  7.100233952 7.465027144 

Maximum Establishment of Desalination Facilities  39.86164451 37.64254459 

Percent Domestic Withdrawal  80.01281784 86.7731994 

Stable and Useable Runoff Percentage  34.9647949 32.61353969 

Wastewater Dilution Requirement  9.638636676 8.499785182 

Yield Ratio for rainfed to irrigated agriculture  0.400061095 0.403879995 
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further. The aim of such an investigation would be to identify the subspace of 
parameterizations of the model that produces this dynamic and the feedback loops responsible 
for the decline. 
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