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Abstract

In dynamic models, a system behavior is determined by the interaction of its feedback loops.
The challenge for system dynamics modellers is to identify these loops, and also understand, over
the runtime of a model, which loops dominate system behavior. The Ford method is a procedure
that identifies changes in atomic behavior patterns in the presence, and absence, of feedback loops,
in order to identify loop dominance for a specific time interval. For a candidate feedback loop,
dominance is calculated based on setting the loops control variable to a constant value. Our
approach proposes a variation on this method. Using sensitivity analysis, we explore a wider
search space around a range of possible values for the control variable, and thereby the value of
the loop gain. The outcome of this analysis is a richer set of loop dominance analysis for each
atomic behavior pattern in the model. The sensitivity of various feedback loops is measured as an
indicator of dominance. This approach has the potential to be selected for modellers and policy
to analyze the structure-drive-behavior dynamic systems.The approach is illustrated through an
analysis of the Yeast Model.

1 Introduction

A core premise of system dynamics is that the behavior of a system is determined by its feedback
structure. This feedback structure arises through the interactions of the physical and institutional
structure of the system with the decision-making processesof the agents acting within it (Sterman,
2000). For a given problem of interest, the link between feedback structure and system behavior
are captured early in the modeling process, through the formulation of a dynamic hypothesis.
In the later stages of model development, once a simulation model is constructed, the resulting
mathematical model can be formally analyzed in order to provide insights into the strengths and
influences of the distinct feedback structures. Such formalanalysis remains an important and
challenging area in system dynamics and can be classified into two types, behavior-based methods
and structure-based methods.

A prominent behavior-based method was proposed by Ford (1999), who writes that the purpose
of feedback loop dominance analysis is to identify feedbackstructures that dominate behavior.
Ford also argues for a rigorous approach to formal analysis,and presents a procedure, based on
changes in the three atomic behavior patterns, to signal loop dominance for a given time interval.
Our approach proposes an extension of Ford’s method. Using sensitivity analysis, we generate a
broader set of results around a range of possible values for the control variable, and thereby assess
the impact of these changes to the behavior of the variable ofinterest. This approach suggests it
could be used to select the candidate unique edge for the Fordmethod when more than one unique
edge exist in the a feedback loop. It also provides an ideal basis to identify the dominant loop
by evaluating the sensitivity over various loops. Two criteria are addressed in the assessment of



sensitivity. Furthermore, we also suggest a new criteria toquantify the loop dominance to the
traditional Ford method.

The structure of the paper is as follows. In section 2, we summarize the existing approaches
to formal analysis and provide a description to the Ford method. In section 3, we will present a
detailed description of a variance of the Ford method relating to the use of sensitivity analysis.
We also suggest a potential contribution that the sensitivity analysis could afford to make the Ford
method more robust. Subsequently, we will illustrate the benefits of this novel approach through
showing an example using the well known Yeast model in section 4. Finally, we will outline our
conclusions and future research.

2 Related Research

In the area of formal analysis, there are three popular methods currently: the Ford method, pathway
participation metrics (PPM) and eigenvalue elasticity analysis (EEA). As we said above, the former
one is behavior-based while the latter ones are structure-based.

EEA method is a mathematic rigorous approach in system dynamics. Graham (1977) studied
the relationship between system structure and system behavior. Forrester (1982) established the
foundation for EEA. He made attempt to identify the important causal structures that underlie the
cyclic behavior. He proposed a method using eigenvalue elasticity for identifying the dominant
compact link (an imaginary link connects two states). However, this concept existed only in theory
since researchers could not formally establish a complete feedback loop set for a system. Kamp-
mann (1996) developed a solution to this from graph theory and suggested the independent loop
set (ILS). It significantly reduced the number of feedback loops and offered a mathematical means
to calculate the loop elasticity from causal link elasticity (In contrast to compact link, causal link
is a normal link in a model). The way to obtain the causal link elasticity from the compact link
elasticity is explained in details in (Gawad et al., 2005). Later, Oliva (2004) proposed a strategy to
identify ILS based on the shortest loops, shortest independent loop set (SILS). This SILS algorithm
does generate a unique loop set. Saleh (2000) linearized non-linear model and allowed EEA to ap-
ply on non-linear models. Another important contribution that he made is to allow EEA to produce
assessments to the level of a particular variable rather than the level at the entire model. Guner-
alp (2005) improved the traditional EEA based on Saleh’s work by introducing a new measure
that allows consideration of the combination of all behavioral modes in determining the dominant
feedback loops.

