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Abstract

In dynamic models, a system behavior is determined by tkearrtion of its feedback loops.
The challenge for system dynamics modellers is to ide#ye loops, and also understand, over
the runtime of a model, which loops dominate system behaVlwr Ford method is a procedure
that identifies changes in atomic behavior patterns in tlesence, and absence, of feedback loops,
in order to identify loop dominance for a specific time intrvFor a candidate feedback loop,
dominance is calculated based on setting the loops contméble to a constant value. Our
approach proposes a variation on this method. Using serityitanalysis, we explore a wider
search space around a range of possible values for the covdraable, and thereby the value of
the loop gain. The outcome of this analysis is a richer sebopldominance analysis for each
atomic behavior pattern in the model. The sensitivity ofauas feedback loops is measured as an
indicator of dominance. This approach has the potentialésblected for modellers and policy
to analyze the structure-drive-behavior dynamic systefihe approach is illustrated through an
analysis of the Yeast Model.

1 Introduction

A core premise of system dynamics is that the behavior of &sy& determined by its feedback
structure. This feedback structure arises through theaatens of the physical and institutional
structure of the system with the decision-making procesktége agents acting within it (Sterman,
2000). For a given problem of interest, the link between liee# structure and system behavior
are captured early in the modeling process, through theuiation of a dynamic hypothesis.
In the later stages of model development, once a simulatiodemis constructed, the resulting
mathematical model can be formally analyzed in order to ipl®insights into the strengths and
influences of the distinct feedback structures. Such foramallysis remains an important and
challenging area in system dynamics and can be classifietiwottypes, behavior-based methods
and structure-based methods.

A prominent behavior-based method was proposed by For®j1@®o writes that the purpose
of feedback loop dominance analysis is to identify feedbstclctures that dominate behavior.
Ford also argues for a rigorous approach to formal analgsid,presents a procedure, based on
changes in the three atomic behavior patterns, to signpldooninance for a given time interval.
Our approach proposes an extension of Ford’s method. Usimgjt&vity analysis, we generate a
broader set of results around a range of possible valuebdarantrol variable, and thereby assess
the impact of these changes to the behavior of the variabilg@fest. This approach suggests it
could be used to select the candidate unique edge for thenketttod when more than one unique
edge exist in the a feedback loop. It also provides an idesiklia identify the dominant loop
by evaluating the sensitivity over various loops. Two cigere addressed in the assessment of



sensitivity. Furthermore, we also suggest a new criteriguantify the loop dominance to the
traditional Ford method.

The structure of the paper is as follows. In section 2, we sarie@ the existing approaches
to formal analysis and provide a description to the Ford wetHn section 3, we will present a
detailed description of a variance of the Ford method meato the use of sensitivity analysis.
We also suggest a potential contribution that the sentsitanalysis could fiord to make the Ford
method more robust. Subsequently, we will illustrate thedbiés of this novel approach through
showing an example using the well known Yeast model in sectioFinally, we will outline our
conclusions and future research.

2 Related Research

In the area of formal analysis, there are three popular nastborrently: the Ford method, pathway
participation metrics (PPM) and eigenvalue elasticitylgsia (EEA). As we said above, the former
one is behavior-based while the latter ones are structaseeb

EEA method is a mathematic rigorous approach in system digsarGraham (1977) studied
the relationship between system structure and system lmehd@orrester (1982) established the
foundation for EEA. He made attempt to identify the impotteausal structures that underlie the
cyclic behavior. He proposed a method using eigenvaludigtgsor identifying the dominant
compact link (an imaginary link connects two states). Hovgthis concept existed only in theory
since researchers could not formally establish a compésteélfack loop set for a system. Kamp-
mann (1996) developed a solution to this from graph theodysalggested the independent loop
set (ILS). It significantly reduced the number of feedbadpmwand ered a mathematical means
to calculate the loop elasticity from causal link elasticih contrast to compact link, causal link
is a normal link in a model). The way to obtain the causal lifdsgcity from the compact link
elasticity is explained in details in (Gawad et al., 20059tdr, Oliva (2004) proposed a strategy to
identify ILS based on the shortest loops, shortest indepetidop set (SILS). This SILS algorithm
does generate a unique loop set. Saleh (2000) linearizetimear model and allowed EEA to ap-
ply on non-linear models. Another important contributibatthe made is to allow EEA to produce
assessments to the level of a particular variable rather tthelevel at the entire model. Guner-
alp (2005) improved the traditional EEA based on Saleh’skway introducing a new measure
that allows consideration of the combination of all beheaionodes in determining the dominant
feedback loops.

