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Abstract 
 
Recent media reports include several large systems engineering failures.  These failures are 
especially alarming given that they span different sectors (i.e., shipbuilding and space systems), 
and are not isolated to one firm.  Therefore we need to ask: Have we lost our systems 
engineering competitive edge?  What can the systems engineering discipline do to correct the 
apparent discrepancies that appear to be at the root cause of these failures? 
 
A systematic framework that represents current system engineering practices and integrates 
different factors that impact its performance into a unified view is not currently available.  We 
introduce some of the key concepts of this integrative framework by borrowing from the 
management and system dynamics literature.  This framework facilitates the modeling of the 
systems engineering process for the purpose of understanding, assessing, and potentially 
improving its performance.  Our framework brings together the basic mechanics (e.g., task 
completion, testing, scheduling, and costing) and the human elements (e.g., skills, incentives, and 
employee turnover) inherent in system engineering projects.  We highlight major feedback 
processes crossing multiple stages of the process and leading to cost and budget overruns.  We 
demonstrate how this framework can organize and connect multiple sources of failure in the 
systems engineering process. 
 
 
Key words and phrases: life-cycle systems engineering design, systems engineering projects, 
Intra phase, inter phase, multiple project dynamics. 
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1.0 Research Motivation and System Engineering Process Issues 
 
From the beginning of man’s history of developing large systems and architectures, until the 
1950’s, the responsibility of traditional systems engineering function such as architectural trades, 
cost estimation, program management, etc. fell upon the shoulders of the architect and the civil 
engineer.  During this era, the World realized several great and timeless systems (e.g., the 
pyramids, the Roman Aqueducts, the Hoover Dam, the Brooklyn Bridge, and the Empire State 
Building to name a few).  While these architectures were great engineering feats, they exhibit 
some degree of engineering complexity they only involved a limited number of engineering 
disciplines.  During World War II, project managers and chief engineers provided the oversight to 
more complex systems that required a broader range of engineering disciplines.  The Allies 
enjoyed additional engineering successes with large scale shipbuilding, aircraft, and weapon 
programs that it took win that war. 
 
By the mid-1950’s, systems were evolving with a greater degree of complexity.  The advent of the 
computer ensured that the World would be able to perform missions and tasks that heretofore 
were unimaginable.  A few examples include the development of: nuclear powered ships and 
submarines; missiles with nuclear weapons; and satellites and manned space vehicles.  These 
new systems exhibited a different type of complexity, hence requiring a wider degree of 
involvement from the various engineering disciplines.  The importance of these systems also 
required a high degree of confidence that they would perform as designed, be delivered within 
budget, and on time.  The discipline of systems engineering evolved to develop the requisite 
design processes and act as the integrator between the various engineering disciplines.  The 
successes enjoyed by the systems engineering discipline have primarily been single systems 
often with many sub-systems that were responsible for executing well defined missions and 
tasks. 
 
Recently, the media has been reporting about several large systems engineering failures 
(Taubman 2007).  These failures would be troublesome if they spanned one large system 
developed by a single firm, or one specific industry (e.g., the shipbuilding industry).  However, 
these reports are especially alarming given that they span several large system sectors (i.e., 
shipbuilding and space systems to name a few), and are not isolated to one firm.  These apparent 
breakdowns have motivated us to ask: What has happened to the systems engineering 
discipline?  Have we lost our systems engineering competitive edge?  And what can the systems 
engineering discipline do to correct the apparent discrepancies that appear to be at the root 
cause of these failures? 
 
A few government and industry experts, from the shipbuilding and space industries, have recently 
published articles in various trade magazines, and papers, speculating why the systems 
engineering discipline is failing.  A topical listing of their theses is portrayed in Table 1.  The 
common themes from across the literature include: the need to return to systems engineering 
basics; poor cost estimation; problems with the industrial base; customer-developer relationships; 
erosion of domain knowledge; acquisition process and program management failures; and 
problems with program oversight.  Other themes not common across all of the literature include: 
lack of risk management, unrealistic expectations associated with technological innovations; and 
funding instability. 



 

 

Winter (2007) Nowinski and Kohler 
(2007) 

Smith (2007) 

Systems Engineering: Lack of rigor; non-
effective allocation of resources in the 
process. 

Lack of systems 
engineering basics. 

Lack of systems engineering 
basics. 

Systems Engineering Management:  
Lack of focus on its core elements; not 
effective maintenance management. 

Lack of program 
management basics. 

Weakening of program 
management. 

Erosion of Domain Knowledge: Lack of 
knowledge transfer; lack of employee 
loyalty; issues with reward and incentives 
structures. 

Loss of domain 
expertise. 

Loss of domain expertise. 

Provider Customer Relations: Mutual 
lack of understanding of business 
processes and cultures; lack of customer 
loyalty; changing requirements definition; 
the impact of generated error rates. 

Ineffective team 
building. 

Ineffective Government/ 
industry teaming. 

COTS Technologies: Unrealistic 
expectations; imposition of constraints 
(reduction of the design feasible space) 
without appropriate adjustment to 
requirements. 

Lack of innovation  

Industrial Base Erosion: Underestimating 
economies of scale dynamics; workforce 
erosion; infrastructure depletion. 

Erosion of industrial 
base and the motivation 
to maintain the base. 

Erosion of industrial base. 

Ineffective Cost Estimation: 
Underestimating costs; 

Poor cost estimation. Poor cost projection. 

Design Constraints: Lack of definition of 
the design solution space. 

  

Acquisition Process Failures: Ineffective 
incentive structures; ineffective budgeting 
process. 

Inability to lead 
acquisition process  

Acquisition management 
and process failures 

Requirements Definition: The impact of 
using iterative vs. waterfall approaches. 

Tight, non-iterative 
system requirements. 

