
1 
 

System dynamics: A Complementary Tool for Predictive 
microbiology 

Gabriela Guadalupe Gastélum-Reynoso 
Departamento de Ingeniería Química y Alimentos, Universidad de las Américas Puebla. 

Cholula, Puebla, 72820. MEXICO 
+52 (222) 229-2126 

gabriela.gastelumro@udlap.mx 
 

Enrique Palou 
Centro para la Educación de las Ciencias, Ingenierías y Tecnologías, Universidad de las 

Américas Puebla. Cholula, Puebla, 72820. MEXICO 
+52 (222) 229-2658 

enrique.palou@udlap.mx 
 

Aurelio López-Malo 
Departamento de Ingeniería Química y Alimentos, Universidad de las Américas Puebla. 

Cholula, Puebla, 72820. MEXICO 
+52 (222) 229-2409 

aurelio.lopezm@udlap.mx 

 

Abstract 

One of the most important concerns for food industry is safety. Predictive microbiology 
is the application of mathematical models to describe microbial behavior in order to 
prevent food spoilage as well as food-borne illness. Because of complexity of microbial 
behavior and food systems, predictive microbiology presents some limitations. System 
dynamics could be a useful alternative and complementary tool to model and predict 
microbiological behavior in foods while providing a graphical interface and structures 
linked with a series of equations, to clarify and improve quantitative predictive 
microbiology descriptions. 

Key words: Predictive microbiology, Food Microbiology, Food Safety 

Introduction 

One of the most important concerns for the food industry is safety. The modern concept 
of food safety has been influenced first by consumer’s demand for fresher and healthier 
foods and second by the industry, producing safer products lowering the risk of the 
presence of food-borne pathogens and spoilage microorganisms in food products 
(Martínez et al., 2005).  

Microbial ability to survive or die depends on product composition and combinations of 
a variety of food factors (pH, water activity and temperature among others). These food 
factors act as barriers (or hurdles) to the microorganism. The goal in terms of food 
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safety therefore is to prevent the growth and/or toxin production of the pathogenic and 
spoilage microorganisms by determining the optimum conditions of food preservation 
processes (López-Malo, Guerrero and Alzamora, 2000).  

There are several tools to assure food safety. Storage stability tests, microbial challenge 
tests and predictive microbiology. Predictive microbiology is the application of 
mathematical models to describe microbial behavior during food processing (Alzamora, 
Tapia and López-Malo, 2000; Betts and Everis, 2005). 

Because of the complexity of microbial behavior and food systems, predictive 
microbiology presents some limitations. The most relevant limitation for the purposes 
of this paper is that existing microbial modeling tools are not integrated. Furthermore, 
mathematical models are simplifications of complex microbial and biochemical 
processes; in some cases not every important variable or factor that is affecting the 
system is included (Buchanan and Whiting, 1997); and finally, some aspects like 
fluctuating conditions (microbial behavior food environment and food processing steps) 
are not usually considered (Lebert and Lebert, 2006). System dynamics could be an 
alternative approach for describing simulating and predicting microbial food models 
since it is a methodology that studies complex feedback systems, within an integrated 
point of view, using simple algebraic equations and structures that function as building 
blocks for more complex models. 

The aim of this paper is to suggest system dynamics as an alternative and 
complementary approach to model and predict food microbial behavior. In this way, the 
rest of the paper is organized in three sections: First, a brief review of predictive 
microbiology and its limitations are presented, while introducing system dynamics as an 
alternative and complementary approach to model microbiological processes in foods. 
Next, there is an example of a work in progress to model bacterial inhibition by heat 
treatment, using system dynamics. The paper ends with suggestions for further work. 

Review of the Approaches  

PREDICTIVE MICROBIOLOGY 

In respond to consumer’s demand for fresher, testier and healthier foods, food industry 
has developed new alternatives such as hurdle technology. This methodology combines 
several factors or hurdles (temperature, antimicrobials, aw reduction, etc.) in order to 
ensure food quality and safety. The hurdles applied are milder than in traditional 
techniques (pasteurization, canned foods). Therefore, there is an increased risk of 
growth of pathogenic or spoilage microorganisms (Gould, 1995). In this way storage 
stability tests (SST), microbial challenge tests (MCT) along with predictive 
microbiology are common tools to predict and assure food safety. SST and MCT are 
laboratory experiments performed with products and microorganisms under controlled 
conditions. These experiments along with predictive microbiology provide information 
about the effects of different factors influencing safety of food products. 
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Predictive microbiology is the application of mathematical models to describe and 
predict microbial growth, survival, and/or inactivation as well as biochemical processes 
under specific time and conditions. Usually, microorganisms are grown under certain 
controlled factors (conditions) such as variations on pH, water activity (aw), 
temperature, and antimicrobial concentration, among others. The results of their 
responses (biological parameters) are fitted into mathematical equations. Such models 
can be used to predict microbial responses under new conditions, within tested ranges of 
studied factors or its combinations (Betts and Everis, 2005; Alzamora, Tapia and 
López-Malo, 2000; Whiting and Buchanan, 1994; Lebert and Lebert, 2006).  