Mojtahedzadeh (1997) has proposed the PPM as a formal atdg$ distinguished itself by
detecting any influential substructure besides the loopes&lstructures involve links of causal
structure between two states, pathways. It uses seven ibelpatterns to classify the system
behavior. A single phase of behavior for a selected varisbéetime interval where the variable
retains its behavior pattern. The basic idea behind PPMdaltulate how much the net flow could
change given a small change in the selected variable. Itwats the most influential pathway
by adding the causal structure who contributes most to tted thanges in the net flow. An
existing software: Digest is used to implement and disgh@yRPM result (Mojtahedzadeh, 2001;
Mojtahedzadeh et al., 2004). One shortage of this methduhisit is unable to dealfiectively
with oscillations (Kampmann and Oliva, 2005).

The Ford method is a prominent approach to shed light on thetate-drive-behavior dynamic



system. One contribution Ford made was that he improvedaéfirition of atomic behavior pat-
terns, classified them into three categories: exponeihtigdrithmic and linear. The formulation
of the atomic behavior pattern is called behavior pattedicator (BPI). For more details refer to
(Ford, 1999). Richardson (1995) pointed out “The shiftoiod dominance that occur in nonlinear
system arise naturally as changes in the sign of dominaatipgl Thereby, dominance interval
could be exactly determined. It is a time interval within alinthe atomic behavior pattern remains
consistent. Ford’s another contribution is to isolate adacdate loop from other loops to see the
impact on the variable of interest. He isolated the loop bgctleating its control variable. The
control variable is not a variable in other feedbacks loopiger identifying the control variable,
set it to be constant only in this loop, then simulate the gedrmodel in each time interval.

The key steps of the Ford method are listed as follows:

1.
2.

7.

21

Identify the variable of interest.

Divide the simulation length into time intervals in whidlterent feedback loop may domi-
nate. This division is conducted on the change of atomic\iehpattern. The time interval
is also called phase.

Find a control variable for each loop. Control variabla igariable that is not in any other
loops.

Deactivate the feedback loop by setting the control Wé&ito be a constant. The constant is
the same value as it is at the deactivating point. We also ti@fevalue to default value.

Simulate the behavior of the variable of interest overtime interval with the candidate
feedback loop deactivated. Repeat this process for evedp#ek loop in each period.

Identify dominant loops by checking if the atomic behapattern changes in each time
interval.

If no dominant loops are identified, proceed the shadodtfaek loops analysis.

I mproved Ford method

To gain a deeper understanding of the Ford method and owmnearimethod, we elaborate some
issues in the application. One challenge to use the Fordadesito identify the feedback loops.
No explicit method has been developed to select the feedbapk for the Ford method. A huge
number of feedback loops could be detected in a system ewesnmall size model (Kampmann,
1996). In a model with n state variables and p auxiliary \@éa under the condition that it is
maximally connected, the number of loops grows tp 2 (n — 1)!. Even if in realistic models,
which have far fewer links, it is still too time-consuming analyze all of them. Actually, the
selection of feedback loops in a complex system is alreastyudsed by Oliva and Mojtahedzadeh
(2004). The ideal loop set should represent the core steicuthe system with an appropriate
number of loops. PHE(2008) proposed an automated version of the Ford methoddéjeted the
SILS as the loop set. This is a loop set originally developedEEA. Whereas it is also applicable
to the Ford method.



Another potential problem is the “control variable”. Thesfistep of deactivating a candidate
loop is to find the control variable. So once the loop set has lietermined, we have to ensure
that every loop has a control variable. This is a major camstrand is dificult to satisfy. Phl
(2008) proposed to use a unique edge instead of a contralblarideactivating a unique edge in
a candidate feedback loop to deactivate that loop. The eredge is an edge not shared by other
loops. Itis a similar concept of the control variable. Théque edge constrain is easier to satisfy.
If a control variable exists, there must be at least two umigdges in this loop, but conversely a
unique edge does not imply the existence of a control vagiabl

Finally, Ford use the change of atomic behavior pattern terdene if the candidate loop
dominates. It only provides a binary answer to the analyss:or no. There is a need to visually
demonstrate the degree of the dominance and its fluctuatientione. An alternative measure of
dominance proposed here to show the relative dominanceioiugaoops.

