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ABSTRACT

In this paper, we apply system dynamics to modejuauing system wherein the
manager of a service facility adjusts capacity asehis perception of the queue size; while
potential and current customers react to the masagdecisions. Current customers update
their perception based on their own experiencedmuitle whether to remain patronizing the
facility, whereas potential customers estimaterte&pected waiting time through word of
mouth and decide whether to join the facility ot.\&e simulate the model and analyze the
evolution of the backlog of work and the availagégvice capacity. Based on this analysis we
propose two alternative decision rules to maxinmiee manager’'s cumulative profits. Then,
we illustrate how we have developed an experimentdilect information about the way
human subjects taking on the role of a managerab &nvironment face a situation in which
they must adjust the capacity of a service facility

KEYWORDS: Queuing system, capacity adjustment managementensyslynamics,
experimental economics, adaptive expectations
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INTRODUCTION

Most typical research in queuing problems has Heensed on the optimization of
performance measures and the equilibrium analykia gueuing system. Traditionally,
analytical modeling and simulation have been thpr@hes used to deal with queuing
problems. Most simulation models are stochastic anthe more recent models are
deterministic (van Ackere, Haxholdt, & Larsen, 2010

The analytical approach describes mathematicaltyaperating characteristics of the
system in terms of the performance measures, ysualsteady state" (Albright & Winston,
2009). This method is useful for low-complexity plems whose analytical solution is not
difficult to find. For complex problems, a simulati approach is preferable as it enables
modeling the problem in a more realistic way, wWelver simplifying assumptions (Albright
& Winston, 2009).

We consider those queuing systems in which cus®uhecide whether or not to join a
facility for service based on their perception @itmg time, while managers decide to adjust
capacity based on their perception of the backlbgvark (i.e. the number of customers
waiting for service). The analysis of queuing pesbs could be aimed at either optimizing
performance measures to improve the operating cteaistics of a system or understanding
how the manager and customers interact with theesyso achieve their objectives. In the
real world, queuing is a dynamic problem whose demity, intensity and effects on the
system change over time. Still, some problems maynodeled using the assumptions of
classical queuing theory (Rapoport, Stein, Parc&efile, 2004). Considering the complexity
of queuing problems, which is due to a set of axtBve and dynamic decisions by the agents
(i.e. customers and the manager) who take pattarsystem, we will focus on studying the
behavioral aspects of queuing problems.

Haxholdt, Larsen, & van Ackere (2003) and van Aekddaxholdt, & Larsen, (2006);
van Ackere et al., (2010) have applied determimisimulation methodologies for studying
behavioral aspects of a queuing system. Other euthave included cost allocation as a
control for system congestion (queue size) (e.gvddeand Mendelson 1990). In this way,
customers' decisions on whether or not to join sigtem are influenced by such costs.
Likewise, those decisions can be based on steatly{&.g. Dewan and Mendelson 1990). or
be state-dependent (e.g. van Ackere 1995). Thensérpapers on this subject are Naor
(1969) and Yechiali (1971). Other authors haveudetl dynamic feedback processes to build
perceptions of the behavior of the queue (van Azladral., 2006) and/or of demand (van
Ackere et al. 2010), which influence the decisimiscustomers and managers. A more
detailed discussion of the state of the art on \Weha aspects in queuing theory can be found
in (van Ackere et al., 2010).

We propose two methodological approaches to aehmw goals. Firstly, we use
system dynamics to learn about the macro-dynanficastomers and the manager interacting
in a service facility. Specifically we analyze htive available service capacity and the queue
evolve and how the delay structure affects the mparns decision. We also want to assess
how the manager adjusts capacity based on the tewolaf the backlog of work (i.e. the
number of customers waiting for service). Haxhetdal. (2003) and van Ackere et al. (2006
and 2010) applied system dynamics to tackled sinpitablems. System dynamics is useful
for problems, which do not require much detail. flisathose which can be modeled at a high
level of abstraction. This kind of problems is Uguaituated at the macro or strategic level
(e.g. marketplace & competition, population dynamniand ecosystem) (Borshchev &
Filippov, 2004)
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Next we apply experimental economics (Smith, 1982)apture information about how
subjects playing the role of a manager in a labrenment, decide when and by how much to
adjust the capacity of a service facility. We tlse system dynamics based simulation model
as a computational platform to perform the expenimEor more details about how system
dynamics models have been used to carry out laogragéxperiments, see (Arango,
Castaneda, & Olaya, 2011). Experimental economscsa imethodology that based on
collecting data from human subjects to study tHmehavior in a controlled economic
environment (Friedman & Sunder, 1994).