Mojtahedzadeh (1997) has proposed the PPM as a formal analysis tool distinguished itself by
detecting any influential substructure besides the loop. These structures involve links of causal
structure between two states, pathways. It uses seven behavior patterns to classify the system
behavior. A single phase of behavior for a selected variableis a time interval where the variable
retains its behavior pattern. The basic idea behind PPM is tocalculate how much the net flow could
change given a small change in the selected variable. It constructs the most influential pathway
by adding the causal structure who contributes most to the total changes in the net flow. An
existing software: Digest is used to implement and display the PPM result (Mojtahedzadeh, 2001;
Mojtahedzadeh et al., 2004). One shortage of this method is that it is unable to deal effectively
with oscillations (Kampmann and Oliva, 2005).

The Ford method is a prominent approach to shed light on the structure-drive-behavior dynamic



system. One contribution Ford made was that he improved the definition of atomic behavior pat-
terns, classified them into three categories: exponential,logarithmic and linear. The formulation
of the atomic behavior pattern is called behavior pattern indicator (BPI). For more details refer to
(Ford, 1999). Richardson (1995) pointed out “The shifts in loop dominance that occur in nonlinear
system arise naturally as changes in the sign of dominant polarity”. Thereby, dominance interval
could be exactly determined. It is a time interval within which the atomic behavior pattern remains
consistent. Ford’s another contribution is to isolate a candidate loop from other loops to see the
impact on the variable of interest. He isolated the loop by deactivating its control variable. The
control variable is not a variable in other feedbacks loops.After identifying the control variable,
set it to be constant only in this loop, then simulate the changed model in each time interval.

The key steps of the Ford method are listed as follows:

1. Identify the variable of interest.

2. Divide the simulation length into time intervals in whichdifferent feedback loop may domi-
nate. This division is conducted on the change of atomic behavior pattern. The time interval
is also called phase.

3. Find a control variable for each loop. Control variable isa variable that is not in any other
loops.

4. Deactivate the feedback loop by setting the control variable to be a constant. The constant is
the same value as it is at the deactivating point. We also refer this value to default value.

5. Simulate the behavior of the variable of interest over thetime interval with the candidate
feedback loop deactivated. Repeat this process for every feedback loop in each period.

6. Identify dominant loops by checking if the atomic behavior pattern changes in each time
interval.

7. If no dominant loops are identified, proceed the shadow feedback loops analysis.

2.1 Improved Ford method

To gain a deeper understanding of the Ford method and our variance method, we elaborate some
issues in the application. One challenge to use the Ford method is to identify the feedback loops.
No explicit method has been developed to select the feedbackloops for the Ford method. A huge
number of feedback loops could be detected in a system even ina small size model (Kampmann,
1996). In a model with n state variables and p auxiliary variables under the condition that it is
maximally connected, the number of loops grows to 2np ∗ (n − 1)!. Even if in realistic models,
which have far fewer links, it is still too time-consuming toanalyze all of them. Actually, the
selection of feedback loops in a complex system is already discussed by Oliva and Mojtahedzadeh
(2004). The ideal loop set should represent the core structure of the system with an appropriate
number of loops. Phaff (2008) proposed an automated version of the Ford method. He adopted the
SILS as the loop set. This is a loop set originally developed for EEA. Whereas it is also applicable
to the Ford method.



Another potential problem is the “control variable”. The first step of deactivating a candidate
loop is to find the control variable. So once the loop set has been determined, we have to ensure
that every loop has a control variable. This is a major constraint and is difficult to satisfy. Phaff
(2008) proposed to use a unique edge instead of a control variable: deactivating a unique edge in
a candidate feedback loop to deactivate that loop. The unique edge is an edge not shared by other
loops. It is a similar concept of the control variable. The unique edge constrain is easier to satisfy.
If a control variable exists, there must be at least two unique edges in this loop, but conversely a
unique edge does not imply the existence of a control variable.

Finally, Ford use the change of atomic behavior pattern to determine if the candidate loop
dominates. It only provides a binary answer to the analyst: yes or no. There is a need to visually
demonstrate the degree of the dominance and its fluctuation over time. An alternative measure of
dominance proposed here to show the relative dominance of various loops.

In section 3, we adopt the automated version of the Ford method.

