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Abstract

Enormous future investments are needed to replace old energy systems/technologies, and
prepare them for future needs. Moreover, smarter technologies/systems are needed. And in
this ever more complex, interconnected, and uncertain world, smarter policymaking in the en-
ergy field is certainly needed too. After all, current energy policymaking still mainly ignores
dynamic complexity under deep uncertainty. This paper illustrates two model-based approaches
for supporting policymaking for complex and uncertain issues as well as their combination.
First, Exploratory System Dynamics Modeling and Analysis allows exploring and analyzing
millions of plausible uncertain dynamic system behaviors and testing the robustness of policies.
This approach is illustrated by means of a System Dynamics simulation model related to energy
grid investments. Second, Fxperiential Model-Based Gaming allows policymakers to exrperi-
ence dynamic complexity and deep uncertainty, and helps them feel the need to embrace both in
policymaking. Before having experienced different plausible futures, almost all high-level man-
agers and highly-educated students that played such experiential games applied inappropriate
strategies in most plausible futures played, and hence failed in the face of uncertainty. Fail-
ing repeatedly actually prepared them for thinking outside their old/reactive/predictive modes
in subsequent bounce-casting sessions. Exploratory System Dynamics Modeling and Analysis
and Ezperiential Model-Based Gaming may also be mutually beneficial: most subjects only
acknowledge the need to take uncertainty and dynamic complexity seriously into account after
having participated in experience-oriented gaming sessions.

Keywords: ESDMA, Experiential Gaming, Energy Distribution Network Operator,
Asset Management

1 Introduction

Many great challenges —such as meeting current and future energy needs— are characterized by
(dynamic) complexity, deep uncertainty, multiple dimensions, multiple actors, etc. Two of these
characteristics are focused on in this paper: (dynamic) complexity and deep uncertainty. Two
human inadequacies seem to make policymaking/decisionmaking in case of issues characterized
both by (dynamic) complexity and deep uncertainty particularly difficult: the human mental
capabilities and the human emotional receptivity. This paper proposes two tools to support
humans with these inadequacies.

Tt is difficult —not to say impossible- to make appropriate policies/decisions for issues that are
particularly characterized by both (dynamic) complexity and deep uncertainty without model-
based support. But traditional model-based support is mostly inappropriate for such issues since it
almost never seriously considers dynamic complexity under deep uncertainty. Exploratory System
Dynamics Modeling and Analysis (ESDMA) may be a useful new multi-method for doing precisely
that for this type of issues, and hence, supporting our inadequate human mental capabilities. The
constitutive method(ologie)s of ESDMA are introduced in subsection 2.1.
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Moreover policymakers/decisionmakers are mostly reluctant when it comes to making poli-
cies/decisions when facing deeply uncertain dynamic issues —even if/when scientists or advisors
use appropriate methods and take dynamic complexity and deep uncertainty seriously into account.
It seems as though they not only need to know that a particular policy/decision is appropriate
but that they also need to feel the policy/decision is the appropriate one. Experiential Serious
Gaming (ESG) may be a useful approach for doing precisely that for this type of issues, and hence,
supporting our inadequate human emotional receptivity. ESG is introduced in subsection 2.2.

Both method(ologie)s are illustrated by means of an example from our work in (smartening)
energy systems/technologies.

After having introduced both method(ologie)s in section 2, section 3 illustrates the use of
ESDMA for policymaking related to energy systems/technologies. Section 4 illustrates the use
of ESG for policymaking related to energy systems/technologies. Section 5 contains concluding
remarks and future research.

2 Methodology

2.1 From Traditional System Dynamics to Exploratory System Dynam-
ics Modeling and Analysis

2.1.1 Switching Modes: From Forecasting to Exploration

Conventional forecasting, planning, and analysis methods are not suited for dealing with dynamic
complexity (Senge 1990) and even less so for dealing with deep uncertainty: prediction of dynamic
behaviors and certainty about probabilities, validity, and optimality cannot be obtained for (fu-
ture) multi-dimensional systems characterized by high degrees of dynamic complexity and deep
uncertainty. Moreover, improving models by increasing the level of detail or their size does mostly
not help much: after all, ‘all models are wrong [but] some are just more useful’ (Sterman 2002).
It may even be harmful if there is little time to act or uncertainties cannot be reduced, since it is
very time-consuming and may generate the illusion that all uncertainties can be and are reduced.