This paper is organized as follows: Firstly, wecdss the dynamic hypothesis of the
problem proposed initially by van Ackere et al. 12Dand explain why we modify the model.
Then, we analyze the model behavior of the base. ¢aghe following section, we introduce
two alternative strategies to manage the capadjystment of the service facility. We
determine the optimal parameters for these stedegnd analyze the resulting system
behavior. We also perform a sensitivity analysishi parameter values. Finally, we present
the experimental laboratory and discuss the catentsults.

A SERVICE FACILITY MANAGEMENT MODEL

In this section, we analyze the dynamic hypothesige queuing model proposed by
van Ackere et al. (2010). This model captures thlationship between customers and
manager (referred to as the service provider) astagvho interact in a service system. The
causal loop diagram of Figure 1 portrays the feekllsructure of these two actors in the
system. The model consists of two sectors: theoousts’ behavior is to the left and that of
the manager to the right. Both sectors are condebte the queue, whose evolution
determines the dynamics of these actors in thesysCustomers decide whether to use the
facility based on their estimate of waiting timehile the manager decides to adjust the
service capacity based on the queue length. Exanaplthis kind of system include a garage
where customers take their car for maintenance wamtélers or students who daily patronize
a restaurant to have lunch. In both examples, met® are free to use or not the facility for
service and the manager is motivated to encourag@mers to use his facility by adjusting
its service capacity.
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Figure 1. Feedback loop structure for a customers-faajitguing system

Two groups of customers are assumed: current atehfoal customers. The former
make up the customer base of the facility; theyopkrally patronize it as long as they are
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satisfied. They consider being satisfied when tlgjpected waiting time is less than the
market reference, which they find acceptable. Tdmoisd group represents those customers
who the manager envisages as potentially attrattiviee business. They can be either former
customers, who left due to dissatisfaction, or mestomers who require the service and look
for a facility. They decide whether or not to jdime facility depending on their expected
waiting time, which they also compare to the marké&trence.

Customers form their perception of waiting time/t() each period using adaptive
expectations (Nerlove, 1958), as shown in Equdtion

Wi = 6% Wiy +(1-9) *Wia (1)

where ¢ is called the coefficient of expectations (Nerlou®58) and W may be
considered as the time taken by customers to atiept expectations. Current customers
adjust their expectation based on their last eepeg (W), while potential customers rely on
word of mouth. The decision of joining a facilitgrfservice based on its reputation often
requires more time than when we base this decioour own experience. Thus, we assume
that the time required by potential customers tapadheir expectations is longer than or
equal to that of the current customers.

While the current customers’ perception determitiesr loyalty to the facility, the
potential customers’ perception defines if theyl yoin the customer base. The lower the
waiting time perceived by current customers, theenoyal they are, whereas the higher the
perceived waiting time, the more customers willethe customer base. Regarding potential
customers, the lower their expected waiting tirhe,rhore will become new customers for the
facility. The rates at which new customers join ¢clistomer base and current customers leave
it are modeled using nonlinear functions of thastattion level. van Ackere et al. (2010)
discuss some alternatives to model these functions.

To summarize the customers’ dynamics: longer qubtiag about higher waiting times
for current customers and increased perceptionwaifing time for potential customers,
implying that the level of satisfaction with theciigty’s service of both customer groups
decreases. Consequently, over time this reductionustomers’ satisfaction leads current
customers to leave the facility and discourages agstomers from joining it in the future.
Thus, the number of customers waiting for servidé decrease until the waiting time tends
to acceptable levels compared to the market refereend the customers’ perception
stabilizes. These dynamics are described by théoadancing loops to the left in Figure 1.

As far as the service provider (the right side igiuFe 1) is concerned, van Ackere et al.
(2010) model the type of service systems where dapacity adjustment involves an
implementation time. For instance, hiring new emp&s requires new training, laying off
staff may imply a notice period, acquiring new Iystems takes time, among others.
However, the authors represent this time in theehading an information delay (Sterman,
2000); after the manager estimates the requirecacitlgp any needed adjustment is
implemented gradually. This is a simplified viewtbé delay structure. In a system dynamics
context, this kind of delays is better modeled tigto material delays, which capture the real
physical flow of the capacity (Sterman, 2000). Otlee adjustment decision has been made,
its implementation process does not materialize ediately. We deviate from van Ackere et
al. (2010) by incorporating this material delayusture in the model, as the stock and flow
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diagram of Figure 2 illustrates. In this way, wexcaodel how the manager accounts for his
previous decisions, which have not yet taken efteanake his next decision.
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Figure 2. System dynamics representation for the capacjtysadent management of a
service facility.

