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Abstract  

The aim of social scientists is to capture the causal mechanisms that explain behavior of 
people and groups of people, such as communities, societies or firms. Such an endeavor 
becomes increasingly difficult as theorizing concerns patterns of behavior. A theory of 
behavior explains how the cause-effect structure of interaction among specific variables 
leads to emergent paths of behavior of these variables. Thus, building theories of 
behavior implies creating a narrative that connects a deep theoretical structure to a 
repertoire of plausible behaviors that encompass the observed critical events and 
behaviors. A problem challenging discursive theories of behavior is the quality and 
robustness of inferred connections between causal structure and emerging behaviors. 
Equally difficult is to understand how modifications of theoretical assumptions, 
crystallized into a model, lead to modifications of the phenomenon under study. To 
make the described endeavor even more challenging, observed patterns of behavior are 
often produced by path-dependent processes that amplify non-systematic and stochastic 
disturbances. In this essay, we suggest that the interaction between field research, 
computer simulation and System Dynamics allows to elicit causal models from the rich 
texture of everyday life. 

 

INTRODUCTION 

As Legorsol suggests in her study on privatization of land in small-scale African 
communities, since an observed event or phenomenon in most anthropological studies, 
as it was privatization in her study, is a “…natural experiment and not a controlled 
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laboratory one, the causal relation of privatization to behavior should be considered 
indicative, not conclusive.” (Legorsol, 2005). 

Accurate information that emerges from an in-depth field study are very powerful 
indications to elicit a candidate causal structure to explain observed behaviors. 
Informants provide a vital vehicle to build a repertoire of candidates explanations for an 
observed event. Yet, collected explanations are interpretations that are necessarily more 
or less intentionally biased. To select among candidates explanations, the  quality and 
robustness of inferred connection between causal structures and emerging behaviors 
stands as a decisive factor. 

As for quality of inference we refer to the case when an inferred causal structure is 
sufficient to generate an observed pattern of behavior. Robustness implies that 
researchers are able to distinguish between phenomena that are consequences of specific 
simultaneous combinations of contextual factors and causal structures that might be, at 
least partially, transferable as a candidate explanation in other research sites2.  

Human reasoning may face limits in the articulation of the chain of causes and effects 
that is sufficient to give rise to a specific observed behavior. Thus, discursively 
presented theories of behavior may overlook variables or causal links that are necessary 
for a behavior to follow from a causal structure. The issue becomes increasingly crucial 
when phenomena under study display complex behavioral paths such as oscillations, 
peaks or bifurcations. Equally difficult is to understand how small modifications of a 
causal structure, or different calibrations of parameters, lead to modifications of the 
phenomenon under study. For example, an observed phenomenon may be the unique 
result of a very specific, hardly reproducible, calibration of a set of contextual 
circumstances. On the other hand, phenomena observed in different contexts and 
conveying different behavioral paths may nevertheless be generated by the same 
underpinning causal structure. This is frequent when observed patterns of behavior are 
produced by path-dependent processes that amplify non-systematic and stochastic 
disturbances. 

In this paper, we suggest that computer-aided simulation experiments may support field 
researchers in investigating the relative roles of history, contextual circumstances and 
deep causal structures in generating observed paths of behavior. In particular, we focus 
our attention on a particular approach to modeling and simulation, System Dynamics. 

This paper is articulated as follows. First, we expose the gist of our argument: how 
computer simulation supports theorizing. Then, we briefly describe System Dynamics 
and explain what peculiarities makes the approach suitable for theorizing in social 
science. In section three, we show how, when looking closely at behaviors captured in 
field studies, complexity emerges that calls for an approach informed by system 
thinking. Finally, we report an example of the use of computer modeling and simulation 
associated to a field study. 
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BUILDING THEORIES OF BEHAVIOR AND CHANGE 

Building theories of behavior and change implies providing an explanation that infers a 
relationship between a structure of causes and a number of events, which are connected 
into an historical sequence.  

We propose that computer simulation allows to move between natural and virtual 
experiments to understand how a causal structure is able to explain observed patterns of 
behavior. The key theme here is the ability of a researcher to enact and maintain a 
dialogue between theoretical behaviors, as predicted by a simulation, which has been 
built upon accounts from field studies, and observed empirical patterns.  