Instead of focusing on predictability, optimality, and attempting to develop ever more detailed
models validated upon past conditions, it may be more useful to develop small fast-to-build models,
explore different model formulations and a plethora of uncertainties, and test effectiveness and
robustness of policies in the face of parameter uncertainties, function uncertainties, structure
uncertainties, model uncertainties, and possibly other uncertainties.

2.1.2 (Exploratory) System Dynamics

Traditionally, System Dynamics (SD) is used for modeling and simulating dynamically complex
issues and analyzing their resulting non-linear behaviors over time in order to develop and test
the effectiveness of structural policies. Mainstream System Dynamicists have assumed for decades
that uncertainties are omnipresent, and hence, that trajectories generated with SD simulation
models should not be interpreted quantitatively as point or trajectory predictions, but that they
should be interpreted qualitatively as ‘modes of behavior’.

However —with today’s computing power— SD models may also be built specifically for the
purpose of exploring the potential influence of uncertainties on dynamically complex issues. Such
Exploratory System Dynamics (ESD) models are preferably fast-to-build and easily-manageable
models, and consequently, rather simple and highly aggregated. ESD is an interesting approach for
exploring uncertainties, and testing the effectiveness of policies in the face of these uncertainties.
However, ESD in isolation may be insufficiently broad and systematic to firmly base policymaking
under deep uncertainty on.

But the combination of ESD with Exploratory Modeling and Analysis (EMA — a methodology
for exploring deep uncertainty and testing policy robustness — see following paragraph) may be
useful and sufficient for broadly and systematically exploring and analyzing plausible dynamics
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under deep uncertainty, and for testing the effectiveness and robustness of policies without ne-
glecting deep uncertainty and dynamic complexity.

2.1.3 Exploratory Modeling and Analysis

EMA consists of using exploratory models (not necessarily SD models) for generating tens of
thousands of scenarios (called an ‘ensemble of future worlds’) in order to analyze this ensemble
of future worlds and to test the robustness of policy options across the ensemble. Using this
method, it is therefore tested whether the outcomes are acceptable for all transient scenarios
generated by sweeping the entire multi-dimensional uncertainty space. As such, it can be used
to generate insights and understanding about the functioning of systems and the robustness of
policies, by taking deep uncertainty seriously into account (Lempert, Popper, and Bankes 2003)
(Agusdinata 2008). In EMA, the question is not when to measure more nor when to model better,
but how to explore and analyze dynamically complex systems under deep uncertainty, and which
policies do effectively and robustly improve system behavior under deep uncertainty. EMA consists
more precisely of following stages:

(4) developing ‘exploratory’ —fast and relatively simple— models of the issue of interest,

(#) generating an ensemble of future worlds (tens of thousands of scenarios) by sweeping uncer-
tainty ranges and varying uncertain structures and boundaries,

(#i(a)) analyzing and clustering dynamic behaviors, identifying bifurcations, et cetera,

(#i(b)) and/or specifying a variety of policy options (preferably adaptive ones), and simulating,
calculating, and comparing the performance of various options across the ensemble of future
worlds.

Many data analysis techniques are available to investigate in step (éii(a)) the effect of underly-
ing mechanisms/(inter)actions/conditions, to separate different modes of behavior, to determine
the conditions that lead to these different modes of behaviors, to find bifurcation points and crit-
ical variables. But for policymakers/decisionmakers, it may be even more interesting to define
different (adaptive) policies/strategies and test their (relative and absolute) robustness (effective-
ness given all uncertainties considered — step (ii7)(b)). The effectiveness/robustness of policies
can then be evaluated over the entire multi-dimensional uncertainty space without having to
analyze/understand millions of outcomes. In other words, the effectiveness/robustness of poli-
cies/strategies could be evaluated and compared without reducing uncertainties related to the
system of interest, without having acquired full understanding, and without getting overwhelmed
by combinatorial complexity.