The capacity adjustment process is depicted inrBiguby capacity orders and the
decision to retire capacity, which determine thailable service capacity. Starting from the
left, the manager decides how fast and how mucadjast capacity based on his desired
service capacity and the future capacity. The lagteexplained below and depends on his
previous decisions. He estimates the desired epapacity based on his perception of the
average queue length and a market reference fowditeng time (ug). Like the customers,
the manager forms this perception by applying adegxpectations. He updates his expected
average queue length based on the most recentvabearof the queuel.1). This expected
average queue lengte@) is given by:

EQ =4*Qa+(1-5)*EQ, (2

wherefis the coefficient of expectations for the manag®t 17 may be interpreted as
the time required by the manager to adapt his p&ore Then, the desired service capacity of
the manager is determined as follows:

_EQ
Tvr

DC 3)

The longer the queue the greater the desired gecapacity and the larger the capacity
orders (c.f Figure 1). After the manager decidew Imouch capacity to add (c.f. capacity
orders in Figure 2), these orders accumulate aacdgon order CO) until they are available
for delivery (c.f. capacity delivery delay in FiguR). Some examples of this kind of delayed
process in capacity acquisition include constructad new buildings, purchase of new
equipment and hiring staff. Once the capacity orsldulfilled, the service capacitysC) will
be increased by the capacity delivery. The grehgservice capacity, the higher the service

5
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rate and thus fewer customers waiting. In this waayhird balancing loop (c.f. capacity
acquisition loop in Figure 1) results from the dynes between the manager and customers.

The decision of adjusting capacity may also impdynoving capacity. When this
occurs, the capacity, which the manager decidesthmraw, will be designated as capacity to
be retired (CbR). This capacity remains availaldetiie customer during the capacity
retirement delay (e.g. end a lease on a buildimgice period for staff, etc). Hence, the
currently available service capacity at the fagiit timet is given by,

ASC, = SG + CbR 4)

After the delay involved in the capacity retiremethie available service capacity will
decrease due to this retirement, as shown in Fijuend the number of customers in the
gueue will thus increase. This effect yields therfio balancing loop in the system. This loop
describes the behavior caused by the decisionapafoity reduction.

Finally, the capacity that will be available ondethe manager’s decisions have been
implemented, i.e. the future capacity, is given by,

FSG=CQ + SG ®)

Then, Equations (4) implies thaSC; equals

FSG = ASG+ CQ - CbR (6)

To summarize the manager's dynamics: longer queugease his desired service
capacity. The higher this desired service capattiggmore capacity the manager orders or the
less he removes. Over time, the capacity ordefsinatease the available service capacity,
while the capacity retirement will decrease it. €equently, the higher (the lower) the
available service capacity the lower (the highke mumber of customers queuing. Like the
customers’ dynamics, the two balancing loops, wiieblcribe the manager’s behavior, may
lead to stabilizing his perception over time. Thug are interested in studying how the
manager analyzes the customers’ behavior in omladjust capacity and how the multiple
delays involved in the system affect his decisions.

MODEL BEHAVIOR

Before trying out some alternative policies or t&igees to model the manager’'s
decisions and discussing descriptively some expmarial results, we analyze the typical
behavior of the system occurring when one of thalégium conditions is modified. The
model is initially set under the equilibrium condits, which are described in Table 1. Then
we illustrate the impact on the system behavioinofeasing the size of the initial customer
base from 175 to 200. The other initial values renas shown in Table 1. We simulate the
model for 100 time units using a simulation stef®.6625 time units.
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State Variables Equilibrium Unit
Value

Customer base 175 People
Queue 50 People
Average queue 50 People
Capacity on order 0 People / Time
Service capacity 25 People / Time
Capacity to be retired 0 People / Time
Perceived waiting time of current customer 2 Timé u
Perceived waiting time of potential customers 2 & umit

Exogenous Variables Value Unit
Visit per time unit 0.15 1/ Time unit
Market reference waiting timewg) 2 Time unit

Delays Value Unit

Time to perceive queue length ([)/ 4 Time unit
Capacity delivery delay 4 Time unit
Capacity retirement delay 2 Time unit
Perception time of current customers @)/ 2 Time unit
Perception time of potential customers @y 4 Time unit

Table 1. Initial conditions of equilibrium

Figure 3 illustrates the evolution of the availablrvice capacity and the number of
customers waiting for service. We can observe tttmanager adjusts the service capacity
by imitating the evolution of the queue (i.e. treeklog of work). In this sense, he is trying to
keep the average waiting time close to the makderence and while keeping the utilization
rate close to 1, as shown in Figure 4. The lag®lwed in the manager and customer
dynamics in addition to the manager’s reaction ltasuthe oscillating phenomenon and a
certain decreasing tendency, as shown in FiguNe8t, we go into more detail of the causes
of this pattern.