In this light, the use of computer simulation brings about a number of advantages.  

First, in general, computer simulation may generate inputs in the form of  time-series. 
This may result of some help when time-series can be compared directly with real-
world quantitative figures, for example demographic data. In this case, the availability 
of real and simulated time series that are accessible in a similar quantitative format 
facilitates pattern-matching thereby allowing researchers to visually assess resemblance 
between simulated series, which follows from the quantitative simulation of a 
theoretical hypothesis, and an empirically observed behavior. In this respect, it is 
possible to generate measures of how simulated events match empirical instances of 
those events (Sterman 1984). 

Second, computer simulation allows for a rigorous longitudinal articulation of predicted 
behaviors. In other words, the computer-aided process of deduction goes far beyond the 
human capability to appreciate the long-term features of the behavior of selected 
variables. Thus, computer simulation can support researcher to find plausible sufficient 
conditions for complex patterns of behavior to happen such as peaks and lowest point, 
oscillations with different characteristics and changes in rates of growth or decline.  

Third, researchers, by simulating a formal model, can articulate their predictions by 
contemporaneously producing behavior of different variables and the interactions of 
these latter. In particular, researchers can simulate the interaction of independent and 
dependent variables in each time step, along a given time horizon. This cross-sectional 
articulation of patterns of behavior increases the points of contacts between a set of 
behavioral hypotheses and the empirical context of a case study. As Kaplan suggests 
‘What counts in the validation of a theory, so far as fitting the facts are concerned, is the 
convergence of the data brought to bear upon it […]’ (1964: 314). Thus, a computer 
simulation expands the terrain where comparison between theory and empirical setting 
takes place by generating a rich longitudinal and cross-sectional articulation of behavior 
under study. In this light, the convergence of data and the concatenation of events that is 
necessary to obtain to use a case study to confirm a theory is increasing demanding.  

In this respect, computer simulation aids researchers to design field studies to produce 
difficult experiments where the falsifiability of a theory is easier because fitting the 
facts becomes increasingly hard. Of course, on the other hand, had empirically collected 
facts to fit, at least qualitatively, into a complex web of interweaved simulated 
behaviors, the experiment would lead to stronger evidence to confirm propositions 
contained in the theory.  



Following, we suggest two avenues to conduct simulation experiments and articulate a 
theoretical hypothesis.   

Sensitivity analysis and history-convergent runs 

A first possible scenario entails that the hypothesis produced in a field study, once 
formalized in a computer model, produce behaviors that are similar to those observed in 
the field. In this case, computer simulation can be used as a laboratory to produce 
sensitivity analysis. Field cases are retrospective studies. Retrospective studies explain, 
ex-post how a set of variables interacted to drive an observed behavior of interest. 
However, it could become troublesome to ascertain the extent to which a theoretical 
explanatory model and the observed behavior are linked.  

If, for example, we are aware that two variables affect the observed behavior, given the 
complex web of interactions in which these variables are embedded, it might be hard to 
determine their relative strengths. It might be the case that the influence of one of these 
two variables is insignificant, and could be omitted from the analysis to satisfy the 
criterion of parsimony for a good theory (Eisenhardt 1990).  

To further investigate the importance of that variable, an experiment could be run to 
detect what happens if the variable is omitted from the model. This sensitivity analysis 
may help revising an explanation by suggesting that specific variables may not be 
necessary to explain a behavior whereas others are fundamental since the change in 
their calibrations produces simulated behavior to diverge from the one observed.  

In addition, the intentional generation of history-divergent simulation runs orients 
further empirical enquiry by indicating new potential research sites. Indeed, in a new 
site that resembles the simulation settings that have been adopted in the sensitivity 
analysis, a researcher can test whether, given the characteristics of the new site, a 
behavior closer to the history-divergent run is observed. For example, some longitudinal 
event studies have compared polar cases, that is, objects of study that have shown 
opposite behaviors in responding to an identical exogenous stimulus, and have 
explained the different unfolding of their histories as the result of different initial 
conditions (Noda 1994; Noda and Bower 1996).  