 

Lack of program oversight. Lack of oversight Lack of oversight 
Adverse Impact of Competition.  Competition. 
  Funding instability. 
 Lack of commitment to 

the Mission 
 

 Ineffective Risk 
Management 
Procedures 

 

Table 1: Potential Sources of System Engineering Failures 
 
Additionally, a systematic framework that represents current system engineering practices and 
integrates different factors that impact its performance into a unified view is not available.  The 
purpose of this paper is to discuss some of the key elements and concepts of this integrative 
framework by borrowing from the management and system dynamics literature.  This integrative 
framework is essential because: a) Tight connections exist between different stages of the 
systems engineering process, e.g. the contracting process impacts incentives for resource 
allocation across different life-cycle stages, which in turn impacts cost-schedule-functionality 
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tradeoffs.  Therefore in managing the systems engineering process we are confronted with a 
complex nonlinear dynamic system in which fixing one part of the process may, or may not, lead 
to: a) overall performance improvement; or b) Effective improvement actions relying on 
comparing alternative interventions.  Such comparisons require a systemic framework that can 
quantitatively capture the interconnected system engineering stages and the impact of alternative 
corrective actions. 
 
We assume the systems engineering life-cycle process as defined by Blanchard and Fabrycky 
(2006).  This is the traditional systems engineering process, encompassing conceptual design, 
preliminary design, detailed design and development, production/construction, utilization, 
evaluation, and support, and, finally, phase-out and disposal.  This systems engineering life-cycle 
process definition is consistent with current systems engineering practices in government and 
industry.  Furthermore, we will look at issues that manifest themselves within phases of this 
process (intra-phase), among phases (inter-phase), and with concurrent multiple projects (system 
of systems). 
 
The framework will facilitate modeling of the systems engineering process for the purpose of 
understanding, assessing, and potentially improving its performance.  Our framework brings 
together the basic mechanics (e.g., task completion, testing, scheduling, and costing) and the 
human elements (e.g. skills, incentives, turnover) in system engineering projects.  We highlight 
major feedback processes that cut across multiple stages of the process and are at the center of 
significant cost and budget overruns (e.g. schedule pressure may trigger an increase in parallel 
work which leads to higher a error rate (given the interdependencies between tasks) and requires 
future rework and thus increases delays and pressure further).  We demonstrate how this 
framework can organize and connect multiple sources of failure in the systems engineering 
process, and how it can be used to avoid those problems in the first place. 
 
Furthermore, we can address other issues not presented in the literature.  For example what role 
does system complexity have in these failures?  Systems today are very complex, and are 
required to perform a larger array of missions and tasks.  In this net-centric World, an exhaustive 
listing of missions and tasks, as well as systems that may have to be interfaced with during the 
life-cycle cannot be predicted during the systems design phase.  Many of today’s systems are 
being developed considering the capabilities that they add and not for a standardized set of 
missions and tasks. 
 
The remainder of this paper is organized as follows:  Section 2 provides a quick overview of 
recent studies that expand on some of the issues associated with the reasons why system 
engineering implementations can fail.  Section 3 describes some constructs from the literature 
that may explain how some of the failures occur.  These constructs would form the initial 
foundation for the integrated analytical framework.  Section 4 concludes with recommendations 
for future research. 
 
2.0 Background 
 
We provide a brief overview of the recent literature that includes commentary on systems 
engineering process issues, issues on analytical methods used, the consideration of exogenous 
factors, the system of systems concept, and the interface between system dynamics with 
systems engineering.  This overview is by no means an exhaustive description of what exists in 
the literature. 
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2.1 Systems Engineering Process Issues 
 
Haskins (2007) finds limits to the application of systems engineering frameworks, noting that 
twenty years ago the pervasive thought was that growth in the practice of systems engineering 
would be focused on the increased number and diversity of problems to which it is applied.  
However, the current practice of systems engineering primarily relies on the creation of 
technological alternatives that are associated with engineered solutions.  Within this narrow 
perspective, there are issues related to the application of structured analysis techniques, the 
appropriate representation of requirements, and the fact that a majority of systems are software 
intensive. 
 
Eriksson, Borg, and Borstler (2008) emphasize that the implementation of traditional systems 
engineering processes suffer because of their use of classical structured analysis techniques that 
provide little support for achieving high levels of reuse.  This in part due to the fact that the top 
down process of traditional functional decomposition does not have any inherent mechanisms for 
developing requirements that map effectively to existing reusable components. 
 
Additionally, Bahill and Henderson (2005) discuss the importance of effective requirements 
definition by detailing problems in historically famous failures.  For example, they blame the 
Tacoma Narrows Bridge collapse on the design engineers who reused the requirements for 
another existing bridge.  However, they did not realize that this was the wrong bridge for that 
environment.  Bahill and Henderson (2005) emphasize the importance of effective requirements 
development, verification and validation.  If these activities are not performed adequately, this can 
cause failure in the system either individually, collectively, or in conjunction with other types of 
failures. 
 
Kossiakoff and Sweet (2003) discuss the problems associated with designing software-intensive 
systems.  For software-intensive systems where the software performs virtually all the 
functionality, such as in modern financial systems, airline reservation systems, and other 
information systems, they generally follow life cycles similar in form to the more traditional 
systems.  However, the design of these systems involves a considerable amount of iteration and 
prototyping something that is not typically acknowledged up front. 
 
One should also investigate issues that are above and beyond the technical problems associated 
with the implementation of the systems engineering process.  For example, Haskins (2007) points 
to the need of focusing on the social aspects of the engineered solutions something that is not 
extensively practiced today.  In part, this is what has led to the current emphasis on human 
systems integration (HSI) approaches.  Haskins (2007) continues by arguing that a language for 
applying systems engineering to the social aspects of engineered solutions is not pervasive.  This 
is partially due to the fact that system engineers lack training in the behavioral and social 
sciences as well as lack of on the job exposure to these disciplines. 
 
One can use some of the recent systems thinking and modeling approaches to understand and 
improve the systems engineering process.  For example, Bar-Yam (2003) has proposed that 
complex engineering projects should be managed as evolutionary processes that undergo 
continuous rapid improvement through iterative incremental changes performed in parallel.  In 
this way one can focus on and link diverse small subsystems of various sizes and associations.  
In general, constraints and dependencies increase the system complexity and should be imposed 
only when necessary.  In this evolutionary context, people and technology are agents that are 
involved in the design, implementation and function.  Management’s basic oversight responsibility 
is to create a context and design the process of innovation. 



