
1

Systems Engineering: Have we lost our Competitive Edge?
A Consideration of the Dynamics of Systems Engineering Projects

K. Triantis (triantis@vt.edu), H. Rahmandad (hazhir@vt.edu), W. Vaneman

(wvaneman@vt.edu)
Virginia Tech

Grado Department of Industrial and Systems Engineering
System Performance Laboratory

7054 Haycock Road
Falls Church, VA 22043-2311W. Vaneman (wvaneman@vt.edu)

Virginia Tech
Grado Department of Industrial and Systems Engineering

System Performance Laboratory
7054 Haycock Road

Falls Church, VA 22043-2311

Abstract

Recent media reports include several large systems engineering failures. These failures are
especially alarming given that they span different sectors (i.e., shipbuilding and space systems),
and are not isolated to one firm. Therefore we need to ask: Have we lost our systems
engineering competitive edge? What can the systems engineering discipline do to correct the
apparent discrepancies that appear to be at the root cause of these failures?

A systematic framework that represents current system engineering practices and integrates
different factors that impact its performance into a unified view is not currently available. We
introduce some of the key concepts of this integrative framework by borrowing from the
management and system dynamics literature. This framework facilitates the modeling of the
systems engineering process for the purpose of understanding, assessing, and potentially
improving its performance. Our framework brings together the basic mechanics (e.g., task
completion, testing, scheduling, and costing) and the human elements (e.g., skills, incentives, and
employee turnover) inherent in system engineering projects. We highlight major feedback
processes crossing multiple stages of the process and leading to cost and budget overruns. We
demonstrate how this framework can organize and connect multiple sources of failure in the
systems engineering process.

Key words and phrases: life-cycle systems engineering design, systems engineering projects,
Intra phase, inter phase, multiple project dynamics.

2

1.0 Research Motivation and System Engineering Process Issues

From the beginning of man’s history of developing large systems and architectures, until the
1950’s, the responsibility of traditional systems engineering function such as architectural trades,
cost estimation, program management, etc. fell upon the shoulders of the architect and the civil
engineer. During this era, the World realized several great and timeless systems (e.g., the
pyramids, the Roman Aqueducts, the Hoover Dam, the Brooklyn Bridge, and the Empire State
Building to name a few). While these architectures were great engineering feats, they exhibit
some degree of engineering complexity they only involved a limited number of engineering
disciplines. During World War II, project managers and chief engineers provided the oversight to
more complex systems that required a broader range of engineering disciplines. The Allies
enjoyed additional engineering successes with large scale shipbuilding, aircraft, and weapon
programs that it took win that war.

By the mid-1950’s, systems were evolving with a greater degree of complexity. The advent of the
computer ensured that the World would be able to perform missions and tasks that heretofore
were unimaginable. A few examples include the development of: nuclear powered ships and
submarines; missiles with nuclear weapons; and satellites and manned space vehicles. These
new systems exhibited a different type of complexity, hence requiring a wider degree of
involvement from the various engineering disciplines. The importance of these systems also
required a high degree of confidence that they would perform as designed, be delivered within
budget, and on time. The discipline of systems engineering evolved to develop the requisite
design processes and act as the integrator between the various engineering disciplines. The
successes enjoyed by the systems engineering discipline have primarily been single systems
often with many sub-systems that were responsible for executing well defined missions and
tasks.

Recently, the media has been reporting about several large systems engineering failures
(Taubman 2007). These failures would be troublesome if they spanned one large system
developed by a single firm, or one specific industry (e.g., the shipbuilding industry). However,
these reports are especially alarming given that they span several large system sectors (i.e.,
shipbuilding and space systems to name a few), and are not isolated to one firm. These apparent
breakdowns have motivated us to ask: What has happened to the systems engineering
discipline? Have we lost our systems engineering competitive edge? And what can the systems
engineering discipline do to correct the apparent discrepancies that appear to be at the root
cause of these failures?