What we suggest is that using sensitivity analysis to generate history-divergent runs 
may be helpful to illuminate the potential of a research site to become a polar case in 
which, given a change in some key features of the research context, a behavior 
divergent from the one observed in the original field study ensues. 

In general, simulation, by connecting a theoretical structure to a variety of possible 
emerging, often unexpected, behaviors, activates dormant consequences of a theory, 
which were not observed in the original empirical study. This generation of a 
distribution of near-histories, or unrealized events, both strengthens the understanding 
of causal structures and envisions areas for further empirical investigations. Field 
researches conducted in new sites are theoretical experiments that reinforce internal 
validity of a theory. Thus, computer simulation helps researchers in thinking how a 
common theoretical engine may explain a repertoire of different behaviors in different 
empirical contexts. In this vein, the coupling of field-study and computer simulation 



speaks to the problem of learning from samples of one or fewer as presented by March, 
Sproull and Tamuz (1991).  

In this light, the issue of transferability of insight from one research site to another 
proceeds through a process of déjà vu; observing a pattern that is included within the 
repertoire of behaviors that are generated by a single causal structure a researcher may 
receive an hint on candidate explanation for that specific pattern. If we consider a case 
study as an experiment, computer simulation allows learning from this experiment by 
exploring how small changes in some conditions generate different behaviors. These 
behaviors are near-histories that may materialize and become visible in other empirical 
contexts.  

Sensitivity analysis and history-divergent runs 

When comparing computer-simulated and empirical patterns of behavior, a researcher 
may observe a mismatch. In this case, the problem is to understand why behaviors 
diverge. In this respect, computer models provide a theoretical laboratory that is 
relatively easy to manipulate in order to investigate possible explanations of the 
discrepancy between simulated predictions and observed behaviors.  

In this respect, we agree with Malerba et al. (1999) in suggesting that computer 
simulation provide an appropriate terrain to nurture a friendly dialogue between 
empirical evidence and theory. When history-divergent simulations appear, researcher 
tries to explain where discrepancies come from. Investigators can intervene on the 
structure of a computer model or on the calibration of model’s parameters and 
rigorously deduct whether these interventions narrow down the gap between predicted 
and actual behaviors.  

Pressures for historical and simulated behaviors to diverge arise in two cases.  

The first pressure intervenes when the causal structure of the theory, which is captured 
in the computer model, is isomorphic to the causal relationships at work in a specific 
empirical setting and the discrepancy is the consequence of flaws in the specifications 
of parameters’ calibrations. The second pressure for historical and simulated behaviors 
to diverge arises when the causal structure of the theory and the causal relationships at 
work in the real world are not isomorphic in some respects. This may be the result either 
of the fact that a researcher has not properly formalized a theoretical argument arising 
from a field study or the fact that the researcher was not able to select the key causal 
mechanisms at work in the case studied.  

The first direction to explore is the analysis of sensitivity of model’s behaviors to 
change in parameters to check whether simulating the model with a new calibration 
improves the match between simulated and observed behaviors. The fact that the fit 
between simulation and empirical data is improved by manipulating a model’s 
parameters points at two areas of analysis. First, it may suggest that the model is 
characterized by non-linear causal relationships among variables so that slightly 
different model’s calibrations yield very different emerging behaviors. Second, the 
causal structure at work may include positive feedback among variables and initial 
calibration of variables has a mounting weight in molding unfolding patterns of 
behavior. For example, as reported in Carrol and Harrison simulation study of 



organizational ecology’s density model of legitimization and competition (1994), the 
presence of positive feedback among variables generates behaviors that unfold in a way 
that is history-dependent. Given an environment in which populations compete that are 
characterized by different organizational forms, depending on researcher’s calibration of 
the time of entry of a new population in a simulated environment, not necessarily this 
new population will survive independently of its fitness to the environment.  

The second avenue to explore discrepancy between predictions and observed behaviors 
is the analysis of a model’s structure. That is, the causal relationships among variables 
that are deemed necessary to produce behaviors of interest. Different formalizations 
may exist for specific relationships and including in the model one or the other may 
have different behavioral implications. To revise formalization, researchers need to go 
back and compare the formal structure of the computer model and the real processes at 
work in the case study. This further investigation plays as a catalyst to define possible 
amendments to the theory.  