2.1.4 Exploratory System Dynamics Modeling and Analysis

Since EMA requires handy models for generating (thousands of) plausible scenarios, and ESD
requires methods for exploring deep uncertainty, they are actually natural complementary allies
(Pruyt 2007a), and could be combined as Exploratory System Dynamics modeling and Analysis
(ESDMA). Examples of ESDMA can be found in (Lempert, Popper, and Bankes 2003; Pruyt 2010;
Pruyt and Hamarat 2010a; Pruyt and Hamarat 2010b; Pruyt, Kwakkel, Yucel, and Hamarat 2011;
Kwakkel and Pruyt 2011; Pruyt and Kwakkel 2011; Pruyt, Logtens, and Gijsbers 2011) as well as
(Kwakkel and Slinger 2011; Kwakkel and Yucel 2011).
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2.2 Switching Modes: From Traditional Serious Gaming to Experiential
Serious Gaming

2.2.1 Interactive Games and Flight Simulators

Interactive games (Duke 1974; Greenblatt and Duke 1975) are ‘serious’ games, in which real peo-
ple (inter)act. They could be used for different purposes: they enable experiments in which human
(inter)action processes can be observed in a (semi-)controlled environment, by means of which hy-
potheses could be tested, conclusions could be extended, models could be validated. Such games
could also be used —apart from aforementioned traditional ‘scientific uses’- for experience-based
learning under deep uncertainty.

In all cases, real people assume the role of key stakeholders and (public) policy makers. Players
have to make the kind of decisions that the corresponding real world actors have to make in reality,
thus simulating human (inter)actions and strategic behaviors.

In model-supported interactive games, computer models are used to add real world complexity,
perform detailed calculations, generate and display specific information, and deduct the overall
system behavior resulting from actor (inter)actions. These models also keep track of decisions
made by the players, and hence, could be used to compare the actual behavior of many players,
also with ‘optimized’ and/or ‘simulated’ behavior. The computer models used in this research are
(exploratory and experiential) System Dynamics simulation models.

System Dynamics model-supported (board) games are not new: well-known examples include
the Beer Game, Fish Banks, and Strategem. However, these games always lead to the same out-
comes (modes of behaviors), insights and conclusions. They are not focused on (deep) uncertainty
— quite the opposite.

Flight simulators —also called learning environments or microworlds— are interactive decision-
making computer games, based on computer models, that are mostly used to ‘enable [users] to
pre-experience the changed environment, preparing them better to face the transients of the change
implementation and the challenges of managing the post-change situation’ (Winch 1998, p354) (see
also (Kim and Senge 1994; Groessler, Miller, and Winch 2004; Langley and Morecroft 2004)), iow,
for learning purposes. However, they could also be used for experimental and validation purposes.
In these flight simulators, players need to take decisions at certain moments during the model
run, the consequences of which are then calculated by means of the model. Flight simulators are
mostly built for a single player or team: the computer interactively generates the behavior of the
other actors.

2.2.2 Uncertainty-focused Games and Flight Simulators

Although uncertainty, and asymmetric/partial/private information ought to be important ingredi-
ents in all interactive games and flight simulators, they are mostly ignored or reduced. Depending
on the game, different uncertainties could be included: consumer or market uncertainties, re-
source uncertainties, technological uncertainties, competitive uncertainties, supplier uncertainty,
policy uncertainties, etc. Players should also only receive partial information that would also be
available to them in the real system. At most, bounded rationality should therefore be assumed.
Players (inter)act based on partial information available to them, as well as upon their beliefs,
motivations, perceptions of the situation, and perception of the level and location of the major
uncertainties. These beliefs, motivations, and perceptions cannot be controlled, and only steered
to a certain extent: specific situations could be created in these games, and beliefs, motivations,
and perceptions could be asked for and monitored at every step.

2.2.3 Experiential Serious Games and Flight Simulators Related to Uncertainty in
Energy Transitions

Experiential serious games are even less laboratory-like. These experiential sessions and games
are designed specifically to allow the participants to experience the importance of uncertainty and
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of taking uncertainty into account in policymaking/decisionmaking.

3 Exploratory system dynamics modeling and analysis to
smarten energy systems

3.1 ESDMASs to Smarten Energy Systems

Within our first line of research, different ESDMAs related to energy transitions have been —or
are currently being— performed, for example ESDMAs related to:

1. the development of world wind power potentiality (Hamarat and Pruyt 2011)

2. the transition of the electricity generation sector — using a generic energy transition models, a
huge EU-27 electricity generation transition model (Pruyt 2007b), an agent based electricity
generation transition model (Yucel 2010; Kwakkel and Yucel 2011), and combining all three
models (WIP)

3. the transition of the electricity distribution sector (see below)
4. the energy transition in the built environment (WIP)

5. the energy transition in automotive transport (WIP)

6. plausible influences of scarcity on energy transitions (WIP).