A few government and industry experts, from the shipbuilding and space industries, have recently
published articles in various trade magazines, and papers, speculating why the systems
engineering discipline is failing. A topical listing of their theses is portrayed in Table 1. The
common themes from across the literature include: the need to return to systems engineering
basics; poor cost estimation; problems with the industrial base; customer-developer relationships;
erosion of domain knowledge; acquisition process and program management failures; and
problems with program oversight. Other themes not common across all of the literature include:
lack of risk management, unrealistic expectations associated with technological innovations; and
funding instability.

Winter (2007) Nowinski and Kohler
(2007)

Smith (2007)

Systems Engineering: Lack of rigor; non-
effective allocation of resources in the
process.

Lack of systems
engineering basics.

Lack of systems engineering
basics.

Systems Engineering Management:
Lack of focus on its core elements; not
effective maintenance management.

Lack of program
management basics.

Weakening of program
management.

Erosion of Domain Knowledge: Lack of
knowledge transfer; lack of employee
loyalty; issues with reward and incentives
structures.

Loss of domain
expertise.

Loss of domain expertise.

Provider Customer Relations: Mutual
lack of understanding of business
processes and cultures; lack of customer
loyalty; changing requirements definition;
the impact of generated error rates.

Ineffective team
building.

Ineffective Government/
industry teaming.

COTS Technologies: Unrealistic
expectations; imposition of constraints
(reduction of the design feasible space)
without appropriate adjustment to
requirements.

Lack of innovation

Industrial Base Erosion: Underestimating
economies of scale dynamics; workforce
erosion; infrastructure depletion.

Erosion of industrial
base and the motivation
to maintain the base.

Erosion of industrial base.

Ineffective Cost Estimation:
Underestimating costs;

Poor cost estimation. Poor cost projection.

Design Constraints: Lack of definition of
the design solution space.

Acquisition Process Failures: Ineffective
incentive structures; ineffective budgeting
process.

Inability to lead
acquisition process

Acquisition management
and process failures

Requirements Definition: The impact of
using iterative vs. waterfall approaches.

Tight, non-iterative
system requirements.

Lack of program oversight. Lack of oversight Lack of oversight
Adverse Impact of Competition. Competition.
 Funding instability.
 Lack of commitment to

the Mission

 Ineffective Risk
Management
Procedures

Table 1: Potential Sources of System Engineering Failures

Additionally, a systematic framework that represents current system engineering practices and
integrates different factors that impact its performance into a unified view is not available. The
purpose of this paper is to discuss some of the key elements and concepts of this integrative
framework by borrowing from the management and system dynamics literature. This integrative
framework is essential because: a) Tight connections exist between different stages of the
systems engineering process, e.g. the contracting process impacts incentives for resource
allocation across different life-cycle stages, which in turn impacts cost-schedule-functionality

3

4

tradeoffs. Therefore in managing the systems engineering process we are confronted with a
complex nonlinear dynamic system in which fixing one part of the process may, or may not, lead
to: a) overall performance improvement; or b) Effective improvement actions relying on
comparing alternative interventions. Such comparisons require a systemic framework that can
quantitatively capture the interconnected system engineering stages and the impact of alternative
corrective actions.

We assume the systems engineering life-cycle process as defined by Blanchard and Fabrycky
(2006). This is the traditional systems engineering process, encompassing conceptual design,
preliminary design, detailed design and development, production/construction, utilization,
evaluation, and support, and, finally, phase-out and disposal. This systems engineering life-cycle
process definition is consistent with current systems engineering practices in government and
industry. Furthermore, we will look at issues that manifest themselves within phases of this
process (intra-phase), among phases (inter-phase), and with concurrent multiple projects (system
of systems).