More interestingly, the analysis of the discrepancy unveils to researchers the perils and 
hazards that arise when formalizing descriptions that were originally provided in a 
verbal form. Formalization requires dubious and arguable interpretations but the very 
cycle that embeds collection of data, building verbal explanations, formalization of 
these explanations, simulation of formalizations and analysis of discrepancies between 
simulated and expected patterns of behaviors produces knowledge by forcing 
researchers to appreciate the consequences of different conceptualizations.  

In this case, knowledge building may be not directly, and immediately, on the empirical 
issue at hand but on the way of thinking at it. When playing with computer simulations 
generates cognitive dissonances between expected and observed patterns, the depth of 
our interpretations is potentially augmented by the opportunity to explore consequences 
of a rich and colorful repertoire of possible conceptualizations.  

The fairly intuitive idea here is that those formalizations that are directly obtained from 
descriptions sufficiently clear and less questionable are not good candidates to generate 
insightful dissonances; on the other hand, those formalizations that required a 
researcher’s translation of verbal descriptions into quantitative formulations are more 
debatable, more prone to conceal misinterpretation and hence good candidates for the 
analysis.  

Along this path, computer simulation experiments may reveal that and history-divergent 
simulation run has been observed because interviewed informants describe processes on 
the basis of existing formalized procedures whereas everyday activity is grounded on 
institutionalized informal and tacit routines which are different from those crystallized 
in official manuals, codes of rules or blueprints. 

THEORISING WITH COMPUTER SIMULATION: ABDUCTION AND 
FALSIFIABILITY 

What is theorizing about dynamics behavior, then, and how computer simulation may 
support the endeavor?  



We posit that generating theories of behavior requires to explore the plausibility of an 
explanation by defining sufficient conditions for a pattern to emerge. Computer 
simulation, by allowing researchers to play with calibration of parameters or to 
manipulate portions of a formal model, provides a virtual theoretical laboratory in 
which ‘what if’ analysis can be conducted to activate plausible but dormant alternative 
histories. This exercise is illuminates deep causal structures. 

In this light, theorizing is selecting a candidate causal structure that plausibly underpins 
an observed pattern of behavior, and to build a repertoire of alternative plausible 
histories that are connected to the same common deep common structure of causation 
(this can be obtained by manipulating a model’s parameters and structure). 

Thus, a formalized simulation model complements findings of field studies by 
facilitating a process of abduction. Abduction is an inference that goes from the 
observation of a fact to the hypothesis of a principle that explains the observed fact 
(Burks, 1964; Fann, 1970). In this vein, the model is a candidate explanation; had the 
world portrayed into the computer model to be true, observed patterns of behaviors 
would be reasonable. 

Differently, from typical research in social science conducted through statistical 
generalizations, in which falsification is focused on behavior, here, causal structure as 
well is object of direct falsification. Each field site is to be considered as an experiment 
in which a model’s findings can be confirmed, falsified or amended and the 
generalization sought after is analytical rather than statistical (Yin,  1994). 

In this perspective, having a detailed (often formalized) description of a causal structure 
and a description of a repertoire of plausible histories, a field researcher will have a 
variety of points in which the theoretical hypothesis, which crystallized in to the model, 
can be falsified (Bell and Bell,1980).  

POSITIVE FEEDBACK AND STRUCTURAL ANALYSIS OF BEHAVIOR: 
THE SYSTEM DYNAMICS APPROACH 

System dynamics (SD), which is connected to the work of Forrester (1961),  grounds 
modeling on difference equations and impinges upon the assumption that the behavior 
of individuals that are embedded within a social system can be explained by the 
feedback nature of causal relationships that characterizes the structure of the system. 
Thus, SD approach aims at reducing emerging aggregate, and often puzzling, behaviors 
into underlying feedback causal structures.  

We suggest that SD has two features that makes this approach suitable for social 
sciences. 

