
Using Simulation to teach project
management skills

Dr. Alain April, ÉTS Montréal
alain.april@etsmtl.ca

Agenda of the workshop

1  The software project management theory overview (40
minutes)

2  Why use SDLC simulation with students (2 minutes)
3  Introduction to the SIMSE simulator (5 minutes)
4  SIMSE installation and interface overview
5  SIMSE simulator execution & support tools
6  SIMSE examples of student results
7  Questions and Answers

1. The software project
management theory overview (30
minutes)

A project is a form of organizing work
P

ro
du

ct
io

n
vo

lu
m

e

Time span

Project

Assembly line

Flexible
manufacturing

systems /
Workstations

Flexible
manufacturing

systems /
Workstations

H
ig

h
Lo

w

Limited On-going concern

Many projects: 1) Do not deliver on-time, 2) Do
not deliver on budget, 3) Do not deliver

Chaos Report, Standish Group, 2001

Projects have complex behaviours

 They can not be steered in the desired direction by doing
just one thing at a time, be it overtime, reducing scope or
increasing one project’s headcount, and that there is an
omnipresent present risk of “over steering” the project.

 Responses to the actions of the project manager are non-
linear, time-lagged and time dependent. The
demonstrability of causes and effects are ambiguous.
Inputs and outputs are not proportional. The whole is not
quantitatively equal to its parts, or even qualitatively
recognizable in its constituent components.

Project Management Dynamics

Productivity

Overtime

Effort

Schedule

Quality Rework

Cost

Product Size

Roles in the Project Organization

Project
Manager

Steering
Committee

Sponsor

Team 2 Team 1

Sub-project

Team 3

Sub-project

The project management work

  What?
–  Identify work to be done
–  Produce estimates
–  Plan work, resources & funds
–  Identify issues & risks
–  Acquire Resources
–  Establish performance baseline
–  Measure progress
–  Take corrective action
–  Motivate
–  Communicate

  When
–  At the beginning of the project
–  Rolling wave

  How
–  WBS
–  OBS
–  RBS
–  CBS
–  PERT
–  CCM
–  EVM
–  FP
–  SDLC
–  SLOC
–  LOB
–  WP
–  PMB
–  …

System Development Life Cycle (SDLC)

Limited resources and identifying work

Choosing a SDLC will influence project
management practices

  SDLC: is a framework that describes the
activities performed at each stage of a software
development project;

  There are many types to choose from:
– The Waterfall model;
– The incremental model;
– The rapid prototyping model;
– Agile SDLC : The Extreme Programming model;
–  The Rational Unified model.

Waterfall Model

 Requirements Documents –
defines needed information,
function, behavior, performance
and interfaces.

 Design Documents – data
structures, software
architecture, interface
representations, algorithmic
details.

 Source Code – database, user
documentation.

 Testing – System test plan,
test cases, error reports, re-test

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Waterfall Strengths

 Easy to understand, easy to use
 Provides structure to inexperienced staff
 Milestones are well understood
 Sets requirements stability
 Good for management control (plan, staff, track)
 Works well when quality is more important than

cost or schedule

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Waterfall Deficiencies

 All requirements must be known upfront
 Deliverables created for each phase are

considered frozen – inhibits flexibility
 Can give a false impression of progress
 Does not reflect problem-solving nature of

software development – iterations of phases
 Integration is one big bang at the end
 Little opportunity for customer to preview the

system (until it may be too late)

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

When to use the Waterfall Model

 Requirements are very well known
 Product definition is stable
 Technology is understood
 New version of an existing product
 Porting an existing product to a new platform.

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Incremental SDLC Model

 Construct a partial
implementation of a total
system

  Then slowly add increased
functionality

  The incremental model
prioritizes requirements of the
system and then implements
them in groups.

 Each subsequent release of the
system adds function to the
previous release, until all
designed functionality has been
implemented.

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Incremental Model Strengths

 Develop high-risk or major functions first
 Each release delivers an operational product
 Customer can respond to each build
 Uses “divide and conquer” breakdown of tasks
 Lowers initial delivery cost
 Initial product delivery is faster
 Customers get important functionality early
 Risk of changing requirements is reduced

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Incremental Model Weaknesses

 Requires good planning and design
 Requires early definition of a complete and fully functional

system to allow for the definition of increments
 Well-defined module interfaces are required (some will be

developed long before others)
 Total cost of the complete system is not lower

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

When to use the Incremental Model

 Risk, funding, schedule, program complexity, or
need for early realization of benefits.

