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Abstract 

Construction projects are complex as they include many activities which influence and 

interact with each other at different stages. The impact of design phase undiscovered rework on 

construction phase quality has been hypothesized as influential in project dynamics by many. 

However few empirical studies have measured this impact. In this paper we develop a simple 

system dynamics model, estimate it using data from 18 construction projects, and validate the 

model on a validation set of 15 projects. The model provides good fit for the calibration set and 

strong predictive power on the validation set. It also allows us to estimate the impact of 

undiscovered design changes on construction phase quality, which appears to be notable.  

Keywords: Design Change Orders, Construction Performance, Project Supply Chain, 
System Dynamics, Project Management 

Introduction 

Two features distinguish construction projects from many routine work processes. First, 

construction projects are typically unique in terms of the final products and the parties who are 

involved in the project. They are also often unique in terms of the physical and socio-economic 
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environment they are embedded in. These factors increase the variability from project to project 

and increases the complexity of the project management and control in construction. Second, 

construction projects are complex in terms of the number of the activities and parties that are 

involved in the project and their interactions. Typically over 1000 activities are involved in a 

medium size construction project, which can increase the unpredictability of project schedule 

and planning. Uncertainty propagates in a project as each activity is influenced by/influences 

other upstream and downstream activities, i.e. predecessors and successors. Overall, uniqueness, 

complexity, and uncertainty lead to significant cost and schedule over-runs across many projects. 

Understanding the mechanisms that explain these variations from plans and proposing methods 

to reduce variation and minimize costs remains a major goal for construction management 

research. 

Change in construction projects 

Changes, i.e. deviations from plan, are inevitable in most construction projects (Ibbs and 

Allen 1995; Hanna et al. (2002); Revay 2003). Change can be positive or negative. The positive 

change benefits the project to save cost, time, or even improve the quality or scope of work. 

However, the negative change deteriorates the project outcomes. The changes in the construction 

projects are typically documented in the form of the change orders. The change orders are the 

official documents attached to the original contract as modifications. They are issued to correct 

or modify the original contract. The change orders can be categorized by their features such as: 

reason, responsibility, legal aspects, and costs (Sun et al. (2008); Keane et al. (2010)). The 

reasons for change orders often fall in one of the four categories: design error, design omission, 

different site condition and scope change.  
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Many see changes as the main source of uncertainties in project prediction and have 

studied factors that influence changes (Arain et al. 2004, Sears and Sears 1994; O’Brien 1998; 

Ibbs and Allen 1995; Chappell and Willis 1996; Sanvido et al. 1997; Gray and Hughes 2001; 

Wang 2000;Fisk 1997;Dell’Isola 1982; Geok 2002; Thomas and Napolitan 1995; Arain 2002; 

Chan et al. 1997; Hsieh et al. 2004; Wu et al. 2004; Arain et al. 2005; Hanna (1999,2002,2004); 

Bower 2002). A wide range of hypotheses have been proposed and tested to identify the factors 

and measure their impacts on the project deviation. Hinze et al. (1992) stated that the cost 

overruns tend to increase with the project size. Thurgood et al. (1990) found that rehabilitation 

and reconstruction projects are more likely to increase the cost overruns in comparison with the 

maintenance projects. Riley et al. (2005) examined the effects of the delivery methods on the 

frequency and magnitude of change orders in mechanical construction. Gkritza and Labi (2008) 

showed that the project duration increases the chance of cost overrun. Kaming et al. (1997) 

found the design changes are one of the most important causes of time overruns in 31 high-rise 

projects studied in Indonesia. Moslehi et al. (2005) studied the impact of change orders on the 

labor productivity by using 117 construction projects in Canada and US. Acharya et al. (2006) 

identified the change orders as the third factor in construction conflicts in Korea. Assaf and Al-

Hejji (2006) studied 76 projects in Saudi Arabia and found the change order as the most common 

cause of delay identified by all parties: owner, consultant and contractor  

There is also a rich literature in system dynamics that covers project modeling in general 

and construction projects in particular (Lyneis and Ford 2007).  This literature captures the 

change in projects through the rework cycle formulation (Sterman 2000) and builds on that the 

different feedback effects that endogenously change productivity and quality of work by project 

staff and thus regulate the rate of changes made through the project life cycle.  
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If we consider the two key phases of design and construction common to most projects, 

the impact of the design errors on the changes in construction is one of the important issues 

related to factors that derive project changes. Several researchers have hypothesized that 

undiscovered changes in the design phase increases the latent changes in the construction phase; 

Hauck (1983), Martin and Macleod (2004); Ransom (2008) and Sun and Meng (2009). This 

hypothesis is in line with previous modeling work in the system dynamics literature (Ford and 

Sterman 1998) but has received limited empirical tests due to the complexity of measuring 

undiscovered changes in design. In this study we propose to tackle this problem using data from 

multiple construction projects and leveraging the system dynamics modeling framework. 

Research methodology 

A system dynamics model is developed to represent the construction projects’ behavior in 

terms of the cost over time. The data of the 33 actual construction projects were gathered to 

calibrate a two-phase system dynamics model of construction dynamics. The available project 

data include: the estimated duration (T0), estimated cost (W0), actual duration (T) and actual cost 

(W) of the design and construction activities along with the list of the design and construction 

change orders during the project. The cumulative amount of the design and construction change 

orders over time produce the design and construction cost deviation curves. The Figure 1 shows 

the design and construction cost overrun curves of an example project.  

Eighteen projects are randomly selected out of the 33 to perform the model calibration 

and the data from the other 15 projects is used for validation purposes. Simulation calibration is 

used to estimate the impact of the design changes on the construction performance indices. 
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estimates the impact of undiscovered design errors on construction work quality. Design quality 

is assumed to be constant throughout the project timeline. 

In the absence of data on the number of project staff, we use initial scope of each phase 

and divide that by the initial schedule to get a constant normalizing factor for firepower of the 

project (i.e. the parameter Design>P and Construction>P in  Figure 2is calculated as this 

normalizing factor multiplied by a project specific variation in productivity). The model also 

includes formulations to measure changes in each phase, cumulative changes, final design and 

construction finish time based on a 99 percent threshold for completion, and design and 

construction overlap. Design>ActualCompletionToStartConstuction is the design percent 

completion as a threshold to start construction. The model is available online as a supplement to 

this paper. 
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Figure 4: Examples of the cost overrun curves of the four calibration sample projects 
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