First, SD illuminates the Inertia of social processes. The approach impinges upon a 
conceptual framework, and a symbolic language, that emphasizes the distinction 
between flow and stock variables. This distinction facilitates the representation of social 
processes that unfold over time. The role of stocks is one of accumulating results of past 
processes, these latter crystallised in flow variables. Stock variables represent the 
inertial features and properties of a social system that cannot be changed 
instantaneously (for example, the stock of accumulated knowledge or institutionalized 



routines). Stock variables embody the state of a social system in a particular time, 
independently of processes that are at work to change such a state. On the other hand, 
flow variables represent the processes that work to change the state of a social system 
(for example, the flows of knowledge distribution, which proceed from one area of a 
social system to another one, the processes of knowledge creation or the processes of 
knowledge erosion). 

Second, SD takes a feedback perspective and treats a social system as a complex system 
consisting of one or more feedback loops. The dynamic interplay of these feedback 
loops explains emerging non-linear behavior carried by multi-level actors in complex 
social systems, which is not necessarily intuitively understood, nor can be replicable 
using other conventional research methodologies. 

Behind the SD approach is an emphasis on the analysis of the relationship between a 
causal structure and a connected emerging behavior. This attitude to the exploration of 
system structure is appropriate to detect typical situations in which different observed 
patterns of behaviors may be generated by the same causal structure. 

For example, in presence of systems with strong stable attractors, the existence of a 
common causal structure explains equifinality, when different behaviors converge to the 
same steady state equilibrium from different initial conditions. 

On the other hand, a robust explanation in term of causal structure is particularly 
important in presence of positive feedbacks and systems with self-reinforcing 
properties. In this case, path-dependence and casual disturbances in the early history of 
a system may give raise to very different, often diverging, behaviors. Yet, the 
underlying causal structure is unchanged. When systems are characterized by path-
dependence, actions and decisions produce different consequences depending on the 
time in history in which decisions are conceived of and actions are implemented. Yet, 
had researchers a clear framework that connects a given causal structure to a repertoire 
of alternative possible behaviors, observation of diverging behaviors in similar contexts 
may result less puzzling.  

Thus, detecting the presence and investigating the behavioral consequences of positive 
feedback loops facilitates theorizing in presence of historical inefficiency. 

The concept of historical inefficiency has been mentioned by Carrol and Harrison 
(1994) to indicate a social process “…with positive feedback (or self-reinforcement) 
that can generate outcomes that arise from "chance" rather than a systematic force.” 
Carrol and Harrison use the term ‘historical inefficiency’ as the contrary of ‘historical 
efficiency’ defined by March and Olsen (1989: 5-6) as follows:  “Institutions and 
behavior are thought to evolve through some form of efficient historical process. An 
efficient historical process, in these terms, is one that moves rapidly to a unique 
solution, conditional on current environmental conditions, and is independent of the 
historical path.” 

When behavior is historical inefficient, actions and decisions become irreversible: 
actions or forces applied upon a social system are progressively ineffective as the 
pressure of existing positive feedback unfold. 



Reproducing in vitro these phenomena enriches theorizing with hypotheses concerning 
the points in time that were crucial in deciding the pattern of behavior of a specific. 

HOW COMPUTER SIMULATION INTERACT WITH FIELD STUDY 

To illustrate the way in which modeling and computer simulation support field studies 
in theorizing, we describe, as an example, a study of interaction dynamics between two 
clusters of firms geographically co-located that has been previously conducted by the 
author. We borrow this example of studies in organization theory and management, but 
the employed logic, we hope, may as well prove useful to other social scientists. 

Geographical clusters can be defined as spatially concentrated groups of small 
entrepreneurial firms competing in the same or related industries that are linked through 
vertical (buyer-supplier) or horizontal (alliance, resource sharing, etc.) relationships. 
What characterizes geographical clusters is that a complex network of firms is bound 
together in a social division of labor (Scott, 1982). 

Within geographical clusters, the development of a dense web of social relationships 
among firms facilitates the exchange of knowledge, in particular, of the most valuable 
knowledge that is highly tacit, difficult to replicate and not easily purchased (Keeble & 
Wilkinson 1999). 

Mollona and Presutti (2006) highlighted a process of passive internationalization that 
influence the internal equilibrium of industrial districts. Passive internationalization 
occurs when a high number of newly established small firms embedded in a dense web 
of social relationships establish in an area geographically close to a pre-existing network 
of firms that are themselves embedded in a web of social relationships.  