McMeekin and his colleagues (1992) proposed some guidelines for developing effective 
models. Some of these guidelines consist of fitting precision, capacity to predict 
combinations of factors that have not been proven, incorporation of every outstanding 
factor, minimum number of variables, specification of the error term, parameters having 
biological meaning and real values, and reparameterization to improve statistical 
properties (McMeekin, Roos and Olley, 1992; Martínez et al., 2005). 

Predictive microbiology models are classified in three levels. Primary level models 
describe the changes in microbial population over time (colony forming units (CFU)/ 
ml, toxin production, etc.) and provide information about microbial behavior such as lag 
phase duration. Secondary level models describe the changes in parameters of primary 
level (e.g. CFU/ml) when environmental factors change (pH, aw, temperature, among 
others). Tertiary level models are interfaces, which convert the primary and secondary 
level models in friendly software where users can input environmental factors for 
different microorganisms and obtain a prediction of microbial population parameters. 
Pathogen Modeling Program, Food MicroModel and Seafood Spoilage Predictor are 
examples of available tertiary level models. 

Models help understand and predict the behavior of microorganisms for specific 
conditions. Nevertheless, in some cases there is not an accurate fit for extrapolation to 
real life conditions. Then validation of a model becomes necessary before it is used to 
make food safety decisions. The validation process is done considering biological 
knowledge of the system and statistical tools. Once models are validated and users are 
aware of the limitations of the models, they are useful tools to obtain information and 
make decisions for the following situations (Alzamora, Tapia and López-Malo, 2000; 
Buchanan and Whiting, 1997):  

1. Prediction of safety: Estimate the risk of growth or survival of pathogens during 
food processing.  

2. Quality control: Improve systems like HACCP (Hazard Analysis of Critical Control 
Points) to ensure food safety.  

3. Product development: Redesign processes and recipes, set priorities in product 
design and evaluation.  

4. Data analysis and laboratory planning: The model could save resources, time and 
money.  

5. Risk assessment models: Evaluate the probability that a food could cause food-
borne illness. 



4 
 

Limitations of predictive microbiology  

Even thought predictive microbiology models are widely used when correctly validated, 
they have several limitations because of the complexity of microbial behavior and food 
systems:  

- Mathematical models are simplifications of complex biochemical processes and in 
some cases not every important variable or factor that is affecting the system is included 
in the model (Alzamora et al., 2005; Buchanan and Whiting, 1997).  

- Usually, models are not designed for the same conditions in which microorganisms 
exist in food systems (biofilms, starved and unknown nutrients among many others), 
since the majority of the data to generate the predictive model are derived form broth-
based experiments. It is known that bacterial pathogens are more resistant in real food 
products than in broth cultures (Alzamora et al., 2005) . 

- Most of the models describe changes of microbial behavior for homogeneous 
populations; nevertheless, competition among microorganisms affect the food 
environment (Lebert and Lebert, 2006). 

- Some models make a good description of linear relationships; but when more than one 
factor is involved, reparameterization of the model becomes necessary. Response 
surface models can describe microbial growth when more factors are involved, however 
it is necessary to assume that biological parameters are independent and only works 
well within variable ranges for which the experiment was designed, that means 
extrapolation is not possible (Alzamora et al., 2005; Lebert and Lebert, 2006). 

- On the other hand, accuracy of the model depends on the quality of the data, the 
standardization of the experimental and statistical methodology and the statistical 
measures of uncertainty. Literature or industry data usually lacks these types of 
information (Alzamora et al., 2005; Buchanan and Whiting, 1997; Marks, 2008).  

- Finally, several inaccurate predictions are because of the models predict microbial 
growth or inactivation as an isolated event. It is necessary to integrate dynamic bacterial 
behavior (predictive microbial models), fluctuating conditions within the system 
(thermodynamics of the food product) and processing models (mass and heat transfer), 
in order to have the whole picture regarding the microbiological safety of foods. New 
approaches like integrated modeling (Lebert and Lebert, 2006) and Van Impe model 
(2005) describe microbial growth evolution as a self-limiting process, and consider 
both, physico-chemical food properties as well as mass and heat transfer during food 
processing as can be seen in Fig.1 (Marks, 2008). Although the effort to predict food 
microbial behavior as a complex event exists, the solutions are few, since models have 
been designed for specific conditions and objectives; then it is necessary to separately 
validate and to verify assumptions about the system before the integration model can be 
utilized (Lebert and Lebert, 2006).  

For the reasons above mentioned, it is very important to explore and research other 
possibilities to integrate and validate food-processing variables. Since system dynamics 
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is a methodology that studies complex feedback systems, could be an alternative and 
complementary approach to understand, model, and predict microbial behavior in foods.  

 

Fig. 1. An integrated modeling approach to predict bacterial behavior (Lebert and 
Lebert, 2006). 