The ESDMA related to the transition of the electricity distribution sector is used below as an
illustration.

3.2 Illustration: ESDMA Related to Distribution Network Operation
3.2.1 Structure of the ESDMA Model

The model used here to illustrate ESDMA is an adapted version of the model developed specifically
for an experiential game for an Electricity/Gas Distribution Network Operator (see section 4). The
model consists of four submodels: an electricity grid capacity submodel (see Figure 1), a gas grid
capacity submodel (similar to the electricity grid submodel), a rudimentary financial submodel,
and a rather large scenario submodel. The first three submodels are endogenous, the scenario
submodel is exogenously driven. The model is all about strategic asset management of —and hence
decisionmaking related to investments in— electricity and/or gas distribution grids.

Eight different —exogenous but internally consistent— transient scenario sets (lookups with time
series) were developed for the game (see section 4). To generate an ESDMA ‘future’, one of these
eight transient scenario sets is called randomly (the red input variables in Figure 2(b) and Figure
2(a)). The scenario values at any time step are then transformed: however, the shape and size
of these transformation functions is uncertain. Hence, three rather different versions are defined
in the ESDMA for each of these transformational lookup functions: randomly selected versions of
these lookup functions are then used to transform the values of the randomly selected transient
scenarios into input values for the ESDMA (light blue variables in Figure 2(b) — non-existent in
Figure 2(a)). Parameter uncertainty is dealt with too (orange parameters in Figure 2(b)). Hence,
the ESDMA version of the model deals with scenario uncertainty (in red), function uncertainty (in
light blue) and parameter uncertainty (in orange). Compare Figure 2(b) to Figure 2(a) in order
to put the model-integrated adaptations for an ESDMA into perspective.

The ESDMA is performed from within a shell (written in Python) which generates the experi-
mental design and controls the execution of each of the experiments. The shell delivers the inputs
needed to generate a particular future to the SD software package (Vensim DSS), and packages
and stores the data of the future world after it has been simulated by the SD software. The
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analysis of the ensemble of future worlds and the visualizations (either to support the analysis or
to support the communication of key findings) are performed on the ensemble of future worlds
using Python scripts.

3.2.2 Analysis of ESDMA Behaviors

Figure 3 shows 2000 ‘futures’ for two rather regressive/reactive investment strategy in terms of
four key output indicators and two decision variables —from top to bottom— the capacity shortage
of the electricity grid, the capacity surplus of the electricity grid, the electricity grid capacity
replacement and extensions, the capacity shortage of the gas grid, the capacity surplus of the gas
grid, the gas grid capacity replacement and extensions.

Figure 3 shows clearly distinct modes of behavior: they can be separated by means of time-
series clustering and analyzed by means of (forest) classification and regression trees.

The visualization of all future worlds or the envelopes of the ensembles give a good idea about
the range of behaviors but offer a biased story in terms of likelihood. The end state histograms
displayed in Figure 3 show that most behaviors are found closer to the origin than suggested by
the envelopes. However, the bottom-most graph and histogram suggest that overcapacity in the
gas sector is very plausible.

3.2.3 Designing Robust Policies

The next EMA/ESDMA stage is to design —preferably adaptive— policies/strategies and to test
their robustness — whether they perform well over the entire ensemble of future worlds. This
analysis is not performed here because the model —having been developed for an experiential
game— cannot be used for that purpose. Instead, it will be used in the following section (in its
basic form) what it was developed for in the first place: experiential gaming.

4 Experiential serious gaming to smarten energy systems

4.1 Games to Smarten Energy Systems

Within our second line of research, many different experiential flight simulators and games related
to energy systems transitions have been, are currently, or will soon be, developed. Following games
and flights simulators related to the transition of the electricity sector are worth mentioning?:

1. Technology Developers Investment Flight Simulators: focused on the role of Technology
Developers, and possible technological lock-ins.

2. Electricity Generators Investment Flight Simulator: focused on the role of electricity gener-
ators, and resulting generation mix at the system level.

3. Energy Infrastructure Investment Flight Simulators for transmission/distribution companies.

4. Technology Developers & Electricity Generators Energy Investment Games (and Flight Sim-
ulators): combining the roles and (inter)actions of technology developers and electricity
generators.

5. Technology Developers & FElectricity Generators Policy Design Games: adding the role of
policy maker to the previous game.