 Most of the requirements are known up-front but
are expected to evolve over time

 A need to get basic functionality to the market
early

 On projects which have lengthy development
schedules

 On a project with new technology

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Rapid Application Model (RAD)

 Requirements planning phase (a workshop
utilizing structured discussion of business
problems)

 User description phase – automated tools
capture information from users

 Construction phase – productivity tools, such as
code generators, screen generators, etc. inside a
time-box. (“Do until done”)

 Cutover phase -- installation of the system, user
acceptance testing and user training

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

RAD Strengths

 Reduced cycle time and improved productivity
with fewer people means lower costs

 Time-box approach mitigates cost and schedule
risk

 Customer involved throughout the complete cycle
minimizes risk of not achieving customer
satisfaction and business needs

 Focus moves from documentation to code
(WYSIWYG).

 Uses modeling concepts to capture information
about business, data, and processes.

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

RAD Weaknesses

 Accelerated development process must give
quick responses to the user

 Risk of never achieving closure
 Hard to use with legacy systems
 Requires a system that can be modularized
 Developers and customers must be committed to

rapid-fire activities in an abbreviated time frame.

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

When to use RAD

 Reasonably well-known requirements
 User involved throughout the life cycle
 Project can be time-boxed
 Functionality delivered in increments
 High performance not required
 Low technical risks
 System can be modularized

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Agile SDLC’s

 Speed up or bypass one or more life cycle phases
 Usually less formal and reduced scope
 Used for time-critical applications
 Used in organizations that employ disciplined methods

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Some Agile Methods

 Adaptive Software Development (ASD)
 Feature Driven Development (FDD)
 Crystal Clear
 Dynamic Software Development Method (DSDM)
 Rapid Application Development (RAD)
 Scrum
 Extreme Programming (XP)
 Rational Unify Process (RUP)

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Extreme Programming – (XP)

For small-to-medium-sized teams developing software with
vague or rapidly changing requirements

Coding is the key activity throughout a software project
 Communication among teammates is done with code
 Life cycle and behavior of complex objects defined in test

cases – again in code

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

XP Practices (1-6)

1.  Planning game – determine scope of the next release
by combining business priorities and technical
estimates

2.  Small releases – put a simple system into production,
then release new versions in very short cycle

3.  Metaphor – all development is guided by a simple
shared story of how the whole system works

4.  Simple design – system is designed as simply as
possible (extra complexity removed as soon as found)

5.  Testing – programmers continuously write unit tests;
customers write tests for features

6.  Refactoring – programmers continuously restructure
the system without changing its behavior to remove
duplication and simplify

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

XP Practices (7 – 12)

7.  Pair-programming -- all production code is written with
two programmers at one machine

8.  Collective ownership – anyone can change any code
anywhere in the system at any time.

9.  Continuous integration – integrate and build the
system many times a day – every time a task is
completed.

10.  40-hour week – work no more than 40 hours a week as
a rule

11.  On-site customer – a user is on the team and available
full-time to answer questions

12.  Coding standards – programmers write all code in
accordance with rules emphasizing communication
through the code

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

XP is “extreme” because

Commonsense practices taken to extreme levels

  If code reviews are good, review code all the time (pair programming)
  If testing is good, everybody will test all the time
  If simplicity is good, keep the system in the simplest design that

supports its current functionality. (simplest thing that works)
  If design is good, everybody will design daily (refactoring)
  If architecture is important, everybody will work at defining and

refining the architecture (metaphor)
  If integration testing is important, build and integrate test several

times a day (continuous integration)
  If short iterations are good, make iterations really, really short (hours

rather than weeks)

condor.depaul.edu/jpetlick/extra/394/Session2.ppt

Rational Unified Processes model (RUP)

 In its simplest form, RUP consists of some fundamental
workflows:

–  Business Engineering: Understanding the needs of the business.
–  Requirements: Translating business need into the behaviors of an

automated system.
–  Analysis and Design: Translating requirements into software

architecture.
–  Implementation: Creating software that fits within the architecture and

has the required behaviors.
–  Test: Ensuring that the required behaviors are correct, and that all

required behaviors are present.
–  Configuration and change management: Keeping track of all the

different versions of all the work products.
–  Project Management: Managing schedules and resources.
–  Environment: Setting up and maintaining the development environment.
–  Deployment: Everything needed to roll out the project.