3 The Sensitivity Analysis Approach

Sensitivity analysis is used to determine how “sensitive” amodel is to changes in the value of the
parameters of the model and to changes in the structure of themodel (Breierova and Choudhari,
1996). In this paper, we focus on the parameter sensitivity.Parameter sensitivity is usually per-
formed with setting different values to the parameter to examine changes of a model’sbehavior.
By showing how the model responds to the change of the parameter, we could find the sensitive
parameter to the model under the given set of conditions.

Before we present the proposed method, we still have to solveanother problem in sensitivity
analysis. We need to compare the sensitivity among different control variables, but it is easily to
observe that variables in a model would be of different scale. How to fairly design a boundary?
This boundary is used to determine the range of possible values for our sensitivity analysis on a
specific control variable. We give up the idea that multiply the control variable’s default value by
a factor as its upper bound and divide it by a factor as its lower bound. First, any selected factor
would be considered arbitrary. There would be argues over this factor. Second, it causes difficulties
to explain the analysis outcome in a specific model. In our sensitivity analysis of the Ford method,
all the variables are evaluated in the simulation of the reference model, and phases are divided.
We determined the control variable’s boundary by looking atits range in the relevant phase. Thus,
the boundary region is identified by the behavior of the variable of interest and is not an arbitrary
range. We believe it is a fair representation of a variable’sboundary for sensitivity analysis to a
specified phase and model.

The procedure of sensitivity approach is as follows:

1. Select variable of interest in the model.

2. Set up SILS and identify all unique edges for each feedbackloop in SILS. Identify the unique
edges and the control variables.

3. Simulate the behavior of the variable of interest, use theFord method to partition the phases.

4. Identify the boundary for all control variables from the simulation of the reference model.



5. Apply the sensitivity analysis. Simulate the behavior ofthe variable of interest over the
divided phase with loop deactivated replacing the default value with a number of values in
its boundary. Repeat this step for a number of values for individual control variable in each
phase.

6. Display the results from the sensitivity analysis and integrate these findings into a single
graphical representation for a clearer understanding of their implications.

7. If there are more than one unique edges in a feedback loop, choose the most sensitive one as
the candidate edge to deactivate the feedback loop.

8. Using the default value of the selected control variable to simulate the behavior of the vari-
able of interest. Repeat this step for every control variable in each phase.

9. Demonstrate the outcome from the Ford method by a new assessment of dominant and vali-
date the conclusion from sensitivity analysis.

We propose a series of measurement of dominance and sensitivity for our approach. We first
introduce a new assessment to determine a dominant loop, then, we will unfold a method for
evaluating the sensitivity under different benchmarks. These extensions help to better demonstrate
the analysis result.

The Ford method judges a dominant loop by checking the behavior pattern of the variable of
interest after deactivating the candidate loop. If the behavior pattern is consistent with it in the
reference model in the relevant phase, it would not be considered as a dominant loop. This criteria
only indicates a binary answer. We have poor information on how dominant that loop is and how
the other less significant loops perform throughout the timeinterval.

Our measurement of the dominance shows more descriptive information and affords to reveal
the fluctuation of loop dominance over time. We use the behavior to simply the saying of the be-
havior of the variable of interest in the following explanation. First, we have the variable of interest
v in the reference model evaluated throughout the timevt

0, the subscript 0 represents the reference
model. We also record its values in the simulation each time afeedback loop is deactivated. We
assume there are n feedback loops. For a specific loopi, the value is given byvt

i . The difference
between the behavior in the deactivated model with a specified loop i and the reference model is
estimated by

∆vt
i = vt

i − vt
0 (1)

Its varianceS is computed
Si

t = (∆vt
i)

2 (2)

The comparison of the influences to the behavior of the variable of interest between different feed-
back loops becomes easier when the difference is rescaled. The portion an individual feedback
loop devotes to the behavior could be obtained by a series of steps. We calculate the relative con-
tributionc that loopi devoted to the overall behavior of variable of interest at timet in Equation 3.
The rescaled relative contributionr from loop i at timet is evaluated by dividing the sum relative
contribution in Equation 4. The relative contribution of anindividual loop varies between 0 and
1. It also could be expressed by the word “ influence factor”. Rescaling the contribution of an
individual feedback loop is a more straightforward way to present the analysis result.
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Our measurement shows that loop dominance can be assessed and compared on a scale evolv-
ing with time, thereby avoiding any binary classifications which can sometimes mask the under-
lying behaviors. A loop which is considered not dominant under the traditional criteria can now
be shown to have some degree of dominance relative to the other loops in a model. Conversely a
loop classified as dominant can be shown on a scale and compared with its peers. We can make
use of the visualized result to identify the shadow loops as well. The loops with relatively larger
dominance would be selected as the dominant loops.