The framework will facilitate modeling of the systems engineering process for the purpose of
understanding, assessing, and potentially improving its performance. Our framework brings
together the basic mechanics (e.g., task completion, testing, scheduling, and costing) and the
human elements (e.g. skills, incentives, turnover) in system engineering projects. We highlight
major feedback processes that cut across multiple stages of the process and are at the center of
significant cost and budget overruns (e.g. schedule pressure may trigger an increase in parallel
work which leads to higher a error rate (given the interdependencies between tasks) and requires
future rework and thus increases delays and pressure further). We demonstrate how this
framework can organize and connect multiple sources of failure in the systems engineering
process, and how it can be used to avoid those problems in the first place.

Furthermore, we can address other issues not presented in the literature. For example what role
does system complexity have in these failures? Systems today are very complex, and are
required to perform a larger array of missions and tasks. In this net-centric World, an exhaustive
listing of missions and tasks, as well as systems that may have to be interfaced with during the
life-cycle cannot be predicted during the systems design phase. Many of today’s systems are
being developed considering the capabilities that they add and not for a standardized set of
missions and tasks.

The remainder of this paper is organized as follows: Section 2 provides a quick overview of
recent studies that expand on some of the issues associated with the reasons why system
engineering implementations can fail. Section 3 describes some constructs from the literature
that may explain how some of the failures occur. These constructs would form the initial
foundation for the integrated analytical framework. Section 4 concludes with recommendations
for future research.

2.0 Background

We provide a brief overview of the recent literature that includes commentary on systems
engineering process issues, issues on analytical methods used, the consideration of exogenous
factors, the system of systems concept, and the interface between system dynamics with
systems engineering. This overview is by no means an exhaustive description of what exists in
the literature.

5

2.1 Systems Engineering Process Issues

Haskins (2007) finds limits to the application of systems engineering frameworks, noting that
twenty years ago the pervasive thought was that growth in the practice of systems engineering
would be focused on the increased number and diversity of problems to which it is applied.
However, the current practice of systems engineering primarily relies on the creation of
technological alternatives that are associated with engineered solutions. Within this narrow
perspective, there are issues related to the application of structured analysis techniques, the
appropriate representation of requirements, and the fact that a majority of systems are software
intensive.

Eriksson, Borg, and Borstler (2008) emphasize that the implementation of traditional systems
engineering processes suffer because of their use of classical structured analysis techniques that
provide little support for achieving high levels of reuse. This in part due to the fact that the top
down process of traditional functional decomposition does not have any inherent mechanisms for
developing requirements that map effectively to existing reusable components.

Additionally, Bahill and Henderson (2005) discuss the importance of effective requirements
definition by detailing problems in historically famous failures. For example, they blame the
Tacoma Narrows Bridge collapse on the design engineers who reused the requirements for
another existing bridge. However, they did not realize that this was the wrong bridge for that
environment. Bahill and Henderson (2005) emphasize the importance of effective requirements
development, verification and validation. If these activities are not performed adequately, this can
cause failure in the system either individually, collectively, or in conjunction with other types of
failures.

Kossiakoff and Sweet (2003) discuss the problems associated with designing software-intensive
systems. For software-intensive systems where the software performs virtually all the
functionality, such as in modern financial systems, airline reservation systems, and other
information systems, they generally follow life cycles similar in form to the more traditional
systems. However, the design of these systems involves a considerable amount of iteration and
prototyping something that is not typically acknowledged up front.

One should also investigate issues that are above and beyond the technical problems associated
with the implementation of the systems engineering process. For example, Haskins (2007) points
to the need of focusing on the social aspects of the engineered solutions something that is not
extensively practiced today. In part, this is what has led to the current emphasis on human
systems integration (HSI) approaches. Haskins (2007) continues by arguing that a language for
applying systems engineering to the social aspects of engineered solutions is not pervasive. This
is partially due to the fact that system engineers lack training in the behavioral and social
sciences as well as lack of on the job exposure to these disciplines.