In this respect, Mollona and Presutti (2006) documented how in Italy, in the textile 
district of Val Vibrata, in the region of Abruzzo (centre of Italy), a newly emerged 
cluster of firms, which are owned by entrepreneurs that moved in Italy from China, 
competes with firms co-located into a pre-existing cluster.  

The two clusters have sharply distinct traits and, each is characterized by strong internal 
homogeneity that follows form shared language, similar modes of production and 
kinship relationships. Both the network of firms, which we call ‘Chinese’, and the 
preexisting network of firms, which we call ‘Italian’ are articulated in two populations: 
a population of suppliers and one of producers. Graph in figure 2 display the historical 
patterns of behavior of firms in the Val Vibrata district.  

 

 

 

 

 

 



 

Figure 2 

 

Capturing the causes of observed unfolding dynamics of interactions among the four 
populations of firms located in different geographical clusters is a fairly complex matter 
since intra-cluster relationships are intertwined with inter-cluster competitive and 
commercial relationships.  

Once presented with this data, we thought that our aim was to elicit a structure of 
causation that could explain the behavior observed. This objective oriented the design of 
a field study, this latter illuminated the role played by two classes of processes. First 
class of processes is the horizontal competitive dynamics between populations of firms 
positioned at the same stage of a value chain while the second class of processes 
includes the vertical commercial relationships that connect suppliers and finished goods 
producers. The diagram in figure 3 sketches the relationships among four populations 
that were elicited in the field study.  

More importantly, we felt we that needed a tool to rigorously think through the 
phenomenon observed (and reported in figure 2), exploring the soundness or flaws of 
interpretations. While most of the informants found the diagram in graph 3 a reliable 
description of dynamics at work in Val Vibrata (actually the same model was 
considered an appropriate interpretation by informants placed in other geographically 
distant clusters that were experiencing similar phenomenon), role of specific variables 
in generating behavioral consequences was much more ambiguous for everyone.  
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 To conduct our theoretical exploration, we proceeded in the following steps.  

First, on the basis of secondary data and interviews conducted in Val Vibrata, we 
modeled the interaction among the four populations as a system of four differential 
equations3. Second, we run a set of simulation experiments to understand if, and at what 
conditions, the selected causal structure could generate the observed behavior. Third, a 
set of simulation experiments provided a number of hints that guided a second round of 
interviews that were used to further parametrize the model. Finally, we run another set 
of simulation experiments to produce a sensitivity analysis of the behavior to change in 
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model’s parameters. The sensitivity analysis produced a repertoire of plausible 
alternative histories connected to the same deep causal structure. 

 

Creating insight with history-divergent simulation runs 

After having worked with our formal model, we started to simulate the model and we 
investigated whether the behavior reported in figure 2 is in some respect similar to one 
of those produced by our formal model.  

To start with, the collected time series suggest that, at the beginning of the time span 
over which the phenomenon unfolds, Chinese producers and suppliers were very few. 
We thus performed a first simulation experiment to see whether, once calibrated with 
the values empirically collected in 1961, the formal model was  able to generate a 
behavior that shares any characteristics with the real time series.  

We assigned to the four populations and to the final market the values that they had in 
1961 and we run the model of 500 time step each representing one quarter. Thus, we 
were simulating a time period that is much longer than the actual time span observed in 
order to play out the entire behavior of the model until it eventually sets in an 
equilibrium point.  

Results are reported in the graph in figure 4. Incumbent Italian populations grow to 
saturate the entire final market that represents a sort of carrying capacity of the industry 
while the new population of Chinese suppliers surges but does not take off and in the 
long term is defeated and driven out from the market.  

On the contrary, we observe in figure 2 that the real history is quite a different one. The 
new population of Chinese firms grows and challenges the population of Italian 
incumbent suppliers. This dynamic is very clear among the suppliers, in which Italian 
firms are decreasing dramatically, and much weaker among producers of finished 
goods, in which Chinese firms are imperceptibly growing and Italian firms are losing 
small portions of the market.  