2.2 Issues with Analytical Methods Used 
 
Recently, the literature has been critical of many of the traditional tools used in systems 
engineering. Issues with  the use of analytical techniques such as IDEFφ  diagrams, quality 
function deployment (QFD), system dynamics modeling, highly optimized tolerance (HOT), 
COSYSMO, and for software intensive systems the user interface prototyping have been  
criticized and questioned for relevance. 
 
Eriksson, Borg, and Borstler (2008) point out that the use of IDEFφ  diagrams are not understood 
by nontechnical stakeholders or even other engineering disciplines.  They suggest that this 
constitutes a severe problem, since systems engineering is the means by which stakeholder 
needs and expectations are translated and communicated to other engineering disciplines.  
These authors recommend the use of case modeling that can be easily communicated to both 
nontechnical and other engineering stakeholders.  In addition, the authors recommend having 
domain engineers (i.e. mechanical, electrical, software engineers), as opposed to systems 
engineers, take responsibility for specifying subsystem requirements.  They believe this will 
encourage domain engineers to analyze the origin of subsystem requirements that will give them 
a total system understanding, while systems engineers can facilitate the process by maintaining 
the original intent of the system-level requirements.  While Eriksson, Borg, and Borstler (2008) 
point out potential weaknesses with IDEF diagrams, we believe that the thesis of de-emphasizing 
the role of the systems engineer at the subsystem level is fundamentally flawed.  It is the role of 
the systems engineer to optimize the performance of the entire system and not one sub-system.  
Allocating subsystem requirements to a specific domain will optimize the subsystem, and will 
most likely sub-optimize the system as a whole.  
 
Hari, Kasser and Weiss (2007) examine another popular approach used in systems engineering - 
Quality Function Deployment (QFD).  They state that QFD has a lot to offer with respect to 
translating the requirements of new products, but when this approach is used to specify the 
requirements of complex systems, it has been found to exhibit a number of deficiencies.  The 
authors point out that the current development paradigm for complex systems is typically 
characterized by large cost overruns, schedule slippages, and performance deficiencies.  The 
major contributor to these failures is inadequate requirements definition.  When describing the 
requirements development process, they say that main problem arises when the needs are 
identified and converted to requirements.  This is a simple statement yet hides a complicated 
requirements definition process that tends in reality to be iterative and often multi-phased and 
difficult to control  Furthermore, performance requirements are many times expressed in a 
solution language not in a problem language, and tend to be incomplete, incorrect, and poorly 
written.  These authors recommend that the current implementation of QFD be modified and 
evolved into a process for defining requirements for complex systems named Quality 
Requirements Definition (QRD). 
 
Boppana et al. (2006) state that one could integrate three different analytical approaches: system 
dynamics (SD), highly optimized tolerance (HOT), and COSYSMO.  This integration provides a 
promising future research direction that potentially could address the complexity in systems 
engineering process implementation.  The reasoning behind this combination is to build on the 
strengths of all three approaches, i.e., SD for relatively detailed process modeling, HOT for 
coarse, higher-level modeling, and COSYSMO for calibration referencing.  System dynamics 
(SD) can show emergent behaviors by accounting for interactions and feedback loops.  Highly 
optimized tolerance (HOT) provides the cost, schedule, and performance within systems 
engineering with a relatively simple model.  COSYSMO is a parametric cost model and uses data 
from past systems engineering efforts and subjective inputs from systems engineering experts.  
COSYSMO is calibrated with expert inputs and past experience and addresses cost, schedule, 
and performance, but cannot model emergent behaviors.  The application of SD and HOT to an 
FAA Advanced Automation System program provided inconclusive evidence as to whether these 
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modeling approaches can provide useful insights into the complexity and emerging phenomena 
of the systems engineering process. 
 
For software intensive systems, McConnell (1998) recommends that User Interface Prototypes 
are developed.  These are defined as a mock-up of software that is created for the purpose of 
eliciting user feedback about the software’s intended functionality including look and feel.  This 
activity could be part of the requirements development process and would address Kossiakoff 
and Sweet’s (2003) contention that it is the responsibility of systems engineering to analyze all 
requirements and specifications in detail first in order to understand them vis-à-vis the basic 
needs that the system is intended to satisfy.  After this first step it is important to identify and 
correct any ambiguities or inconsistencies in the definition of the system capabilities.  This type of 
prototyping could also solve some of the requirements stability challenges that have plagued 
information system designs. 
 
2.3 The Consideration of Exogenous Factors 
 
Briggs and Little (2008) find that when it comes to major decisions made in technical enterprises, 
understanding the environment of the enterprise, including its culture could significantly increase 
the likelihood of successfully implementing the systems engineering process.  They state that the 
failure to consider the larger context in which technical decisions are made can enhance the risk 
of systems failures.  They describe a situation where the decision about information requirements 
never took into account the people who used the information to make decisions.  The authors 
argue that decision making processes should explore ways to explicitly consider a wide range of 
stakeholders that are broadly defined, and the social and cultural context within which these 
stakeholders operate.  They focus what are usually considered to be exogenous factors that are 
some combination of temporal, financial, and cultural factors.  These include: business time-to-
market pressures to produce products in shorter time; economic pressures to lower the cost of 
products; and the wholesale merging of enterprises. 
 
Lewis (2007) also emphasizes the importance of social aspects of the enterprise.  However, he 
focuses on the importance of team behavior.  He states that it is hard to predict group behavior by 
observing individual behavior and that one needs to be careful making projections about team 
behavior by focusing only at individual team member qualities. 
 
2.4 System of System Considerations 
 
Wojcik and K.C. Hoffman (2006) address the evolutionary and emergent behavior of Systems of 
Systems Engineering (SoSE).  Enterprises that are involved with SoSE are typically complex, 
multi-agent enterprises or sets of enterprises exhibiting the characteristics of complex adaptive 
Systems.  SoSE is typically only one aspect of an enterprise’s activities, and the whole set of 
activities is mainly oriented towards accomplishing and supporting the enterprise’s operational 
mission.  This work proposes a unifying framework for understanding and modeling the 
organizational, technical, and system complexities across a range of enterprise types as major 
acquisition program initiatives are undertaken to provide improved operational capabilities. 
 