RUP model rules

Six Best Practices

1 - Develop iteratively

It is best to know all requirements in advance; however,
often this is not the case. Several software development
processes exist that deal with providing solution on how to
minimize cost in terms of development phases.

2 - Manage requirements

Always keep in mind the requirements set by users.

3 - Use components

Breaking down an advanced project is not only suggested
but in fact unavoidable.

RUP model rules

4 - Model visually
 Use diagrams to represent all major components, users,

and their interaction. "UML", short for Unified Modeling
Language, is one tool that can be used to make this task
more feasible.

5 - Verify quality
 Always make testing a major part of the project at any

point of time. Testing becomes heavier as the project
progresses but should be a constant factor in any
software product creation.

RUP model rules

6 - Control changes
 Many projects are created by many teams, sometimes in

various locations, different platforms may be used, etc. As
a result it is essential to make sure that changes made to
a system are synchronized and verified constantly. (See
Continuous integration).

2. Why use Software Development
Life-Cycle simulation with students

Why use Software Development Life-Cycle
simulation with students

 Simulation allows students to experience
how each SDLC impacts their
management style;

 Iterative use of simulator allows them to
test different assumptions and see the
resulting score;

 A great way to experience/debate on the
abstract concepts imbedded in software
project management

Introduction to the SIMSE simulator

An educational, Game-Based
Software Engineering Simulation
Environment by Emily Navarro of
University of California - Irvine

 click here

Introduction to SIMSE Simulator

 How is it built ?

Introduction to SIMSE Simulator

 How long is a typical simulation ?
–  30 minutes to 2 hours for the Waterfall
–  20 minutes to an hour for RUP
–  10 to 20 minutes for RAD

 How do I use SIMSE in my class ?
–  The simplest way SimSE could be used is by just assigning students a

simulation as a homework exercise. Of course, being the least involved
approach, this may also provide the least inimal benefit of all of the
approaches.

–  An instructor could also use SimSE in class, as an illustration tool for the
concepts being taught in a lecture. For example, when talking about
different life cycles, an instructor could show SimSE simulations of each
life cycle model. Of course, this option would require more time and
more effort in actually building different models, but would also be more
rewarding than more simple options.

Introduction to SIMSE Simulator

 What do I need to run the simulator ?
–  The latest JDK (Java SE Development Kit)

 How do I get the SDLC I want to simulate ?
–  Each SDLC is ready to use, all you have to do is download it from the

website http://www.ics.uci.edu/~emilyo/SimSE/downloads.html

 How do I start a game and how does it work ?
–  Once downloaded a game (.exe) you should read the .txt file which will

explain your game objective. As an example the Waterfall objective is:
–  Your task is to create a a WEB system: Groceries@home
–  Your Budget: $280,000
–  Your timeline: $1,350 clock ticks

 Ready ? Then just click on the waterfall.exe to start the
game

Introduction to SIMSE SImulator

Lets listen to a tutorial showing how:
-  Beginning a game
-  Viewing Resources (5 types: Artifacts, Customers,

Employees, Projects and Tools)

 click here

 

 How is SIMSE to be used in the classroom?
–  The simplest way SimSE could be used is by just assigning students a

simulation as a homework exercise. Of course, being the least involved
approach, this may also provide the least inimal benefit of all of the
approaches.

–  An instructor could also use SimSE in class, as an illustration tool for the
concepts being taught in a lecture. For example, when talking about
different life cycles, an instructor could show SimSE simulations of each
life cycle model. Of course, this option would require more time and more
effort in actually building different models, but would also be more
rewarding than more simple options. An additional enhancement to this
approach would be having each student in the class also run the
simulations on their laptops.

–  Ideally, reflection and dialogue sessions should accompany student use of
SimSE, in which they are asked to reflect on and discuss the lessons they
learned. This is also helpful in evaluating the quality of the models.

–  Advanced students could even build their own models of software
processes.