One can use some of the recent systems thinking and modeling approaches to understand and
improve the systems engineering process. For example, Bar-Yam (2003) has proposed that
complex engineering projects should be managed as evolutionary processes that undergo
continuous rapid improvement through iterative incremental changes performed in parallel. In
this way one can focus on and link diverse small subsystems of various sizes and associations.
In general, constraints and dependencies increase the system complexity and should be imposed
only when necessary. In this evolutionary context, people and technology are agents that are
involved in the design, implementation and function. Management’s basic oversight responsibility
is to create a context and design the process of innovation.

2.2 Issues with Analytical Methods Used

Recently, the literature has been critical of many of the traditional tools used in systems
engineering. Issues with the use of analytical techniques such as IDEFφ diagrams, quality
function deployment (QFD), system dynamics modeling, highly optimized tolerance (HOT),
COSYSMO, and for software intensive systems the user interface prototyping have been
criticized and questioned for relevance.

Eriksson, Borg, and Borstler (2008) point out that the use of IDEFφ diagrams are not understood
by nontechnical stakeholders or even other engineering disciplines. They suggest that this
constitutes a severe problem, since systems engineering is the means by which stakeholder
needs and expectations are translated and communicated to other engineering disciplines.
These authors recommend the use of case modeling that can be easily communicated to both
nontechnical and other engineering stakeholders. In addition, the authors recommend having
domain engineers (i.e. mechanical, electrical, software engineers), as opposed to systems
engineers, take responsibility for specifying subsystem requirements. They believe this will
encourage domain engineers to analyze the origin of subsystem requirements that will give them
a total system understanding, while systems engineers can facilitate the process by maintaining
the original intent of the system-level requirements. While Eriksson, Borg, and Borstler (2008)
point out potential weaknesses with IDEF diagrams, we believe that the thesis of de-emphasizing
the role of the systems engineer at the subsystem level is fundamentally flawed. It is the role of
the systems engineer to optimize the performance of the entire system and not one sub-system.
Allocating subsystem requirements to a specific domain will optimize the subsystem, and will
most likely sub-optimize the system as a whole.

Hari, Kasser and Weiss (2007) examine another popular approach used in systems engineering -
Quality Function Deployment (QFD). They state that QFD has a lot to offer with respect to
translating the requirements of new products, but when this approach is used to specify the
requirements of complex systems, it has been found to exhibit a number of deficiencies. The
authors point out that the current development paradigm for complex systems is typically
characterized by large cost overruns, schedule slippages, and performance deficiencies. The
major contributor to these failures is inadequate requirements definition. When describing the
requirements development process, they say that main problem arises when the needs are
identified and converted to requirements. This is a simple statement yet hides a complicated
requirements definition process that tends in reality to be iterative and often multi-phased and
difficult to control Furthermore, performance requirements are many times expressed in a
solution language not in a problem language, and tend to be incomplete, incorrect, and poorly
written. These authors recommend that the current implementation of QFD be modified and
evolved into a process for defining requirements for complex systems named Quality
Requirements Definition (QRD).

Boppana et al. (2006) state that one could integrate three different analytical approaches: system
dynamics (SD), highly optimized tolerance (HOT), and COSYSMO. This integration provides a
promising future research direction that potentially could address the complexity in systems
engineering process implementation. The reasoning behind this combination is to build on the
strengths of all three approaches, i.e., SD for relatively detailed process modeling, HOT for
coarse, higher-level modeling, and COSYSMO for calibration referencing. System dynamics
(SD) can show emergent behaviors by accounting for interactions and feedback loops. Highly
optimized tolerance (HOT) provides the cost, schedule, and performance within systems
engineering with a relatively simple model. COSYSMO is a parametric cost model and uses data
from past systems engineering efforts and subjective inputs from systems engineering experts.
COSYSMO is calibrated with expert inputs and past experience and addresses cost, schedule,
and performance, but cannot model emergent behaviors. The application of SD and HOT to an
FAA Advanced Automation System program provided inconclusive evidence as to whether these

6

7

modeling approaches can provide useful insights into the complexity and emerging phenomena
of the systems engineering process.