Sage and Biemer (2007) state within government and industry, many systems are currently 
engineered, not as stand-alone systems, but as part of an integrated system of systems.  
According to the authors, a significant level of effort has been devoted in the past several years to 
the development, refinement, and acceptance of processes for engineering systems.  Today, 
there are four standard processes that exist within present and past standards, i.e., EIA-632, 
IEEE 1220, ISO 15288, and MIL-STD-499C.  These standard processes are used for the design 
of system of systems. 
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2.5 Interfaces of Systems Engineering with System Dynamics Literature 
 
McLucas and Ryan (2005) argue that a detailed appreciation of how systems engineers define, 
analyze, specify, manufacture, operate and support complex systems could inform the evolution 
of system dynamics even though there are significant differences between the two disciplines.  
Their preferred approach integrates systems thinking, system dynamics modeling and systems 
engineering.  This integrated approach could enable group model building and the formulation of 
effective models through top-down design and careful management of the complexity introduced 
at each stage of the model-building process.  The integrated approach promises to invoke greater 
confidence in system representations that actually work. 
 
3.0 Dynamics of the Systems Engineering Process 
 
In this section we draw on extant literature to illustrate how dynamics of systems engineering 
process can lead to heterogeneous performance in systems engineering projects.  In short, why 
many projects get into trouble where some others have succeeded?  We focus on heterogeneity 
in performance because that is the real phenomenon of interest.  If all projects did equally well, or 
poorly, this would have signaled little room for improvement.  In fact, we are motivated to 
understand the dynamics of systems engineering process because there is hope in helping all 
system engineering projects achieve what is demonstrated as achievable by the most successful 
ones. 
 
As indicated in the previous Section, systems engineering projects unfold over time as a result of 
interactions between multitude of technical, organizational, and political factors.  Therefore the 
principles and tools developed for analyzing complex dynamic systems are directly applicable to 
the question at hand.  We draw on those principles as developed in the fields of system dynamics 
and complexity to build a robust theoretical foundation for our research. 
 
A critical insight from studying dynamic systems is that reinforcing feedback processes lie at the 
heart of growth and decline dynamics.  These processes therefore can derive a wedge between 
successful and unsuccessful enterprises and lead to heterogeneity in performance.  For example 
superior sales performance enables a firm to invest more in product development and marketing, 
and thus build better products and sell even more.  Similarly, larger market share increases 
bargaining power and derives down costs, thus enabling a firm to gain further market share 
through lower price.  In the next section we illustrate this principle with a stylized simulation model 
of an enterprise.  We then draw on this insight to discuss the important reinforcing feedback 
processes that can impact systems engineering projects and lead to the observed heterogeneity 
in their performance.  
 
3.1 Reinforcing Feedback and Performance Heterogeneity: An Illustration 
 
Consider a simple system’s engineering unit in charge of engineering tasks associated with the 
system’s life-cycle development, e.g., requirements definition, prototyping, etc.  New tasks flow 
into the stock of “Tasks to Complete” when assigned by the higher management through the 
scheduling of activities.  These tasks flow out of this stock through “Task Completion” (See Figure 
1; Variable names are italicized).  For the moment, let us assume that Task Completion is a 
function of the number of people in the enterprise (“Resources”), their productivity, and the quality 
of their work, i.e. “Fraction Acceptable”.  Following previous research (Cooper 1994; Graham 
2000; Ford and Sterman 2003; Nepal, Park et al. 2006; Taylor and Ford 2006) we note that 
productivity and quality are not constant, but depend on the schedule pressure.  Schedule 
pressure compares the expected time to finish the current Tasks to Complete, given available 
resources and productivity, with the Desired Completion Time. 
 
Schedule Pressure often increases (gross) productivity, as people work harder, spend more time 
at work, or cut down on training, and other perceived non-urgent activities.  The productivity-
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enhancing effect of schedule pressure is bounded and saturates at some level.  On the other 
hand, if schedule pressure is very low, people produce less because there are few tasks to 
complete.  These relationships are graphically illustrated inside Figure 1.  The impact of schedule 
pressure on productivity creates a balancing feedback process: if Tasks to Complete grow, 
schedule pressure increases, that leads to higher “Effect of Pressure on Productivity”, which 
(everything else being equal) increases “Task Completion” and therefore reduces Tasks to 
Complete and balances the pressure.  This balancing loop is specified as “B: Work Harder” in the 
Figure 11.  
 
On the other hand, as one may expect, there are unintended side effects to Schedule Pressure 
as well.  Under pressure people are more likely to take shortcuts and cut corners, leading to 
increased error rates in their work.  Moreover, sustained schedule pressure leads to burnout and 
further decline in quality.  Overall, these processes lead to a negative relationship between 
Schedule Pressure and the fraction of completed tasks that are acceptable (Fraction Acceptable). 
This relationship (illustrated in Figure 1) creates a reinforcing feedback loop: An increase in 
Schedule Pressure leads to lower Fraction Acceptable, and therefore reduces Task Completion. 
As a result the Task to Complete grows beyond what it would have been otherwise, and fuels 
even more Schedule Pressure (The reinforcing loop “R: Rework” in Figure 1).  In fact, one may 
combine the impact of schedule pressure on productivity and quality, to calculate the net 
relationship between Schedule Pressure and Task Completion.  This relationship suggests that 
up to some point schedule pressure is functional (leads to higher performance (i.e. Task 
Completion), as the balancing loop dominates) but after that it hurts enterprise performance as 
the reinforcing loop take over (See Figure 1a).  
 