An increase in the customer base will raise thwvalrrate. Considering that the service
capacity remains constant due to the lags invoindtle capacity adjustment process and the
formation of perceptions by the manager, more enets will wait for service. As the queue
increases, the manager adjusts gradually his desé@evice capacity. According to Figure 1,
the higher the desired service capacity, the latgecapacity orders. However, the capacity is
delivered after 4 periods. The average waiting tthexefore increases initially as plotted in
Figure 4, affecting the perception of current costcs and the expected waiting time of
potential customers. When the perception of waitintge exceeds the market reference (2
time units), the customer base starts to decrea®aube more current customers are
dissatisfied and fewer potential customers wishjdim the facility. Hence, when the
manager’s decisions to add capacity start to naizz| the backlog of work (i.e. the queue)

7
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is falling. Consequently, the available serviceamfy reaches its peak at about the time the
queue is reaching its nadir. Moreover, the managacts again to this behavior of the
customers, but on this occasion by reducing hidaha service capacity to avoid having idle
capacity. Neither manager nor customers consigeddétays inherent in the reaction of each
other. Hence, the backlog soars because of thegaeggaalecision. Thus, despite the manager
trying to adjust the service capacity by imitatitige evolution of the queue, the multiple
delays in the system bring about a fluctuatingguatas illustrated in figure 3.
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Figure 3. lllustrative behavior of the available service aaipy and queue length
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Figure 4. lllustrative behavior of (a) the average waittimge and (b) the utilization rate.

We have explained the model and illustrated a glpase where the manager reacts to
customers’ dynamics. In the next section, we prepother alternative decision rules to
enable the manager to adjust capacity more effdgtivThese rules are based on the
manager’s perception of the backlog of work. Twieralative ways to form this perception
based on the evolution of the queue are introducée. decision rules consider both the
required capacity adjustment and the speed at whisladjustment is carried out.
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ALTERNATIVE DECISION RULES

The aim of the manager is to maintain sufficierdible service capacityAgCy) in his
facility in order to satisfy the customers. He thdecides whether to adjust the service
capacity and at what time to do so. We proposeuadie to determine the required capacity
adjustmentRCA,) by incorporating the speed at which the managerdés to adjust it. Let
be the service provider's speed to adjust capaicgy,how fast he decides to either add or
reduce capacity. We defined above that the capadjystment decisions depend on the
future service capacityFEC;), and the desired capacitip@;). Thus, includinga in this
definition, we may statBCA; as follows:

RCA =a* (DC, -FSC,), @)

where @ must be nonnegative and less than 1. This adjustin@olves either an
increase in capacity (whddC; - FSC; >0), a decrease in capacity (wheg; - FSC; < 0), or
leaving capacity unchanged (wh&¢; - FSC; = 0). Taking into account that the capacity
delivery delay may be different from the capacdtirement delay (c.f. Figure 2), we assume
that the speed to either add or remove capacityatsm be different. In this sense, the
parameterr is determined as follows:

0o, if DC, -FSC; <0
a=0 1 . t t N (8)
@, if DC, —FSC, >=0

whereDC; andFSC; are as defined in Equation 3 and 6. Consider nattite manager
does not necessarily keep in mind all his previdesisions, some of which are still in the
process of execution. Thus, the future service @gpéSC;), which the manager perceives,
would be modeled as:

FSG = ASG+Y* (CO; - ChR) 9)

where y represents the proportion of the capacity adjustntieat has not yet been
implemented, which the manager takes into accoBeplacinga, DC; and FSC; using
Equations 8, 3 and 9, respectively, in Equatioth&,decision of how much to adjust capacity
each period is determined by

B* Qi +(1-BEQ;

T'vr

RCA =a* E - ASC, - y* (CO, —CbR, )E (10)

S.t.
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B* Qi +(1- B)EQ; - ASC, - y*(CO, -CbR;) <0
TR (11)

* +(1-/)E
B* Qi +(1-BEQ4 - ASC, - y* (CO, -CbR,)>=0
Tvr

o f

i

We propose a second manner to estinkdfe Instead of using adaptive expectations,
the manager may simply consider the most recerkldigci.e. customers waiting for service
(Qy), to estimate demand. That is, he looks at hiseatirorder book to decide how much
capacity is required. Such an attitude is meaningfusituations where capacity can be
adjusted fairly cheaply and quickly, e.g. by ustemqporary staffln this case Equations 10
and 11 become:

RCA =a* E& - ASC, - y* (CO, —CbR, )E (12)
Tvr

s.t.
Eal it -2 _ASC, -+ (CO, ~CbR,) <0
T
a=g MR (13)
=

Q ASC, - y* (CO, —=ChR,) >= 0

, i
T'vyr

Optimal Strategies

Our objective is to find optimal values for the gaetersa;, a, £ and ), which
determine the above two strategies, to maximizembeager's cumulative profits over 100
time units. In order to calculate this profit wdroduce a fixed cost and revenue resulting
from providing the service. The equations 10 toat& nonlinear and thus complicated to
optimize analytically. Thus, we apply simulationtiopzation (Keloharju & Wolstenholme,
1989; Moxnes, 2005 order to find the optimal parameter values.