We now describe two alternative measurements of the sensitivity. For a certain model, we
assume there areM control variables,T unique edges andT ≥M. The amount of the possible values
for a control variable isN. The behavior of the variable of interestv in the model deactivated by
unique edge e withith value at time stept is expressed in notationvt

e,i . Here, we provide two criteria
to measure the sensitivity of a variable to an edge. They compare with different benchmarks.
Measurement1makes use of the average behavior fromN different behaviors in sensitivity analysis
while measurement2 takes the behavior in the deactivated model using the default value as its
benchmark. Note that these behaviors are from the simulation with a same edge deactivated. The
average behavior ofN behaviors is described in Equation 5. The notation of the behavior with
default value is:vt

e,0. The subscript0 represents the default value.

v̄t
e =

N
∑

i=1
vt

e,i

N
(5)

The difference from a specified behavior to the default value behavior and the average value
behavior are calculated in Equation 6 and Equation 7 respectively. vt

e,i is the behavior with the
unique edgeedeactivated using test valuei at time stept. The subscripti represents any value that
assigned to do the sensitivity analysis within the corresponding control variable’s boundary.

∆vt
e,i = vt

e,i − vt
e,0 (6)

∆vt
e,i = vt

e,i − v̄t
e (7)

The calculation of the overall varianceS for N sensitivity analyse with a unique edgee deac-
tivated is shown in Equation 8 and the average value of it is then obtained by dividing the overall
variance withN in Equation 9. This represent the average variance of edgee sensitivity with
respect to the variable of interestv.

St
e =

N
∑

i=1

(∆vt
e,i)

2 (8)
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Finally, we adopt the standard average varianceσ presented in Equation 10 as our criteria to
compare the sensitivity between different edges throughout all the phases.

σ
t
e =

√

S̄t
e (10)

4 Illustration of Approach

We choose Yeast model to illustrate this method. The Yeast model is a well known model used
in system dynamics analysis. It is a second order non-linearmodel and an classical example of
overshoot-and-collapse dynamics. The stock-flow diagram is presented in Figure 1. The equation
of Yeast model is in appendix. It has four feedback loops in SILS and only L1 (Cells-birth-Cells)
is positive, the polarity of each loop is marked in Figure 1. The definition and the calculation of
the loop polarity is elaborated in (Richardson, 1995; Sterman, 2000). The polarity of the loop is a
typical symbol that shows the relationship between the structure and the behaviors.

Figure 1: stock-flow diagram for Yeast model

We carry out our approach step by step as follows:

1. Choose the variable of interest: Cells.

2. Set up SILS as its loop set. There are four loops in SILS in Yeast model (Figure 1).

L1 Cells-births-Cells

L2 Cells-deaths-Cells

L3 Cells-Alcohol generation-Alcohol- effect alcohol on birth (eab)-births-Cells

L4 Cells-alcohol generation-Alcohol- effect alcohol on death (ead)-deaths-Cells

Identify all the unique edges in SILS. We identify two uniqueedges inL3 andL4 respec-
tively. The variableseab is exclusively belonging toL3, thereby deactivating either unique



edge associated with it them makes no difference to assess the loop’s dominance. It is iden-
tical to variableead. The candidate unique edges are selected and presented in Table 2.

I II III IV
exponential growth logarithmic growth exponential decay logarithmic decay

0, 50.84 50.84, 65.49 65.49, 74.52 74.52, 90

Table 1: Time intervals over simulation length and behavioral patterns

L1 L2 L3 L4
Cells→births Cells→deaths eab→births ead→deaths

Table 2: Candidate unique edges in each loop

3. Simulate the behavior of the variable of interest in the reference model, identify the time
intervals. Figure 3 plotted the behavior of cell over 90 units. Table 1 list the time intervals
and its corresponding behavior patterns. The equations forthe Yeast model are listed in
Table 3.
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Figure 2: Behavior of Cells over the simulation time

4. Apply sensitivity analysis on the control variable in each phase. So we display the behavior
of all the control variables in the reference model in Figure3 and 3. Then the boundary for
individual control variable is determined and given in Table 4. We mark the boundary as “B”,
N represents the number of test values. A series number of values of the control variable is
calculated by Equation 11. We use 100 test values across its boundary. These test values
are used to substitute for the default value in the deactivated model in turns. Therefore, we
apply sensitivity analysis on each unique edge 100 times across all the phase.