In section 3, we adopt the automated version of the Ford ndetho

3 The Sensitivity Analysis Approach

Sensitivity analysis is used to determine how “sensitivei@lel is to changes in the value of the
parameters of the model and to changes in the structure ohtitel (Breierova and Choudhari,
1996). In this paper, we focus on the parameter sensitiAirameter sensitivity is usually per-
formed with setting dferent values to the parameter to examine changes of a mbedlasyior.
By showing how the model responds to the change of the paesywet could find the sensitive
parameter to the model under the given set of conditions.

Before we present the proposed method, we still have to ssleéher problem in sensitivity
analysis. We need to compare the sensitivity amofffgmint control variables, but it is easily to
observe that variables in a model would be dfatient scale. How to fairly design a boundary?
This boundary is used to determine the range of possibleesdhr our sensitivity analysis on a
specific control variable. We give up the idea that multiplg tontrol variable’s default value by
a factor as its upper bound and divide it by a factor as its tdveeind. First, any selected factor
would be considered arbitrary. There would be argues owgfabtor. Second, it causediittulties
to explain the analysis outcome in a specific model. In ousisigity analysis of the Ford method,
all the variables are evaluated in the simulation of theregfee model, and phases are divided.
We determined the control variable’s boundary by lookingsatange in the relevant phase. Thus,
the boundary region is identified by the behavior of the \dei@f interest and is not an arbitrary
range. We believe it is a fair representation of a variaddesndary for sensitivity analysis to a
specified phase and model.

The procedure of sensitivity approach is as follows:

1. Select variable of interest in the model.

2. Setup SILS and identify all unique edges for each feedlmagkin SILS. Identify the unique
edges and the control variables.

3. Simulate the behavior of the variable of interest, usd-tiredl method to partition the phases.

4. Identify the boundary for all control variables from thealation of the reference model.



5. Apply the sensitivity analysis. Simulate the behaviotla# variable of interest over the
divided phase with loop deactivated replacing the defaallier with a number of values in
its boundary. Repeat this step for a number of values fowviddal control variable in each
phase.

6. Display the results from the sensitivity analysis an@gnate these findings into a single
graphical representation for a clearer understandingesf timplications.

7. If there are more than one unique edges in a feedback lbopse the most sensitive one as
the candidate edge to deactivate the feedback loop.

8. Using the default value of the selected control variablsimulate the behavior of the vari-
able of interest. Repeat this step for every control vaei@bkeach phase.

9. Demonstrate the outcome from the Ford method by a newsamsses of dominant and vali-
date the conclusion from sensitivity analysis.

We propose a series of measurement of dominance and seygdinour approach. We first
introduce a new assessment to determine a dominant loop, W& will unfold a method for
evaluating the sensitivity underftBrent benchmarks. These extensions help to better deratanstr
the analysis result.

The Ford method judges a dominant loop by checking the behpeaittern of the variable of
interest after deactivating the candidate loop. If the b&hgattern is consistent with it in the
reference model in the relevant phase, it would not be censitlas a dominant loop. This criteria
only indicates a binary answer. We have poor information @n ominant that loop is and how
the other less significant loops perform throughout the fimerval.

Our measurement of the dominance shows more descriptioemiation and fiords to reveal
the fluctuation of loop dominance over time. We use the behndwisimply the saying of the be-
havior of the variable of interest in the following explaioat First, we have the variable of interest
vin the reference model evaluated throughout the tifnéhe subscript O represents the reference
model. We also record its values in the simulation each tirffedback loop is deactivated. We
assume there are n feedback loops. For a specificilabe value is given by!. The diterence
between the behavior in the deactivated model with a spdddi@i and the reference model is
estimated by

AV = Vo @

Its varianceSis computed
S' = (AV)? )

The comparison of the influences to the behavior of the viriatinterest between flerent feed-
back loops becomes easier when thiedence is rescaled. The portion an individual feedback
loop devotes to the behavior could be obtained by a serieep$ sWe calculate the relative con-
tribution c that loopi devoted to the overall behavior of variable of interestragti in Equation 3.
The rescaled relative contributiorfrom loopi at timet is evaluated by dividing the sum relative
contribution in Equation 4. The relative contribution of iadividual loop varies between 0 and
1. It also could be expressed by the word “ influence factorésdling the contribution of an
individual feedback loop is a more straightforward way tegant the analysis result.