System dynamics as a complementary tool for Predictive microbiology 

Food microbiology deals with complex feedback systems such as growing, surviving 
and dying populations of microorganisms, which can be found in culture media, 
laboratory-model systems or food products. Some microbiologists describe food as 
complex ecosystems that are conformed by the environment represented by food 
components and the microorganisms that can grow in the food product (Montville, 
1997). Microbial ability to grow, survive or die (level variable) depends on the rate 
variables of growth and deaths (microorganism behavior), which in turn depend on 
both, inhibition factors related to food physico-chemical properties (pH, aw, etc.) and 
extrinsic factors that are part of process engineering (temperature, ultrasound, natural 
antimicrobials, among others). On the other hand, bacteria tend to come back to its 
normal status (homeostasis). These homeostasis mechanisms involve a considerable 
energy cost for the microorganism that is to say, bacteria will use the energy for cell 
regeneration instead of cell reproduction and eventually the microorganism will die 
(Fig. 2). In consequence if bacterial homeostasis is perturbed by preservation hurdles, 
the microorganism will not multiply or even die before its homeostasis is repaired 
(Gould, 1995). Combinations of factors could promote dominance of either positive or 
negative feedback loops (Fig. 3). 
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Fig. 2. Energy available for bacterial metabolism and homeostasis. 
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Fig. 3. Hurdle technology and system dynamics building blocks. 

Example: Bacterial Thermal Inactivation  

Fig. 4 represents an example of a work in progress for bacterial inactivation by heat 
treatment, which is applied in order to prevent microbial growth and reproduction 
enhancing food safety (Valdramidis et al., 2006). The number of bacterial cells (stock 1) 
depends on cell viability (stock 2); when cell viability decreases, bacterial accumulation 
decreases as well. Cell viability is affected by the rate variables: Energy (for bacterial 
homeostasis) and temperature goal (heat treatment). The flows that affect bacterial 
accumulations are growing and dying. The flows affecting cell viability are reinforcing 
cell viability, deteriorating viability by natural death, deteriorating viability by heat 
treatment, and regenerating cell viability. The clouds represent the boundaries of the 
system.  
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Fig. 4. Biological system dynamics model: an example of a bacterial thermal 
inactivation process. 

Temperature is one of the most important food preservation factors, since it affects 
microbial growth and reproduction rates. The optimal growth temperature for a 
microorganism is the one that allows the maximum growth rate. Below the minimum 
temperature and above the maximum temperature, microbial growth does not exist due 
to changes in bacterial metabolism. The optimal growth temperature for mesophilic 
bacteria is between 25°C and 40°C. 
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In this example, the model predicted the number of bacteria, deaths, births and cell 
viability (Figs. 5 and 7) as well as the average cell viability and the effective death and 
reproduction rates (Figs. 6 and 8). The experiment was carried out for two different 
conditions. The temperature of the first tested condition was 25°C, which corresponds 
to low optimal growth temperature for mesophilic bacteria. The temperature of the 
second tested condition was 70°C, temperature used for pasteurization. The time of the 
experiment duration was 10 min and maximum death rate and minimal viability 
remained constant for both tested conditions. 

At 25°C, experiment results were as expected. The number of bacteria and viability 
were high and they correspond with the birth values, which were slightly higher than the 
deaths at the end of the treatment (10 min). After the treatment, the births are still 
growing (Fig. 5) because the reproduction rate and average cell viability are both above 
the death rate (Fig. 6). 

 

 

Fig. 5. Effect of heat treatment on system variables at 25°C: 1. Bacterial number, 2. 
Deaths, 3. Births, and 4. Cell viability. 
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Fig. 6. Effect of heat treatment over the system variables at 25°C: 1. Effective death 
rate, 2. Cell viability, and 3. Effective reproduction rate. 

When heat treatment was applied (70°C), bacterial inhibition was observed. In the first 
minute, births begin to decrease; the same happened with cell viability and the number 
of bacteria for three minutes. On the other hand, the deaths reached their peak at the 
fifth minute (Fig. 8). Average cell viability decreased in a way that gave no chance for 
the bacteria to increase its effective reproduction rate, yielding to total bacterial death 
before the heat treatment ended (Fig. 9). 

 

Fig. 7. Effect of heat treatment on system variables at 70°C: 1. Bacterial number, 2. 
Deaths, 3. Births, and 4. Cell viability 
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Fig. 8. Effect of heat treatment on system variables at 70°C: 1. Effective death rate, 2. 
Cell viability, and 3. Effective reproduction rate. 

 

Final Remarks 

Foods are complex feedback systems. Predictive microbiology has developed several 
mathematical models to describe and predict food microbial behavior within these 
systems in order to achieve food safety while enhancing food quality. System dynamics 
seems to be a complementary approach to model and predict microbial behavior in food 
systems within an integrated point of view, since complex behaviors can be described 
with simple structures such as the casual-loop and stock-and-flow diagrams.  

Furthermore, the structural diagram can be quantitatively described with simple 
algebraic equations using friendly software. Therefore, further work is underway to 
model biological parameters of a specific food system by means of predictive 
microbiology models and compare the results with those obtained by means of system 
dynamics models. 
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