Abstract for: A System Dynamics Model-Based Exploratory Analysis of Salt Water Intrusion in Coastal Aquifers
Coastal communities dependent upon groundwater resources for drinking water and irrigation are vulnerable to salinization of the groundwater reserve. The increasing uncertainty associated with changing climatic conditions, population and economic development, and technological advances poses significant challenges for freshwater management. The research reported in this paper offers an approach for investigating and addressing the challenges to freshwater management using innovative exploratory modeling techniques. We present a generic system dynamics model of a low lying coastal region that depends on its groundwater resources. This systems model covers population, agriculture, industry, and the groundwater reserve. The system model in turn is coupled to a powerful scenario generator, which is capable of producing a comprehensive range of plausible future scenarios. Each scenario describes a unique future pathway of the evolution of population, the economy, agricultural and water purification technologies. We explore the behavior of the systems model across a wide range of scenarios and analyze the implications of these scenarios for freshwater management in the coastal region. In particular, the results are summarized in a decision tree that provides insights into the expected outcomes given the various uncertainties, thus supporting the development of effective policies for managing the coastal aquifer.