6. Comprehensive Energy Investment Games combining all roles in a Multi-Actor Systems
game.

LA series of games and flight simulators related to the energy transition in/of the built environment is currently
being developed in our lab too.
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7. Other derived games such as Oil/Energy Price Games focussed on the reaction of different
actors to changes in primary energy prices.

All these games / flight simulators deal with (parts of) the transition of the energy/electricity
sector towards sustainability. Figure 4 displays a simplistic representation of the energy/electricity
sector which helps to frame the different flight simulators and/or games.

Generation
Technology
Developers

Electricity
Generators

Transmission / Transmission
istribution Tech,| & Distribution
Developers Companies

slojeinBay
1 JUBUIUIBACD)

Electricity Supply Electricity
ech. Developers Suppliers

Figure 4: Simple representation of the electricity /energy market to frame some flight simulators
/ games

These games could be developed for different purposes: from experimental to experiential. The
following subsection illustrates the experiential use of an Energy Infrastructure Investment Flight
Simulator (see 3) above), more specifically for/from the point of view of Distribution Network
Operators (DNOs).

4.2 TIllustration: The DNO Flight Simulator

The DNO flight simulator was tailor-made for a Dutch electricity and gas DNO to pull managers
out of their predictive modes and to help them broaden their perspectives on the uncertain(ty of
the) future — they applied the same strategy for decades and most of them foresaw just one future?.
The gaming session was followed by a short bounce-casting dialogue about deep uncertainty and
the appropriateness of their current asset management strategy (replacing x % and expanding y%
of their grids) under deep uncertainty.

First, participants —senior managers and asset managers of the DNO—- were informed about
the goal of the afternoon (to experience deep uncertainty about the future in order to rethink the
DNO’s current strategies in the face of deep uncertainty about the future) and about the event
itself.

Before running a first ‘trial scenario’, basic information about the logic of the virtual world —a
slightly simplified and geographically aggregated version of their world— they were about to play
in was provided. In other words, the model structure (see Figure 1) was briefly presented before
starting the actual gaming session. Key information provided related to their virtual electricity
grid (initially 142000 km of which about 11000 km older than the maximum replacement lifetime
of 37 years) and their virtual gas grid (initially 42000 km of which about 21000 km older than the
maximum replacement lifetime of 80 years), both with an average planning/construction time of
1 year.

Participants were familiarized with the interface (see Figure 5), their decision variables (plan-
ning of electricity and gas network capacity replacements, planning of new electricity and gas

2Interestingly, electricity grid managers seem to believe in an all-electric future and gas grid managers seem to
believe in new and smart gas grids partly replacing the electricity grid.
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network capacity extensions, decommissioning of old electricity and gas network capacity, and
investments in smart(ness of) grids), and had some time to play around in order to get familiar
with the dynamic implications of their virtual decisions.
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Figure 5: Simple interface of the DNO game: decision variables, company dashboard (four views
on the left) and external dashboard (environmental scanning of important indicators related to
the business context) — displaying here the results of model-based decisions for scenario S6

After warming-up, groups of three participants were asked to develop an investment strategy
(simultaneously for their gas and electricity grids) and to apply this strategy using the model-
based flight simulator without foreknowledge about the future (scenario). Relevant and available
pieces of information about past and present were provided through the interface. After playing
the game given a particular scenario, the teams were asked to revise (if desirable) their strategy
and to play the same scenario (hence with foresight) with their new strategy. After this first
iteration, the teams were asked to apply their revised strategy again, but now with new scenario
settings, in other words, once more, but in a new uncertain future world. After playing without
foresight, teams were asked to adapt their strategy and play it again under foresight. And so on,
and so on.

Apart from warming-up with the SO scenario, participants played following seven scenarios:

e Scenario S1 is a rather boring scenario —merely an extension of past developments— which
requires grid replacements and extensions in line with the past replacements and extensions
(even their ‘old strategy’ is appropriate for this scenario);

e Scenario S2 is a scenario in line with the ‘official future scenario’ of the Dutch government,
without any shocks, in which DNOs are allowed some control over decentralized electricity
generation;

e Scenario S3 is the same as S2 but with local electricity storage (e.g. in electrical vehicles);

e Scenario S4 is radically different: it requires smaller investments in the electricity grid and
much bigger investments in the gas grid;

e Scenario S5 requires high investments in the electricity grid —without low voltage use of
electrical vehicles and smart grids— and low investments in the gas grid;
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e Scenario S6 (see Figure 5) corresponds to a slightly cyclic version of scenario S2;

e Scenario S7 is characterized by cyclical growth of the electricity demand and a decline of the
gas demand followed by development in the opposite direction.
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Figure 6: The resulting total relative electricity grid multiplication factor (top) and the total
relative gas grid multiplication factor (bottom)

Ten scenario variables that may seriously influence grid development drive the total relative
electricity grid multiplication factor and the total relative gas grid multiplication factor (see Figure
6).