We use the optimizer toolkit of Vensim where thenciative profits are set as the
payoff function. The optimal parameter values w&awbare given in Table 2. According to
this table, the second strategy, i.e. when the gami@rms his perception based on the most
recent value of the backlog, reaches the best p&/ab1 compared to 2’059 for strategy 1).
This occurs because when using strategy 2 the managkes decisions a bit more
aggressively than when using strategy 1, as shaguref 5. Hence, the manager reaches
higher profits when he relies on the most recefdrmation about the customers’ behavior,
i.e. Q.. The optimal value of (i.e. the coefficient of expectations), which equblsee table
2), for strategy 1 strengthens the above remargoeficient of expectation equal to 1 means
that the manager updates his expectation by usihgtiee most recent information regarding
the backlog. That is, the manager does not acdourthe past. In that cas@;; is the latest
information about the backlog the manager has tatgohis perceptiofQ;, at time unit.

10
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Strategy | Alpha 1|Alpha 2| Beta | Gamma PZI;(;(I‘Ifm\}JaTue
Adaptive .
expectations 1.00 0.00 1.00 0.40 1'950
Most recent
value of thg 1.00 0.00 N.A 0.37 2'071
backlog

Table 2. Optimal values of the parameters which define eaciegy
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Figure 5. Evolution of the queue (i.e. backlog) and the laédeé service capacity for the two
capacity adjustment strategies with the optimahpester values.

Figure 5 shows the behavior of the two parts ofstystem (customers and the manager)
for both strategies. Their optimal behaviors amilar. Like in the base case, when the
manager applies either of these two strategiesp#uilog grows at the beginning of the
simulation and the manager reacts by increasingaigp However, as he bases his decisions
on the most recent information about the backlegnbtices quickly that the backlog goes
down. Thus, his decision to increase capacity besomess aggressive resulting in the
utilization rate gradually increasing back to le(dggure 6). Consequently, the manager’'s
decisions encourage current customers to remaat l@lgich in turn encourages the manager
to keep the available service capacity constangé. Manager’s behavior brings about current
customers being satisfied and thus inducing pakmtistomers to patronize the facility
through word of mouth. New customers joining thetomer base imply that the arrival rate
steeply increases. The manager responds by slowtgasing the available service capacity,
which quickly reduces the queue. From this poinvamis, an oscillating phenomenon starts
to emerge. This oscillating pattern differs fromattrof the base case in that it grows
exponentially over time.

11
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Figure 6. Evolution of the utilization rate for the two cajity adjustment strategies set up
with the optimal parameter values.

Sensitivity analysis

We perform a sensitivity analysis to understanditmgact of the different parameters,
which define the alternative strategies, on the ehdahavior. In particular, we analyze the
effect of a change in the values of these parameieithe manager's cumulative profits and
the evolution of the queue.

First we illustrate the case in which we chamgéi.e. the speed at which the manager
removes capacity). We select this parameter becauss#s the strongest impact. Figure 7
illustrates how changing the value @ in both strategies affects the evolution of theug
and the manager’s cumulative profits. We can oleséinat changes in these two variables
emerge after about 27 time units, particularly, wbe is large (e.g. 0.5 or 1.0), i.e. when the
manager quickly removes capacity. For instancegulsoth strategies with,equal to 1.0 the
cumulative profits decrease about 70% comparechéooptimal value, while the backlog
decreases by about 98% for strategy 1 and 94%tfategy 2. Likewise, the higher the
parameter, the more the backlog oscillates.

Changes in the other parameters have small impactse evolution of the cumulative
profits and the queue. As far as (i.e. the speed at which the manager add capagity) i
concerned, for very small values (e.g. 0.0 and thhé&)manager’'s cumulative profits and the
gueue are slightly reduced using both strategiegaRling the speed at which the manager
updates his perception in Strategy 1, fevarying this parameter results in similar effezss
changinga; Finally, by trying different values of we found that they do not have any
significant impact.