 

 

 

 

 

 

 

 

 



 

Figure 4 

 

One conclusion that we could draw was that our formal model wasn’t able to capture 
the deep causal structure that underpins observed behavior. Another solution was that 
the calibration of the model wasn’t able to capture the specific empirical circumstances 
under which the behavior of figure 2 was originally observed. This history-divergent 
run, however, was an opportunity rather than a complication.  

The behavior reported in figure 4 suggests that Chinese populations are not strong 
enough to emerge. If our model was correct, the mismatch between observed and 
simulated behaviors had to be connected to a problem in the calibration of the 
simulation model. In calibrating the model, we probably had overlooked some key 
empirical information that explains the strength demonstrated by Chinese firms.  

Since one of the recurring explanation of the phenomenon of such ‘invasions’, not only 
in Val Vibrata but in a variety of industrial clusters in Italy, refers to the argument that 
newly established firms often operates illegally and that this status produces an 
advantage in terms both of low cost of labor (because illegal immigrants are employed 
without any form protection) and flexibility (because the lack of control in new firm 
creation makes easier and faster the constitution of new enterprises), we explored these 
cases. 

May be that our neglecting these factors was the cause of an history-divergent run? 

Figure 5 reports results of an experiment in which we re-calibrated the model to 
simulate a situation in which Chinese firms grow at a rate that is fivefold the rate of 
grow of Italian firms. As shown, the picture does not change much. This was an 
interesting hint to address the role of perceptions in inducing explanations from 
interpretation of informants embedded in the context which his object of study. The 
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speed at which Chinese firms have grown is a consequence rather than a cause; yet, is 
the most clearly visible, emotional and alarming fact in the community.  

We then explored the argument that deals with the differences competitive advantages 
between Chinese and Italian firms4. We collected information in the research field 
concerning the average prices of the products. We learnt that the price of an 
intermediate goods sold by a Chinese supplier is on average three times cheaper that the 
product sold by Italian suppliers. In addition, very low brand recognition and product 
differentiation protects Italian intermediate products. As far the finished goods 
producers, here the situation is slightly different; price difference is similar but the 
Italian finished good is more recognizable and, thus, maintains a competitive advantage 
to the Chinese product.  

Grounding on this information, we recalibrated our simulation model amending the 
values of parameters that represent competitive advantages of Chinese and Italian 
populations of firms. 

We assumed that Chinese suppliers are three times more competitive than Italian 
suppliers, and that Chinese producers of finished goods are twice as competitive as their 
Italian competitors5. In the case of finished goods producers, we balanced out the price 
disadvantage of Italian producers with the brand recognition that Italian finished goods. 
We simulated the model again and obtained results reported in graph 6. 

The simulation suggests that the observed empirical behavior may be an instance of a 
class of behavior that is produced by our causal structure. This structure, among the 
others, may produce a behavioral path in which the population of incumbent producers 
of finished goods survives and shifts its procurement from the incumbent population of 
supplier to the population of Chinese suppliers that offer cheaper supplies. The 
incumbent population of Italian suppliers is forced out of the market and the new 
population of Chinese producers is not able to take off.  

In figure 7, we report results of a further experiment in which we stopped the simulation 
after 160 quarters that correspond to 40 years, which is the time span of the 
phenomenon empirically observed and reported in figure 2. In this graph, the similitude 
between the simulated and the empirically observed behaviors suggested to us that the 
causal mechanisms described in our formal model may give us some hints to articulate 
theoretical hypotheses to explain the observed phenomena.  

 

 

                                                            
4 A mathematical analysis conducted on the model (Fioresi and Mollona, 2010) confirms that 
an important determinant of the type of behavior produced by our formal model is the value 
assigned  to  the  parameters  12c ,  21c ,  12c~ ,  21c~ , which  represent  the  reciprocal  competition 

rates  among  populations;  that  is,  the  impact  that  a  population  has  on  the  survival  of  the 
competing population, what we defined a ‘competitive advantage’.  