Min(B) +
Max(B) − Min(B)

N
× k (k = 0 . . .N− 1) (11)



timestep=0.01 ; simulation length=90
Stocks:
Cells=INTEG(births-deaths, 1)
Alcohol=INTEG(alcohol generation, 0)
Flows:
births=Cells/division time* effect of alcohol on birth
deaths=Cells/life time* effect of alcohol on death
alcoholgeneration=Cells*alcohl per cell generation
Auxiliaries:
effectofalcoholonbirths=(-0.1*Alcohol)+1.1
effectofalcoholondeaths=EXP(Alcohol-11);
life time=30 ; division time=15
alcohol per cell generation=0.01

Table 3: Equations for Yeast model

Cells eab ead
I (1, 27.45) (1.1, 0.646) (0, 1.575E-3)
II (27.45, 39.87) (0.646, 0.133) (1.575E-3, 0.1846)
III (39.87, 21.12) (0.133, -0.175) (0.185, 5.768)
IV (21.12, 0) (-0.175, -0.25) (5.768, 11.78)

Table 4: Boundary for control variables in the Yeast model
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Figure 3: Behavior of variables in reference

5. Analysis of the experiment result. There are four feedback loops in the yeast model in
SILS. In each phase we plot a set of four figures to show the behavior of Cells under the
sequential deactivation of four unique edges. Figure 4(a) depicts the behavior of Cells under
the deactivation ofedgeCells→births with a certain of different values on the control variable
Cells in phaseI. We plot only 10 curves for the clarity. Similarly, in Figure4(b), we can
identify an almost identical experiment involving the loopL2. Subsequently, results are
presented from a sensitivity analysis involvingL3 andL4, in Figure 4(c) and Figure 4(d)
respectively. The “default” in the legend is short for the “default value”.

After generally describing the displayed graphs, let us focus on Figure 4(a), these curves
demonstrate how the variable of interest responds to the change of values on the control
variable throughout this phase. Compared it with other three peers in the Figure 4(b) and
Figure 4, it is easy to observe that Cells is the most sensitive to the change of the control
variable via theedgeCells→birth. We can not simply address the variable of interest is
sensitive to the control variable, because theL1 and theL2 both share the same control
variable (Cells), but they exhibit completely different sensitivity. To be more precise, the
impact results from change of the control variable is propagated via the unique edge and the
relevant loop. There is almost no change on the behavior of Cells no matter how the control
variable varies across their boundaries inL2 andL4. As to the control variableeabin L3, a
number of variance varies the behavior of the Cells but it is not as significant as theL1.

Figure 5(a) is plotted under the proposed measurement1 of the sensitivity. The standard
variance of edge sensitivity is an indicator of the degree ofsensitivity. This quantitative in-
dicator presents how significant the edge influences the variable of interest. In a conclusion,
Cells is most sensitive toL1 and insensitive toL2 andL4 while Cells gradually increased its
sensitivity toL3. Based on this knowledge, we infer that theL2 andL4 can not be a dominant
loop andL1 has a high possibly to be the dominant loop in the current phase.

The outcome of the the behavior with edges deactivated in phaseII is illustrated in Figure 6,
and the overview of different edges sensitivity is in 5(b). EdgeCells→deathin L2 remains
almost no impact on Cells as in phaseI. No matter how the control variable changes across
its boundary, the variable of interest exhibits almost the same trajectory. Hence, the variable
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Figure 4: Sensitivity analysis on edges in phase I
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(a) standard variance over unique edges in phase I
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(b) standard variance over unique edges in phase II

Figure 5: Sensitivity analysis–standard variance
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Figure 6: Sensitivity analysis on edges in phase II
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Figure 7: Sensitivity analysis on edges in phase III

is not sensitive toL2 at all throughout this phase and implies thatL2 would not be a dominant
loop. In contrast,L3 keeps its growing sensitivity and becomes the most sensitive factor to
the variable of interest. At the same time,L1 now does not greatly affect the variable of
interest as in phaseI. We can also identifyL2 andL4 has the similar influence in the relevant
graphs. However, their impact is much less thanL3. Recall corresponding graph in phaseI,
the standard variance reflects that the difference of sensitivity from different loops is much
smaller than in phaseI.