12
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Figure 7. The cumulative profits and queue length whenegiias 1 (Figs a and b) and 2
(Figs c and d) are simulated for selected values,dfteeping values ai;, 3, andy constant

as shown in Table.2

A SERVICE FACILITY MANAGEMENT EXPERIMENT

We use the model described above as a computatgatbrm to implement a
laboratory experiment (c.f. Smith, 1982). The obyecbehind this experiment is to collect
experimental information to assess how human stsjaking on the role of a manager face a
situation in which they must adjust the capacityadervice facility. We also want to analyze
how they use the available information to make capadjustment decisions. The subjects
have information about the behavior of both thalifgcand the customers. Regarding the
facility, they know the past and current availabéevice capacity and utilization rate. As for
customers, subjects know the past and current bgdke. the number of customers waiting
for service).

Experimental Protocol

We design this experiment based on the protocolefqgrerimental economics (e.g.
Smith, 1982; Friedman and Sunder 1994). We rectuitelergraduate and master students in
Finance, Management and Economics from the Uniyeo$iLausanne. They were invited to

13



C.A. Delgado, A. van Ackere, E.R. Larsen, and S. Arango, 2011

participate in an experiment designed to studysi@eimaking in a service industry, through
which they could earn up to 80 Swiss Francs. Weived about 400 replies and selected 187
subjects following the principle of “first come,rdt served” in order to perform six
experimental treatments. Each treatment had at Baparticipants. Subjects were allocated
across eleven experimental sessions; each invalkachd 16 subjects and lasted, on average
90 minutes. Two facilitators supervised each sessibie task of the subjects was to use a
computer based interface, which portrayed the sereapacity adjustment problem of a
garage, to decide each period how much capac#égdoor remove. They had to perform this
task for 100 experimental periods.

This experiment was conducted in the informatickotatories of the School of
Business and Economics. Upon arrival at the laboyathe subjects were allocated to a PC
and separated from their neighbor by another P@r@anication between the subjects was
forbidden. Once they were seated, we gave thenewrinstructions and a consent form,
which they had to sign before starting the expentn@hen, a short introduction to the
experiment was presented to them. The instructieer® quite simple and provided subjects
with a short explanation of the system that they ttamanage in the experiment and all the
information, which they had available to carry their task. We present the instructions and
the interface used to run the experiment in theeagix of this paper.

We gave the subjects the payoff scale through whiey earned their reward
depending on their performance in the experimeatfdPmance was measured based on the
cumulative profits that subjects had at the endhef experiment, i.e. at the period 100 or
when the available service capacity reached Oalf happened before than the period 100.

Experimental Treatments

In addition to the base case, we have designed fitlee experimental treatments to
understand how the manager adjusts the capacsy ofdustry service. These five treatments
are divided in two groups to study the effect dfedtent factors. The first group is composed
of four treatments and its objective is to analywsv the delay structure, inherent to the
system, affects how the manager decides to adapstotty. This delay structure includes the
delays the manager knows (i.e. the implicit lagsapacity adjustment), and those which are
unknown to him (i.e. the time required by potentald current customers to update their
perceptions). The last group has a single treatnvamth includes a cost to add or remove
capacity. Table 3 summarizes the conditions of éaeiment.

Current Potential | Timeto | Timeto Cost per

Treatment | customers | customers | increase | decrease |unit change

Delay Delay capacity | capacity |in capacity
Base Case 4 2 4 2 -
A 10 2 4 2 -
6 4 4 2 -
C 4 2 8 4 -
D 4 2 2 1 -
E 4 2 4 2 1

14

Table 3. Treatment conditions.
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EXPERIMENTAL RESULTS

All subjects overreact to the initial increase bk tbacklog. This sudden rise is
independent of subjects’ decisions since it depamdshe initial conditions. Thus, we can
interpret this first reaction of the subjects aleaning process in which they are trying to
adapt to the system behavior. In other words, wecedl this initial period a transition period.
Recall that we observed a similar pattern of theklogy in the simulation results.

From this point onwards, we identify three groupsubjects, whose decisions result in
similar behavioral patterns. Figure 8 illustrates evolution of the backlog and the available
service capacity of two typical subjects of eacbugr The first group is composed of those
subjects who overreact strongly to the initial et of the backlog and then they make
many small decisions to gradually adjust capacigrdime (e.g. Subjects 5 and 11). Most of
these decisions concern capacity addition. Conselyuethe garage’s available service
capacity for this kind of managers presents an eapal increase over time. After the initial
transition, the available service capacity andgheue behave in the same way. Thus, we can
consider that these subjects quickly learn to manlg system to achieve sustainable growth.
The subjects in this group achieved the higherescof the experiment.