5 We amended the values of parameters 12c ,  21c ,  12c~   21c~ . More specifically, we set 1c12  , 3c21  ,

1c~12  and  2c~21  . 
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Figure 7 

 

Playing with history-convergent simulation runs 

If we now look at graphs in figures 8, 9 and 10, we observe behaviors that are more or 
less cognate to those depicted in figure 6. In the reported simulation runs, we 
manipulated parameters to explore model’s sensitivity. More precisely, we hypothesize 
that incumbent suppliers react by decreasing prices. Behavior in figure 8 tells us a story 
that is not very far away from the one reported in figure 6. New entrants suppliers 
attempt to entry the cluster, at time 160 incumbent suppliers react by decreasing their 
prices and this avoids a complete elimination of the population of incumbent suppliers. 

Figure 9 and 10 tell a slightly different story. In these graphs we hypothesized that time 
of incumbent suppliers’ reaction takes place, respectively, at time 155 and 140. In both 
cases, an earlier response, in an environment characterized by path-dependence, pushes 
new entrants into an equilibrium in which they occupy only a share of the initial market. 

The very simple reported simulation experiments helps to reflect on the potential gains 
of associating computer simulation and field study. 

First, computer simulation promotes dialogue and circulation of insight among 
researchers dealing with similar research questions. The seemingly different behaviors 
of graphs 6, 7, 8,  and 10 are generated by the same deep causal structure, by 
manipulating only the time of reaction by incumbent suppliers.  

In this light, the repertoire of behavior that a specific model produces places an 
empirically observed behavior within a class of behaviors and, on the other hand, 
suggests to other researchers, by a process of déjà vu, that an observed behavior may be 
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a different instance of a common phenomenon. Researchers that conduct similar 
research in different fields, in which apparently different histories have been observed, 
may use the same causal framework as a candidate explanatory hypothesis. The idea 
here is that a computer model, rather than necessarily encapsulating a causal structure 
isomorphic to the one at work in the context studied, is a laboratory that facilitates 
different researchers to think through an empirical issue by exploring logical 
consequences of different interpretations and representations of phenomena.  

Second, the idea that a possible causal framework produces different behaviors of key 
variables depending on the points in time in which specific events take place is useful to 
direct further research in the original field and in new fields. In the reported case, 
simulation experiments suggested that further data on the timing of specific events had 
to be collected both in the original field and in other fields.  

 

Figure 8  

Incumbent suppliers react at t=160 
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Figure 9  

Incumbent suppliers react at t=155 
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Figure 10  

Incumbent suppliers react at t=140 

 

 

 CONCLUSION 

The objective of our work was twofold.  

First, we suggested that formalization, and computer simulation of formalized 
hypotheses, may support field research in generating theories of behavior. We 
articulated the argument both theoretically and suggesting an example. We also depicted 
the structure of a large research project in which formal modeling, computer simulation 
and field research are integrated. 

Second, we proposed that System Dynamics, a specific modeling and simulation 
approach, is particularly well suited to be employed to study behavior of complex social 
systems when inertia and self-reinforcing properties are likely to influence unfolding 
behaviors. 

The body of literature dealing with SD models validation has interestingly emphasized 
intellectual liaisons between SD scientific approach and a particular tradition of 
philosophy of science. The development of new epistemological challenges stimulates 
further analysis. In physical and social science has emerged a thread of epistemological 
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studies which has been referred to as epistemology of complexity6. This approach 
challenges the ambition of scientific tradition stemming from logical empiricism 
paradigm to reduce the complexity of real-world (Morin, 1984). I. Prigogine claims 
(1984) for a scientific approach which emphasizes diversity in unity (opposed to unity 
in diversity) and the constructive role of dis-equilibrium. According to this stream of 
thought, laws are not sufficient, it is necessary to explain singular and unexpected 
events. The traditional idea of science as control and prediction is challenged, the new 
dimension of game is proposed (Bocchi, 1984) and the possibility of a causal 
description of systems complexity by determination of  relation among variables is 
explored (Pribram, 1984).  

The concept of science as game is intriguing and calls for a modeling approach able to 
offer a playground in which different states of the world interact with different futures, 
all the possible futures, not only the future of statistical  convergence. This point is 
worth stressing because every discipline decides how to locate itself along the 
continuum which connects rich and exhaustive descriptions to rigorous - but sometimes 
less savoury  - predictions. 
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