Now consider the behavior of two identical systems engineering enterprises, modeled as above.  
These enterprises are exposed to random streams of Task Assignment which have identical 
distribution, but two different realizations.  One may expect that given their identical structures 
and same demand distribution (task assignment), the two enterprises should behave very 
similarly.  However, this is not necessarily the case. Figure 2 shows one such experiment.  We 
have graphed Task Assignment, Task Completion, and Tasks to Complete for each enterprise. 
While the first enterprise is successfully managing to complete all the tasks assigned in a timely 
fashion and thus keeps the stock of Tasks to Complete under control (Figure 2-a), the second 
enterprise collapses in this experiment (Figure 2-b). 
 
The first enterprise remains in a relatively stable domain because, by luck, the stock of Tasks to 
Complete and therefore Schedule Pressure do not grow into the domain where the negative 
effects of the Rework reinforcing loop dominate.  As long as the Work Harder loop is stronger, 
temporary random increases in demand are compensated by increased task completion, and the 
enterprise manages its workload successfully.  However, the second enterprise, by chance, 
experiences a little longer exposure to high Task Assignment levels.  At about time 40 the 
accumulation of Tasks to Complete starts to push the Schedule Pressure beyond functional 
levels.  Once the reinforcing loop of Rework gains the upper hand the enterprise completes fewer 
tasks due to errors and rework, falls further behind the unrelenting stream of Task Assignment 
and faces even higher levels of pressure.  The cycle continues, eroding the capability of the 
enterprise to produce as before (see the permanent decline in Task Completion in Figure 2-b), 
and leading to accumulation of unfinished tasks, late projects, and unsatisfied customers. 
 
The divergence in the behavior of the two enterprises is not an anomaly.  Figure 3 shows the 
Tasks to Complete for one hundred identical enterprises with same demand distribution, which 
only differ in random realization of Task Assignment values they face.  Here a few firms avoid the 
collapse under the reinforcing feedback while others succumb at different times.  These 

 
1 Loop names are used to summarize the basic idea behind a feedback process and are used as 
memory aids. 



potentially harmful dynamics could be mitigated by different interventions, each essentially 
existing of removing a reinforcing loop or creating a control mechanism (balancing loop) to keep 
the reinforcing process in check.  For example, a balancing mechanism can be added that 
endogenously changes available Resources (or Task Assignment) based on the current schedule 
pressure.  Alternatively, by using more effective work processes (such as, iterative prototyping, 
effective translation of user needs to requirements, etc.), the enterprise members could 
significantly weaken the Rework reinforcing loop (potentially with the cost of also weakening the 
Work Harder loop). 
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Figure 3: Tasks to Complete for Multiple Enterprises 
 

This model is very simple and only intended to illustrate how reinforcing processes can lead to 
heterogeneity in the performance of systems engineering enterprises.  The basic insight is that 
small random differences among otherwise similar enterprises (or projects, teams etc) can be 
magnified through reinforcing feedback processes.  In other words, similar enterprises can 
perform very differently because of the internal dynamics they are embedded in, and not 
necessarily because of the exogenous factors, e.g. congressional budgeting process, system 
engineering labor market, etc., that impact their performance.  This is potentially good news for 
those interested in improving the performance of the systems engineering process: if exogenous 
factors were the only driver of project performance, there would have been little leverage 
available to those in charge of the project.  They would be at the mercy of the legislator, funding 
cycles, the economy, or other exogenous factors.  However, once the reinforcing feedback 
processes that differentiate success and failure in systems engineering projects are identified, the 
managers are enabled to design mechanisms to control the undesirable effects of these 
processes or strengthen the beneficial feedback loops.  In the next section we build on this basic 
insight and identify several reinforcing feedback processes that are in effect in the systems 
engineering process, and can potentially take over the dynamics of success and failure in these 
settings. 



12 

 

3.2. Feedback Processes across the Systems Engineering Process Lifecycle 
 
In this section we draw on literature in system dynamics, project management, systems 
engineering, as well as our previous research in systems engineering and product development 
dynamics, to provide an overview of reinforcing feedback loops that can impact systems 
engineering projects’ performance.  This survey aims at a comprehensive survey of potential 
feedback processes.  Therefore, most enterprises include the structure that leads to only a subset 
of these possibilities, and yet fewer of the feedback effects are strongly felt in any given 
enterprise.  Detailed research at project or enterprise level is needed to identify specific 
processes most relevant to each enterprise. 
 
These feedback processes cut across multiple levels of analysis: some are limited to a specific 
phase of the systems engineering process, some include interactions across multiple phases of 
the systems engineering process (e.g., the impact of the requirements definition in the conceptual 
phase is pervasive throughout the life-cycle of the system design), and some relate to interactions 
across multiple projects and enterprise capabilities.  The distinction between these levels of 
analysis is useful because it enables different individuals at different positions to have an impact 
on project and enterprise performance.  For example the reinforcing loops at the level of single 
phase are often endogenous to individual engineer, that is, a typical engineer has leverage points 
at her disposal that can change the strength and impact of those loops.  The same individual may 
find few options to change the impact of loops that cut across multiple projects, and are only 
subject to interventions by enterprise leaders. 
 
3.2.1 Intra-phase Dynamics 
 
While they differ in technical content and complexity, all systems engineering design projects go 
through similar phases throughout their life-cycle.  These include: conceptual design, preliminary 
design, detailed design, development, production/construction, utilization, evaluation, and 
support, and, finally, phase-out and disposal.  Within these phases,  a set of tasks are executed 
such as identification of customer needs, translation of needs into requirements, trade studies, 
testing, prototyping, measuring, training, maintenance, etc.  Each phase of the systems 
engineering process includes multiple tasks often assigned to a team of individuals within the 
enterprise.  The work within these phases usually follows a project structure: a relatively fixed set 
of tasks are assigned to a specific group to be completed within a planned schedule and cost. 
Therefore, regardless of the nature and complexity of the tasks, these phases embed several 
feedback processes that are documented in this discussion.  Figure 4 provides an overview of 
these dynamics.  
 