The second group (e.g. Subjects 12 and 18) refeeti®rse subjects who, after their
slight overreaction to the initial backlog, makevés but more aggressive capacity adjustment
decisions than the subjects of the first group. édwer, they continue to overreact to the
evolution of the backlog over time. This behaviesults in an oscillating pattern for both the
backlog and the available service capacity: theyeiase exponentially, but more slowly than
for the first group. These two groups, despite edhg quite different behavioral patterns
compared to the two optimal strategies discusséatdyeattain similar total profits.

The last group includes subjects who, even after tthnsition period, continue to
overreact significantly to the evolution of the kiag (e.g. Subjects 3 and 30). Although in
some cases the backlog evolves as when simuldtenggtimal strategies (see Figure 5), the
subjects did not capture the customers’ behavice. ddh consider that these subjects were
unable to handle the delay structure inherentecsttstem. They performed poorly, achieving
the lower payoffs, and occasionally finding thenasslwith zero service capacity before the
end of the experiment.

15
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Treatment Results

The outcomes of the treatments were compared ukagilcoxon Rank-Sum test or
Mann-Whitney U test. Table 4 shows the corresponding p-values. Usifg)8 significance
level, these p-values enable us to interpret titmttimulative profits achieved in treatments C
(i.e., slow adjustment) and D (i.e., fast adjusttheme, on average, significantly different
compared to the cumulative profits achieved in dbieer treatments. By looking at the box
plots in Figure 9 we can get an idea of such aerhfice as the mean cumulative profits of
treatments C and D are either above or below thannwmulative profits of the other
treatments, supporting the remark inferred from\ikoxon Rank-Sum tests. We can also
observe that the variability in treatment D is lesspared to that of the other treatments. In
addition, the distributions of treatments A, C, bd& are reasonably more symmetric than
those of treatment B and the base case.

Col Mean -
Row Mean Basecase Trea;ment Trealtsment Treaément Trealtjment
P-Values
Treatment A 0.2805
Treatment B 0.903¢ 0.177:
Treatment C 0.000¢ 0.002¢ 0.000(
Treatment D 0.000z 0.000( 0.000¢ 0.000(
Treatment E 0.287! 0.756: 0.231( 0.000¢ 0.000(

Table 4.P-values of the Wilcoxon Rank-Sum test for the clative profits
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Figure 9. Box plots for the cumulative profits by treatment

CONCLUSIONS AND FURTHER WORK

In this paper, we have applied a system dynamiadeirto study how the manager of a
service facility adjusts capacity based on his @etion of the queue length, whereas potential
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and current customers react to the managers’ desisihile current customers update their
perception based on their own experience and dewcidher to stay in the customer base,
potential customers update their perception thraugid of mouth and decide whether to join
the customer base. We have simulated the modedhaigized the evolution of the backlog of
work and the available service capacity. Based los &nalysis we have proposed two
alternative decision rules to maximize the manageumulative profits. Then, we have

illustrated how we developed an experiment to cblleformation about how human subjects
taking on the role of a manager in a lab environiaoe a situation in which they must

adjust the capacity of a service facility.

Simulating this queuing model showed that whenntla@ager tries to adjust the service
capacity by imitating the evolution of the queue.(the backlog of work), the multiple delays
in the system bring about an oscillatory phenome@ptimizing the parameters, which set
the alternative strategies, we found that the manegpches higher profits when he relies on
the most recent information about the customerkabior, i.e. the most recent backlog. The
sensitivity analysis enables to conclude that chang the speed at which the manager
removes capacity have a strong impact on the awvalaf the available service capacity and
the backlog. Varying the other parameters resualtsmall impacts on the evolution of these
two variables.

As far as the experiment is concerned, we iderttifge groups of subjects, whose
decisions bring about similar behavioral patteifise first group included the subjects who
overreact strongly to the initial sudden increaseth® backlog and make many small
decisions to gradually adjust capacity over timee Becond group represented the subjects
who, after overreact to the initial backlog slightthey make fewer but more aggressive
capacity adjustment decisions than the subjecheffirst group. The last group included
subjects who even, after the transition period ri@aet significantly to the backlog. The two
first groups, despite quite different behavioratgas compared to the two optimal strategies
discussed, achieved similar total profits.