(i=1...n) 3)

(i=1...n) 4)

Our measurement shows that loop dominance can be assesseahapared on a scale evolv-
ing with time, thereby avoiding any binary classificationsieh can sometimes mask the under-
lying behaviors. A loop which is considered not dominantemithe traditional criteria can now
be shown to have some degree of dominance relative to thelotis in a model. Conversely a
loop classified as dominant can be shown on a scale and codnwéleits peers. We can make
use of the visualized result to identify the shadow loops eb.\irhe loops with relatively larger
dominance would be selected as the dominant loops.

We now describe two alternative measurements of the sdtsitiFor a certain model, we
assume there aid control variablesT unique edges anfl> M. The amount of the possible values
for a control variable idN. The behavior of the variable of interesin the model deactivated by
unique edge e witH" value at time stepis expressed in notatiotgi . Here, we provide two criteria
to measure the sensitivity of a variable to an edge. They epenpith diferent benchmarks.
Measurement makes use of the average behavior fidmifferent behaviors in sensitivity analysis
while measuremern? takes the behavior in the deactivated model using the defalle as its
benchmark. Note that these behaviors are from the simulatith a same edge deactivated. The
average behavior dfl behaviors is described in Equation 5. The notation of theateln with
default value isv,,,. The subscrip represents the default value.

i=1
%= (5)

The diference from a specified behavior to the default value behawid the average value
behavior are calculated in Equation 6 and Equation 7 resgéct v‘e‘i is the behavior with the
unique edge deactivated using test valuat time sted. The subscript represents any value that
assigned to do the sensitivity analysis within the corresptg control variable’s boundary.

AVte,i = Vte,i - VtaO (6)

Avtei = Vtai - \_/23 (7)

The calculation of the overall varian&for N sensitivity analyse with a unique edgeleac-
tivated is shown in Equation 8 and the average value of ites thbtained by dividing the overall
variance withN in Equation 9. This represent the average variance of edggnsitivity with
respect to the variable of interest

N
=) (A (8)
i=1
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Finally, we adopt the standard average variamgaesented in Equation 10 as our criteria to
compare the sensitivity betweerfiérent edges throughout all the phases.

=8 (10)

4 1llustration of Approach

We choose Yeast model to illustrate this method. The Yeasleiis a well known model used
in system dynamics analysis. It is a second order non-limeatel and an classical example of
overshoot-and-collapse dynamics. The stock-flow diageapmésented in Figure 1. The equation
of Yeast model is in appendix. It has four feedback loops ItSSANnd only L1 (Cells-birth-Cells)
is positive, the polarity of each loop is marked in Figure heTefinition and the calculation of
the loop polarity is elaborated in (Richardson, 1995; Starn2000). The polarity of the loop is a
typical symbol that shows the relationship between thectire and the behaviors.

diwision time lifetime

effect of alcohol on
effect of alcohol deaths

on births

Whatcohel generation

Figure 1: stock-flow diagram for Yeast model

alcohol per cell
generation

We carry out our approach step by step as follows:

1. Choose the variable of interest: Cells.

2. Setup SILS as its loop set. There are four loops in SILS asteodel (Figure 1).
L1 Cells-births-Cells
L2 Cells-deaths-Cells

L3 Cells-Alcohol generation-Alcohol{Eect alcohol on birth (eab)-births-Cells
L4 Cells-alcohol generation-Alcoholffect alcohol on death (ead)-deaths-Cells

Identify all the unique edges in SILS. We identify two uniceeiges inL3 andL4 respec-
tively. The variablegabis exclusively belonging ta€.3, thereby deactivating either unique



edge associated with it them makes nfia@tence to assess the loop’s dominance. It is iden-
tical to variableead The candidate unique edges are selected and presentdue??Ta

I I 11l v
exponential growth logarithmic growth| exponential decay logarithmic decay
0,50.84 50.84, 65.49 65.49, 74.52 74.52, 90

Table 1: Time intervals over simulation length and behalipatterns

L1 L2 L3 L4
Cells—hirths | Cells—»deaths| eab-births | ead—deaths

Table 2: Candidate unique edges in each loop

3. Simulate the behavior of the variable of interest in tiference model, identify the time
intervals. Figure 3 plotted the behavior of cell over 90 sinifable 1 list the time intervals
and its corresponding behavior patterns. The equationth®iYeast model are listed in
Table 3.
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Figure 2: Behavior of Cells over the simulation time