Task assignment and completion are the main ways through which the stock of tasks to do is 
changed.  Different estimation processes are used to decide how long the completion of the 
current tasks take based on the available Human Resources and their Productivity and quality 
(Error Rate).  The resulting Scheduled Finish Time compared to the current Tasks to Complete 
and available resources can lead to Schedule Pressure.  Early studies showed that inclusion of 
the expected error rate in the project estimation process is critical but not always done rigorously. 
The error rate is critical because it wastes a fraction of tasks completed and requires additional 
rework that may not be discovered for a while, catching the project team by surprise later (Cooper 
1980; Abdelhamid and Madnick 1983).  For simplicity we have not explicitly shown the cycle of 
defect generation, discovery, and rework (rework cycle), yet we model its main ramifications 
through the link from the Error Rate to Task Completion.  As we discussed in Section 3.1, 
schedule pressure impacts both productivity and quality of work, completing a balancing (B1: 
Work Harder) and a reinforcing (R1: Rework) loop.  While moderate levels of schedule pressure 
increase output, high pressure can be dysfunctional, reducing the overall output given the 
disruptive impacts of lower quality and rework.  One possible way to control excess schedule 
pressure is to bring new people to work on the current phase of the systems engineering project 
(B2: Bring New Resources).  However, this controlling loop can have its own side effects as new 



people are not up-to-speed with current project and thus have low productivity/quality, and their 
training takes away productive time from the experienced personnel (R2: Skill Dilution).  Further 
negative impacts are observed if new hires disrupt the cohesiveness of the team and reduce 
productivity through additional communication costs.  The resulting reinforcing processes are 
shown to be potentially harmful traps in many domains, including software development, where it 
has evolved into the Brook’s law: adding people to a late project will delay it further (Brooks 
1995).  Schedule pressure can also disrupt a project indirectly when it contributes to burnout that 
leads to the attrition of key personnel and further pressure (R3: Burnout) (Cooper 1994). 
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Figure 4: Intra-phase Systems Engineering Process Dynamics 

 
Another control mechanism to relieve the schedule pressure is to extend the schedule for the 
current phase (B3: Delay).  Besides the resistance to this solution that comes from the people 
involved in the next phases of the project or the client, delays may also have other subtle 
impacts.  For example, in a recent study of a large IT product development organization, we 
heard about the negative impact of multiple delays on the team’s morale (Rahmandad 2005).  
Given the impact of employees’ morale on their productivity (Weakliem and Frenkel 2006) this 
can lead to another reinforcing loop, R4: Late Again!. Morale also has a reciprocal relationship 
with attrition: on the one hand lower morale leads to higher attrition probability (Johnsrud, Heck, 
and Rover. 2000), on the other hand, people whose friends have left are more likely to face a 
decline in their morale, completing another reinforcing loop (R5: Morale). 
 
Reducing the Tasks to Complete through cancellation of parts of tasks for a phase is another way 
to reduce the schedule pressure and get a troubled project back on track (B4: Cancellation).  On 
the other hand, the interdependencies between different tasks mean the quality of doing one 
depends on the others as well (Sobrero and Roberts 2001).  Therefore late stage cancellation of 
some of the tasks may negatively impact the quality of the other pieces of work and increase 
schedule pressure inadvertently (R6: Cancellation Disrupts Design).  Finally, low discovery 
rework due to high error rates often triggers additional administrative and coordination work 
including new meetings, re-estimations, and scores of e-mails and phone calls.  These all take 
away from productive work otherwise spent on task completion, and thus increases schedule 
pressure (R7: Always in Meetings).  

13 

 



14 

 

In summary, there are several reinforcing processes within each phase of the systems 
engineering process.  These processes, if active in an enterprise, can lead to increasing delays, 
cost and schedule overruns, and quality issues.  Once these loops are triggered, they can 
become self-sustaining and continue to erode the performance of the phase involved.  As a 
result, they can make the difference between successful and unsuccessful projects and lead to 
diverse performance outcomes from otherwise similar projects.  Lyneis and Ford (2007) provide a 
more detailed treatment of many of these dynamics. 
 
These dynamics are largely dependent on schedule pressure inside the group and highlight an 
important tradeoff: on the on hand low levels of schedule pressure point to low resource 
utilization.  On the other hand, very high-levels of schedule pressure are disruptive through many 
second order effects.  Once the enterprise moves to this dysfunctional region of schedule 
pressure (i.e. right hand side of the peak in Figure 1a), it is very hard to stop further deterioration 
of the performance because of the reinforcing nature of the feedbacks involved.  This leads to a 
critical insight: most systems engineering projects face a tradeoff between resiliency and 
efficiency.  Maximum output is achieved when schedule pressure is at the peak of the schedule 
pressure-task completion curve.  However, keeping the schedule pressure at that peak level is 
very risky as any unexpected disruption can tip the enterprise into a state of making more errors, 
losing skills and morale, and thus achieving less despite working harder.  Such tipping dynamics 
are documented in different domains from air traffic control (Rudolph and Repenning 2002) to 
software development (Rahmandad and Weiss 2008).  It is required to sacrifice some efficiency 
by lowering schedule pressure below peak levels to increase enterprise resiliency against random 
events and unplanned changes.  Larger resiliency margins are needed for projects with higher 
probability of unexpected disruptions. 
 
3.2.2 Inter-phase and Project Level Dynamics 
 
The phases of systems engineering process are tightly connected to each other, and therefore 
many feedback processes cut across more than one phase.  Some of the coupling mechanisms 
across different phases of a system design that can lead to reinforcing processes are 
summarized in Figure 5.  Here we have included only two phases for simplicity (conceptual and 
detailed design).  Successive phases build on each other.  Requirements are based on identified 
customer needs and inform a solution concept, the latter in turn impacts preliminary, conceptual 
and detailed design, and so on.  The productivity and quality of work in each phase therefore 
directly depends the quality of work completed previous in phases.  A solid and precise set of 
requirements can significantly help the solution identification process and save overall resources 
needed to complete the project.  In fact the savings from doing a good job in the early phases are 
quite significant, as much as an order of magnitude in some domains (Boehm 1981). Therefore 
overall project performance (in terms of schedule, cost, and quality) depends on the quality of the 
work of the early phases.  Poor needs assessment, requirements translation and definition, and 
conceptual design leads to many problems later on that trigger schedule pressure for all the 
remaining work and activates many intra-phase dynamics discussed (R8: Error on Error). 
Moreover, one of the hidden reactions to pressures is the relaxation of some of the testing criteria 
for acceptance of work in one phase.  Such relaxation later hurts overall performance as it leads 
to the introduction of more defects into the work underlying the next phase (R9: Cutting Tests). 
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Figure 5: Inter-phase Dynamics 

 
Project performance also often impacts the resources available for the continuation of the project. 
In the competition for limited enterprise resources, projects that have delivered according to their 
plans find themselves at a better bargaining position.  Therefore in many enterprises a “success 
to successful” dynamic (Senge 1990) creates a link between project performance and schedule 
pressure in a project, closing the R10: Resource Availability reinforcing loop.  
 