The next step will be estimate a decision rule Whagljusts to collecting data from
Subjects. Extensions include incorporating pricesneinager’ decisions, i.e. a unit cost for
each unit of capacity which the manager decidesdtb or remove. An interesting approach
would be to conduct another experiment wherein fFrogroup of human subjects will
assume the role of customers.
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APPENDIX

A. Computer Interface

The Queue Experiment

Introduction Contral The expariment

Service capacity
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B. Subjects’ Instructions (Base case)

Instructions for the participants

NOTE: PLEASE DO NOT TOUCH THE COMPUTER BEFORE BEING ABR TO
DO SO

Welcome to the experiment on decision making iemise industry. The instructions
for this experiment are quite simple. If you follalhem carefully and make good decisions,
you may earn a certain amount of money. The monky® paid to you, in cash, at the end
of the experiment. You are free to halt the experitrat any time without notice. If you do
not pursue the experiment until the end, you woli receive any payment. The University of
Lausanne has provided funds to support this exgerinif you have any questions before or
during the experiment, please raise your hand anskene will come to assist you.

We assure you that the data we collect during these of this experiment will be held
in strict confidence. Anonymity is guaranteed; mnf@ation will not be reported in any manner
or form that allows associating names with indiadplayers.

Description of Experiment

This experiment has been designed to study how geamadjust service capacity in a
service facility. Below is a short explanation loétsystem that you will have to manage in the
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experiment. It is a relative simple system and goly have to make two decisions each time
period (increasing capacity and/or decreasing dgpac

The situation

You are the manager of a large garage, which rep&id maintains cars. You have an
existing customer base as well as many potentstbowers who currently are not using your
services, but might consider doing so in the futBeth groups are sensitive to the waiting
time.

Waiting time: is the average time between the moment a custoatisryour garage to
make an appointment and the time the car has bereiced. This depends on two factors,
how many other customers have made reservationgopsty (i.e. how long is the queue) and
the service capacity of the garage (i.e. how maarg can on average be serviced per time
period). Due to planning constraints, this waitiimge cannot be less than one month.

Customers. These customers use your garage on average eveEwy & year. They
evaluate the expected waiting time (which is basedan average of) the last few times they
have used your garage) and compare this expectashgviime to the time they consider
acceptable (the average for the industry, whicB months: the elapsed time between the
moment a customer calls, and the moment he canypdkis car after servicing averages 2
months). If they are satisfied (i.e. the expectadting time is comparable to or better than the
average for the industry) they will remain your touser and return again to use your garage.
If they consider that the waiting time is too loogmpared to the industry average they will
switch to another garage.

Potential customers. These are people who might become customers yf ¢basider
that your waiting time is attractive (i.e. lessrthe industry average). However, given that
they are currently not among your customers, thdy bear about the waiting time at your
place through word of mouth. Consequently, theineste of the waiting time at your place is
based on less recent information than the estimatgour current customers. Note: the
number of potential customers is unlimited.

Service Capacity: This is the number of cars the garage can seoncaverage in one
month. You, as the manager, control the serviceagpof the garage, i.e. you have the
possibility to increase and/or decrease capacitywéver, this cannot be done
instantaneously: it takes 4 months to increase aigpée.g. ordering more tools, hiring
people, acquiring more buildings etc) and 2 monthslecrease capacity (end a lease on a
building, lay off people, etc). Note: If at someaqtoyour decisions result in a service capacity
equal to zero (0), the garage will be closed ameceitperiment is ended.

Your Task

As the manager, you make decisions regarding aagigehin capacity for the garage
each month. To help you make these decisions yga hdormation about the number of
customers currently waiting for service or whoseisaurrently being serviced (referred to as
the queue), profit, the current capacity of theagar and the capacity utilization rate. You
goal is to maximize the total profit over 100 manth

Cost and revenue information:

Profits [E$/month] = Revenue — Cost

Revenue [E$/month]

= number of customers served [cars/month]*AverageeRer Customer [E$/car]
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Average Price per Customer =1 $/car
Cost [E$/month]
= Service capacity [units]* Unit cost of servicepaaity [E$/unit/month]
Unit cost of service capacity = 0.5 $/unit/month
Interface

In front of the computer, you will have the intexéawhere all interactions will take
place. The information is the same as what we paseided in these instructions. Please ask
the facilitator to have a trial run to test out Hudtware.

Payment

At the end of the experiment, you will receive altaeward. This will consist of a
guaranteed participation fee of 20CHF, plus a bawviish will depend on the total profit you
have achieved. This bonus will vary between 0 aB@HHE-. If you do not pursue the
experiment until the end, you will not receive any payment.

You will be asked to complete and sign a receighwbur name, email address, and
student ID number. Thereafter, you can collect yoayment. We will be happy to answer
any questions you may have concerning this expatime

If you want to participate in this experiment, @eaign the consent form on your desk.
Thisform must be signed before the start of the experiment

If you have no further questions, please ask thpeement facilitator to begin. Good
luck and enjoy the experiment.
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