4. Apply sensitivity analysis on the control variable in leghase. So we display the behavior
of all the control variables in the reference model in Figdi@nd 3. Then the boundary for
individual control variable is determined and given in &l We mark the boundary aB”;

N represents the number of test values. A series number oévaliuthe control variable is

calculated by Equation 11. We use 100 test values acrossutsdary. These test values
are used to substitute for the default value in the deaetivatodel in turns. Therefore, we
apply sensitivity analysis on each unique edge 100 timexsaall the phase.

Max(B) — Min(B) K
N

Min(B) + (k=0...N-1) (11)



timestep-0.01 ; simulation length90

Stocks:

Cells=INTEG(births-deaths, 1)
Alcohol=INTEG(alcohol generation, 0)

Flows:

births=Cellgdivision time* dfect of alcohol on birth
deaths-Cellglife time* effect of alcohol on death
alcoholgeneratiocaCells*alcohl per cell generation
Auxiliaries:
effectofalcoholonbirths(-0.1*Alcohol)+1.1
effectofalcoholondeathd€XP(Alcohol-11);

life time=30 ; division time=15

alcohol per cell generatiei9.01

Table 3: Equations for Yeast model

Cells eab ead

I (1, 27.45) (1.1, 0.646) (0, 1.575E-3)

Il | (27.45, 39.87) (0.646, 0.133)| (1.575E-3, 0.1846
Il | (39.87,21.12) (0.133,-0.175 (0.185, 5.768)
IV | (21.12,0) | (-0.175,-0.25) (5.768,11.78)

Table 4: Boundary for control variables in the Yeast model
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Figure 3: Behavior of variables in reference

. Analysis of the experiment result. There are four feekldaops in the yeast model in
SILS. In each phase we plot a set of four figures to show theviimhaf Cells under the
sequential deactivation of four unique edges. Figure 4pjatls the behavior of Cells under
the deactivation oédgeCells—births with a certain of dferent values on the control variable
Cells in phasd. We plot only 10 curves for the clarity. Similarly, in Figud€b), we can
identify an almost identical experiment involving the lobp. Subsequently, results are
presented from a sensitivity analysis involvib and L4, in Figure 4(c) and Figure 4(d)
respectively. The “default” in the legend is short for thefault value”.

After generally describing the displayed graphs, let usi$oon Figure 4(a), these curves
demonstrate how the variable of interest responds to thegehaf values on the control
variable throughout this phase. Compared it with otherehreers in the Figure 4(b) and
Figure 4, it is easy to observe that Cells is the most sepditithe change of the control
variable via theedgeCells—birth. We can not simply address the variable of interest is
sensitive to the control variable, because tHeand thelL2 both share the same control
variable (Cells), but they exhibit completelyfidirent sensitivity. To be more precise, the
impact results from change of the control variable is prepeg via the unique edge and the
relevant loop. There is almost no change on the behavior ké Ge matter how the control
variable varies across their boundaries thandL4. As to the control variableabin L3, a
number of variance varies the behavior of the Cells but ibisas significant as thiel.

Figure 5(a) is plotted under the proposed measurerhafithe sensitivity. The standard
variance of edge sensitivity is an indicator of the degregewisitivity. This quantitative in-

dicator presents how significant the edge influences thabarof interest. In a conclusion,
Cellsis most sensitive th1 and insensitive th 2 andL4 while Cells gradually increased its
sensitivity toL3. Based on this knowledge, we infer that ttzandL4 can not be a dominant
loop andL1 has a high possibly to be the dominant loop in the currenteahas

The outcome of the the behavior with edges deactivated isgdh#s illustrated in Figure 6,
and the overview of dierent edges sensitivity is in 5(b). EdGells»deathin L2 remains
almost no impact on Cells as in phds&lo matter how the control variable changes across
its boundary, the variable of interest exhibits almost #raa trajectory. Hence, the variable
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is not sensitive ta.2 at all throughout this phase and implies thatvould not be a dominant
loop. In contrastl.3 keeps its growing sensitivity and becomes the most seaddistor to
the variable of interest. At the same timel now does not greatlyfiect the variable of
interest as in phadeWe can also identif{:2 andL4 has the similar influence in the relevant
graphs. However, their impact is much less th&n Recall corresponding graph in phdse
the standard variance reflects that thiedence of sensitivity from éierent loops is much
smaller than in phase