Enterprise capabilities are a central concept in the strategy literature (Grant 2002) and are helpful 
for understanding some other dynamics of interest in systems engineering projects.  Capabilities 
are generally defined as routines and operating procedures (e.g., concurrent engineering, rapid 
prototyping, etc.) used to get the task done (Winter 2003).  Systems engineering capability 
depends on the skills and experience of the team members, the robustness of the systems 
engineering processes used, the availability of automated tools and methods, among other.  This 
capability directly impacts the quality and productivity of the systems engineering work conducted 
in an enterprise.  Training, process improvement, and experiential learning are among the ways 
through which this capability can increase.  These, in turn, depend on other endogenous factors: 
usually resource cuts first hit the long-term process improvement and training activities, leading to 
a potential long-term drop in enterprise capabilities (R11: Training & Process Improvement) while 
successful groups are more likely to benefit from such capability building opportunities (Sterman 
2000).  Projects with declining systems engineering capability level will suffer from lower quality 
and productivity, more trouble, and therefore will find fewer opportunities to fix their capability 
deficit (Loops R12: Robust Processes and R13: Effective Processes).  
 
Learning curves also play an important, usually positive, role in longer projects.  As different 
phases of a project progress, the teams involved learn from their experience and build more 
effective routines.  They can therefore improve their productivity and quality and, everything else 
being equal, speed of the later stages of the work (R14: Learning Curves).  These dynamics are 
shown to contribute to higher late stage quality/productivity in single projects (Lyneis, Cooper, 
and Els 2001), and to overall success of more experienced enterprises over longer times (Argote 
and Epple 1990).  Finally, performance problems in projects lead to political dynamics inside the 
enterprise that activate defensive routines (Argyris 1985).  Under stress and threats to their 
reputation, financial rewards, or job security enterprise members are more likely to reduce 
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effective communication in favor of saving their own position.  Such defensive routines, however, 
negatively impact the capability of the enterprise to deal with the problems in the project at hand 
and solve them effectively.  This completes another reinforcing loop, R15: Defensive Routines.  
 
In summary, the dynamics that cut across multiple phases of a systems engineering project are 
based on the coupling of different phases through quality of successive phases, through the 
development and updating of requirements, the sharing of resources among different phases, 
and the enterprise capability in systems engineering used across them.  These dynamics provide 
additional mechanisms that can explain the difference of successful and unsuccessful projects.  
In contrast to intra-phase dynamics, the loops discussed in this section act over longer time 
horizons, they start more slowly, but when under way, they are harder to stop.  These dynamics 
also point to a different set of managerial levers.  Specifically, members of teams involved in a 
single phase have little input in the allocation of enterprise resources.  Strong managerial roles 
responsible across phases are required to manage these dynamics and make the necessary 
tradeoffs.  Product development research has underlined the importance of such heavy-weight 
project managers (Wheelwright and Clark 1992).  
 
3.2.3 Dynamics across Multiple Systems Engineering Projects 
 
Most major enterprises, from defense agencies to private firms, are concurrently involved in 
several large scale systems engineering projects.  The interactions across these projects lead to 
a third set of dynamics, summarized in Figure 6. 
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Figure 6: Dynamics across Multiple Projects 

First, resources are often directly, or indirectly, shared across projects.  Direct resource sharing 
include individuals who are involved in multiple projects at the same time, while indirect resource 
sharing is highlighted when one project can not receive all its desired resources because many 
key people are still engaged in another project that is running late.  Resource sharing can lead to 
knock-on effects among different projects: activation of reinforcing loops in one project lead to 
delays and cost overruns, which in turn limits resource availability and timeliness for the next 
project.  In fact, such knock-on effects are seen as more disruptive when we consider the fact that 
early stages of systems engineering projects are most critical to their success.  Therefore early 
resource shortage often leads to low-quality concept development and design, which later 
disrupts the detailed solution development, implementation, and increases life cycle costs, 
leading to yet longer delays in the next projects (R16: Inter-project Knock-On).  Such dynamics 
can move like a domino across projects and significantly reduce the capability of the enterprise to 
complete its projects on time and on budget (Repenning 2000; Repenning 2001).  

Enterprise performance across projects significantly impacts customer satisfaction and therefore 
the propensity of winning new contracts (for commercial firms) or receiving the requested budget 
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(for governmental agencies).  Budget and new contracts, on the other hand, directly influence 
available resources for successful completion of existing and new projects.  Some firms utilize 
this reinforcing loop for their benefit and grow larger or more successful while others are hit hard 
by its negative ramifications (R17: Organizational Budget).  Some enterprises try to avoid such 
decline by promising more aggressive goals to their customers, e.g. finishing the next more 
ambitious project with less resources (B5: Bold Promises).  However, such aggressive goals are 
often counter-productive, as they raise the pressure level inside the enterprise beyond functional 
levels and lower the overall performance through higher error rates, poor testing, lower capability 
investments, etc (R18: Unrealistic Expectations). 
 
The enterprise level, inter-project dynamics are most directly relevant to upper management and 
legislators.  They relate to the management of a portfolio of systems engineering projects and 
defining the rules for participation in such projects.  By understanding these dynamics, one can 
see how trying to do more actually can backfire and reduce the total output.  It also suggests that 
enterprises may be better-off cancelling a fraction of their projects all together, rather than cutting 
the budget of every project by a similar fraction.  However, this solution may not be feasible given 
the realities of the current acquisition process. 
 