Figure 7 illustrates the experiment results in phaseIII . It is apparent from these results that
many alternative test values of the control variable inL4 drive the variable of interest to
display the diverse behaviors. Thus, a significant effect is contributed to the variable of
interest byL4. Contrarily, we can see there are no changes when control variable changes
in L1. This indicates that the unique edge inL1 has no impact over the variable of interest.
By the observation on Figure 4(b) and Figure 4(c), the variable of interest shows similar
sensitivity toL2 andL3, but toward the end of this phase,L2 slightly raises it influence on
the variable of interest and overtakesL3. Figure 8(a) shows the standard variance of edge
sensitivity, and also confirms the above analysis, it encapsules the information from the other
four graphs and express it in a succinct way.
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(b) standard variance over unique edges in phase IV

Figure 8: Sensitivity analysis–standard variance
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Figure 9: Sensitivity analysis on edges in phase IV
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Figure 10: Feedback loop analysis with the default values

Finally, in phaseIV, Look at the Figure 9(a) and Figure 9(c), the curves plotted in them are
seemed to be one bold curve, this shows that the variable of interest is not sensitive toL1 and
L3. However, the curves for the peers in Figure 9(b) and Figure 9(d) are radiate. With the
addition of Figure 8(b), we come to a conclusion that in phaseIV L2 is the most sensitive
andL4 is less sensitive whileL1 andL2 are almost insensitive. The the significance of the
loop dominance is in the same order as the sensitivity.

6. In the Yeast model, we select the candidate unique edge by observation, so there is no need to
resort to sensitivity analysis to do the selection. In the sensitivity analysis, we have simulated
the behavior of Cells with default values of different control variables already. They are
plotted in relevant graphs in black lines. However, we display this result in Figure 10.

7. Use the proposed quantitative assessment to calculate their “influence factor” , thereby de-
termine the dominant loops. Figure 11 present the normalized influence factor over time. In
phaseI, we can see theL1 is definitely dominant for most of the time while toward the end
of this phase,L3 rises its impact andL1 decreases its dominance. Meanwhile,L2 andL4
hardly have any impact on the variable of interest. In phaseII , L3 still gains its influence
on “Cells” and becomes the dominant loop soon after enteringthe phaseII . The influence of
L1 decreases by the time goes but it still retains some impact onthe variable of interest.L2
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Figure 11: Dominance measured for deactivated loops



andL4 remain the same as in the previous phase–almost no effect, the impact of L4 grows
slightly toward the end of this phase. In phaseIII , L4 is dominant, butL3 also retains cer-
tain significance but becomes less and less important while L2 increases its effect at the late
phase.L1 almost has no impact over “Cell”. In phaseIV, from 74.5-78, the impact ofL2
grows swiftly and dominates during this period, but after that, it loses its dominant toL4
quickly. L4 is a dominant loop until the end.

Compared the analysis result from the original criteria in the Ford method (Phaff et al., 2006),
they agree with each other most of the time but there is also discrepancy. In phaseIII , our
assessment attributesL4 to be the only dominant loop, whereas the original one determines
bothL3 andL4 to be dominant. In phaseIV, our method indicatesL2 andL4 each dominates
for half phase whileL2 is the dominant loop under the original criteria.

Dominant loops
I II III IV

Sensitivity analysis L1 L3 L4 L2
New assessment L1 L3 L4 L2 & L4

Original assessmentL1 L3 L3 & L4 L2

Table 5: Comparison of dominant loops

Another comparison is conducted with the sensitivity analysis approach, these conclusions
are consistent except in the last phase, sensitivity analysis owes toL2 to be a dominant loop
while it is together withL4 to be dominant in the new assessment. To clarify the comparison
between the three outcomes, we outline them in table 5 above.

5 Conclusions and Future Research

The Ford method is an important formal analysis method whichoffers a way to investigate the
dynamic system. We propose an extension of this method by integrating a sensitivity analysis
approach in order to enhance our understanding of the dominant loops in a model. We also propose
that sensitivity analysis can be applied in order to select the unique edge if there are more than one
unique edges in a feedback loop. For the future work, we believe the sensitivity analysis can be
integrated added into an automated version of the Ford method to make it more powerful and
robust, and become an practical and effective means of performing robust policy analysis.
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