Figure 7 illustrates the experiment results in phidlsdt is apparent from these results that
many alternative test values of the control variabld_éndrive the variable of interest to
display the diverse behaviors. Thus, a significafiéat is contributed to the variable of
interest byL4. Contrarily, we can see there are no changes when contriablarchanges

in L1. This indicates that the unique edgelih has no impact over the variable of interest.
By the observation on Figure 4(b) and Figure 4(c), the véeialb interest shows similar
sensitivity toL2 andL3, but toward the end of this phade? slightly raises it influence on
the variable of interest and overtake3 Figure 8(a) shows the standard variance of edge
sensitivity, and also confirms the above analysis, it endapshe information from the other
four graphs and express it in a succinct way.
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Figure 9: Sensitivity analysis on edges in phase IV
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Figure 10: Feedback loop analysis with the default values

Finally, in phasdV, Look at the Figure 9(a) and Figure 9(c), the curves plotteithém are
seemed to be one bold curve, this shows that the variabléayést is not sensitive 1ol and

L3. However, the curves for the peers in Figure 9(b) and Fig(ug &e radiate. With the
addition of Figure 8(b), we come to a conclusion that in pH&s€&2 is the most sensitive
andL4 is less sensitive whilel andL2 are almost insensitive. The the significance of the
loop dominance is in the same order as the sensitivity.

. Inthe Yeast model, we select the candidate unique edged®reation, so there is no need to
resort to sensitivity analysis to do the selection. In thesg&ity analysis, we have simulated

the behavior of Cells with default values offfdirent control variables already. They are
plotted in relevant graphs in black lines. However, we digfthis result in Figure 10.

. Use the proposed quantitative assessment to calcukteitifluence factor” , thereby de-
termine the dominant loops. Figure 11 present the nornthlif@uence factor over time. In
phasd, we can see thkl is definitely dominant for most of the time while toward thalen
of this phasel 3 rises its impact andl1 decreases its dominance. Meanwhil@,andL4
hardly have any impact on the variable of interest. In pHhskE3 still gains its influence
on “Cells” and becomes the dominant loop soon after entehaghasél . The influence of
L1 decreases by the time goes but it still retains some impatii@rariable of interesti.2
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andL4 remain the same as in the previous phase—almostfactethe impact of L4 grows
slightly toward the end of this phase. In phdBe L4 is dominant, but.3 also retains cer-
tain significance but becomes less and less important wRiledreases itsféect at the late
phase.L1 almost has no impact over “Cell”. In phabé, from 74.5-78, the impact df2
grows swiftly and dominates during this period, but afteattht loses its dominant tb4
quickly. L4 is a dominant loop until the end.

Compared the analysis result from the original criteridnmford method (PHiget al., 2006),
they agree with each other most of the time but there is alscrefpancy. In phadd, our
assessment attributed to be the only dominant loop, whereas the original one detersn
bothL3 andL4 to be dominant. In phad¥, our method indicatels2 andL4 each dominates
for half phase whild_2 is the dominant loop under the original criteria.

Dominant loops
|1 1l \Y
Sensitivity analysis| L1 | L3 L4 L2

New assessment| L1 | L3 L4 L2& L4
Original assessmentL1 | L3 | L3& L4 L2

Table 5: Comparison of dominant loops

Another comparison is conducted with the sensitivity asiglapproach, these conclusions
are consistent except in the last phase, sensitivity aisadyges toL2 to be a dominant loop
while it is together witH_4 to be dominant in the new assessment. To clarify the comparis
between the three outcomes, we outline them in table 5 above.

5 Conclusionsand Future Research

The Ford method is an important formal analysis method whbitérs a way to investigate the
dynamic system. We propose an extension of this method legrating a sensitivity analysis
approach in order to enhance our understanding of the dotrimaps in a model. We also propose
that sensitivity analysis can be applied in order to seleetnique edge if there are more than one
unique edges in a feedback loop. For the future work, we xeliee sensitivity analysis can be
integrated added into an automated version of the Ford rdethanake it more powerful and
robust, and become an practical arfigzetive means of performing robust policy analysis.
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