Figure 7 shows the results of the same reactive strategy applied to these 7 scenarios for 4 key
output indicators —from top to bottom— the capacity shortage of the electricity grid, the capacity
surplus of the electricity grid, the capacity shortage of the gas grid, and the capacity surplus of
the gas grid. These scenarios are plausible and gradual —big shocks do not occur. And even these
smooth and plausible scenarios caused serious problems to all groups. Although it is possible
to outperform this reactive strategy, most players were not able to do so. Figure 8 shows for
example the behavior of four variables (electricity grid surplus —1—, electricity grid shortage —2—,
new capacity planned —3—, and capacity replacements and capacity extensions —4—) for a simplistic
regressive strategy (top), for three typical group strategies, and two atypical group strategies
(bottom) for scenario S6.

All results were collected after playing through all scenarios. These results were grouped and
analyzed during the break and were used during the debriefing and a subsequent bounce-casting
dialogue.

4.3 Conclusion: Games for Experiencing Uncertainty

Uncertainties dealt with in this workshop were far from ‘deep’ — they were moderate uncertainties
at best. This particular experiential gaming session was nevertheless an eye-opener for most
participants of the workshop. Gaming through different futures increased their impressionability.
Participants experienced and afterwards acknowledged the importance of uncertainty and agreed
that further research related to distribution network asset management under deep uncertainty
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Figure 7: Results of a regressive strategy applied to 7 scenarios for 4 key output indicators —from
top to bottom— the capacity shortage of the electricity grid, the capacity surplus of the electricity

grid, the capacity shortage of the gas grid, and the capacity surplus of the gas grid.
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Figure 8: Simplistic regressive strategy (top) versus three typical groups and one atypical group
(bottom) for scenario S6 for the following variables: electricity grid surplus —1—, electricity grid
shortage —2—, new capacity planned —3—, capacity replacements and capacity extensions —4—

was necessary. Plausible futures were embraced and ideas about possible (adaptive) strategies
were advanced.

The underlying model and the decision variables in the game were perceived by some lower-level
network managers —making operational and geographically-specific replacement and expansion
decisions on a daily basis as part of their job— as inappropriately aggregated: a possible geographic
mismatch could indeed occur even if the strategy would be appropriate in aggregated terms. These
remarks opened up the discussion about predictability of ‘the’ future and optimal strategies for
one predicted future versus deep uncertainty and adaptive strategies that are robust for ensembles
of plausible futures.

It could be said in general that this type of experiential games is very useful for opening up
rusty minds for considering deep uncertainty. It allows enthusing policymakers/decisionmakers for
‘ensemble forecasts’ about the future (tens of thousands of plausible scenarios) and for considering
and testing adaptive and robust instead of optimal policies.

5 Conclusions: Mind meets heart — Exploratory Modeling
and Analysis & Experiential Gaming

Effective policymaking/decisionmaking requires at least the internal alignment of knowledge (‘the

mind’) and beliefs (‘the heart’). The human mind is inadequate for generating knowledge about
deeply uncertain dynamically complex issues. And even if that knowledge would be available,
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then knowing alone would not be enough: Policymakers/decisionmakers also need to feel the
need to take uncertainty seriously into account in policymaking/decisionmaking — they need to be
convinced by the omnipresence of uncertainties and the importance of taking them into account.

Two approaches were discussed in this paper: one for supporting our inadequate mental capa-
bilities (knowing) and one for supporting our inadequate emotional capabilities (feeling). These
two approaches are complementary: ESG could help policymakers/decisionmakers to feel the rele-
vance of taking deep uncertainty into account and ESDMA could help policymakers/decisionmakers
to understand how they could take deep uncertainty into account. ESDMA could also be useful
prior to experiential gaming for designing the game (e.g. deriving plausible scenarios). And expe-
riential gaming could also be useful for ESDMA by providing insights into reactions/behavior or
real policymakers/decisionmakers.
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