3.3 Feedback Loops and Exogenous Success Factors 
 
In this paper we have focused on endogenous2 feedback processes that impact systems 
engineering projects at multiple levels.  This focus is helpful for identifying mechanisms that can 
be controlled or changed by managerial actions.  Moreover, these feedback processes provide a 
framework for understanding the mechanisms through which many exogenous factors related to 
success and failure operate.  We illustrate by two examples: technological novelty of a project 
and the contract awarding procedure.  
 
Technological novelty is considered one of the prime causes of delays and cost overruns in 
projects (Tatikonda and Rosenthal 2000; Yetton, Martin et al. 2000).  In our dynamic framework, 
technological novelty is seen as a factor that increases average error rate above typical projects 
since project teams need to learn many factors through trial and error.  Higher base error rate, on 
the other hand, undermines initial project estimation (because error rate is unknown) and leads to 
optimistic estimates.  These activate reinforcing loops through increasing schedule pressure, and 
therefore increase the chances of cost, budget, and quality problems.  Furthermore, technological 
novelty leads to more uncertainty in terms of tasks involved and the amount of work that needs to 
be completed.  In other words, it introduces more frequent and stronger unexpected changes 
during the project.  As we discussed in Section 3.2.2, those unexpected changes are one of the 
main mechanisms for activation of vicious reinforcing loops.  With this framework we can see 
more clearly through which mechanisms technological novelty can increase the risks of a project.  
 
Contract awarding mechanisms that choose the bidder with lowest price negatively impact project 
performance.  These contracting rules create an incentive for the bidders to estimate project 
costs optimistically.  However, optimistic estimation leads to aggressive goals on productivity and 
schedule once the project is won.  Aggressive goals increase schedule pressure, eat-up the 
safety margin associated with each project and compromises the project resiliency against 
unexpected changes, and thus increase the likelihood of dominance of dysfunctional reinforcing 
loops.  Subsequent contract extensions and sub-awards cannot fix the main cause of the problem 
as long as the enterprise has passed the tipping point in terms of schedule pressure.  Therefore, 
the enterprise does much worse than it potentially could.  

 
2 By endogenous we mean causes of success and failure that depend on project performance 
through time.  Any factor determined independent of project performance or enterprise is 
considered exogenous.  
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4.0 Conclusions and Future Work 
 
The feedback processes presented in the previous section provide the initial foundation for the 
integrated framework that would serve as the basis for understanding the dynamic complexity of 
the systems engineering process and offer the mechanism to test various assumptions about the 
design of systems engineering systems in particular.  Nevertheless, there are a number of 
additional tasks that need to be accomplished.  In terms of the inter phase dynamics, described in 
Section 3.2.2, they would have to be mapped in detail into the current structure of the systems 
engineering lifecycle process (Blanchard and Fabrycky 2006).  This is very important given the 
dynamic nature of the requirements analysis (Clarke, Eisen, and Wyland 2008) and its 
contribution to potential system failures as depicted in Table 1. 
 
Typically user needs are translated into system requirements through QFD or other means.  
Throughout each phase of the systems engineering process these requirements are further 
defined and allocated.  Each time a requirement is analyzed or reconfigured it can change to the 
point that the original system requirement may not be allocated into the system with its original 
intent.  The potential reasons why requirements change are many and can include temporal, 
political, fiscal, and/or cultural considerations.  During each phase new issues may change the 
original intent of the requirement.  For example, as noted in Section 3.2.2, budget constraints may 
render an initial user requirement too expensive to implement.  Additionally one must consider 
that the temporal, political, fiscal, and cultural considerations can be responsible for a 
requirements creep into the system, diluting the original purpose of the system.  This creates 
additional tasks that affect both the intra and inter process dynamics. 
 
Another aspect that needs to be considered in the future, relates to one of the issues identified in 
Table 1, i.e., that systems designs are often plagued with inadequate cost estimation models.  
This is in part driven by the fact that cost estimating needs to be done early in the system’s life 
cycle and often involves the consideration of new technologies.  Enterprises must continually 
adopt and exploit new technologies to ensure that the systems they procure and use meet 
changing performance requirements and long-term cost goals.  Unfortunately, adopting new 
technologies may bring unexpected consequences for the systems the enterprise procures, and 
for the provision of the necessary services required for the enterprise’s long-term sustainability. 
 
Nevertheless, the estimation of cost performance for any system requires that on the one hand 
analyst track the cost consequences of the dynamics represented in Section 3.  On the other 
hand, one needs to understand and track the cost ramifications of new technology development 
(Monga and Triantis 2002), technology integration (Damle 2003), and systems operations, 
support and disposal (Scott 2003).  One of the challenges that any analyst faces is that these 
cost estimation initiatives require cost data that may exceed the typical work breakdown 
approaches that have been used in the past or are currently being used today. 
 
Another challenge is employing the wide-spread use of analytical tools within the systems 
engineering discipline.  Systems engineers are often viewed as the owners of the systems 
processes, and nothing more.  However, systems engineers bring a wide array of analytical tools 
that can help mitigate the problems addressed in the literature and in this paper.  In this vane, 
one of our objectives is to define a unifying framework that will accommodate quantifiable 
systemic views of the entire systems engineering life-cycle process.  Our research will include: (i) 
providing a comprehensive view of Model Based Systems Engineering (we find current definitions 
of Model Based Systems Engineering inadequate for application in engineering problems); (ii) 
defining how legacy, and potentially new, tools will be used for each phase of the life-cycle; and 
(iii) how these tools will be used together to support the systems engineering process.  Some of 
our current work explores how to successfully use architecture based products (IDEF0, N2, 
FFBD) to generate requirements.  We then link architectures to modeling and simulation to test 
and refine many of the requirements and overall systems goals.  Our linking of architectures to 
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requirements is a new endeavor, but we are encouraged by the findings thus far.  We believe that 
analytical processes, models, and frameworks are what allow the Systems Engineer to look out 
counterparts in other engineering disciplines in the eye and say. “This is our answer as derived 
through analytical means.” 
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