For software intensive systems, McConnell (1998) recommends that User Interface Prototypes
are developed. These are defined as a mock-up of software that is created for the purpose of
eliciting user feedback about the software’s intended functionality including look and feel. This
activity could be part of the requirements development process and would address Kossiakoff
and Sweet’s (2003) contention that it is the responsibility of systems engineering to analyze all
requirements and specifications in detail first in order to understand them vis-à-vis the basic
needs that the system is intended to satisfy. After this first step it is important to identify and
correct any ambiguities or inconsistencies in the definition of the system capabilities. This type of
prototyping could also solve some of the requirements stability challenges that have plagued
information system designs.

2.3 The Consideration of Exogenous Factors

Briggs and Little (2008) find that when it comes to major decisions made in technical enterprises,
understanding the environment of the enterprise, including its culture could significantly increase
the likelihood of successfully implementing the systems engineering process. They state that the
failure to consider the larger context in which technical decisions are made can enhance the risk
of systems failures. They describe a situation where the decision about information requirements
never took into account the people who used the information to make decisions. The authors
argue that decision making processes should explore ways to explicitly consider a wide range of
stakeholders that are broadly defined, and the social and cultural context within which these
stakeholders operate. They focus what are usually considered to be exogenous factors that are
some combination of temporal, financial, and cultural factors. These include: business time-to-
market pressures to produce products in shorter time; economic pressures to lower the cost of
products; and the wholesale merging of enterprises.

Lewis (2007) also emphasizes the importance of social aspects of the enterprise. However, he
focuses on the importance of team behavior. He states that it is hard to predict group behavior by
observing individual behavior and that one needs to be careful making projections about team
behavior by focusing only at individual team member qualities.

2.4 System of System Considerations

Wojcik and K.C. Hoffman (2006) address the evolutionary and emergent behavior of Systems of
Systems Engineering (SoSE). Enterprises that are involved with SoSE are typically complex,
multi-agent enterprises or sets of enterprises exhibiting the characteristics of complex adaptive
Systems. SoSE is typically only one aspect of an enterprise’s activities, and the whole set of
activities is mainly oriented towards accomplishing and supporting the enterprise’s operational
mission. This work proposes a unifying framework for understanding and modeling the
organizational, technical, and system complexities across a range of enterprise types as major
acquisition program initiatives are undertaken to provide improved operational capabilities.

Sage and Biemer (2007) state within government and industry, many systems are currently
engineered, not as stand-alone systems, but as part of an integrated system of systems.
According to the authors, a significant level of effort has been devoted in the past several years to
the development, refinement, and acceptance of processes for engineering systems. Today,
there are four standard processes that exist within present and past standards, i.e., EIA-632,
IEEE 1220, ISO 15288, and MIL-STD-499C. These standard processes are used for the design
of system of systems.

8

2.5 Interfaces of Systems Engineering with System Dynamics Literature

McLucas and Ryan (2005) argue that a detailed appreciation of how systems engineers define,
analyze, specify, manufacture, operate and support complex systems could inform the evolution
of system dynamics even though there are significant differences between the two disciplines.
Their preferred approach integrates systems thinking, system dynamics modeling and systems
engineering. This integrated approach could enable group model building and the formulation of
effective models through top-down design and careful management of the complexity introduced
at each stage of the model-building process. The integrated approach promises to invoke greater
confidence in system representations that actually work.

3.0 Dynamics of the Systems Engineering Process

In this section we draw on extant literature to illustrate how dynamics of systems engineering
process can lead to heterogeneous performance in systems engineering projects. In short, why
many projects get into trouble where some others have succeeded? We focus on heterogeneity
in performance because that is the real phenomenon of interest. If all projects did equally well, or
poorly, this would have signaled little room for improvement. In fact, we are motivated to
understand the dynamics of systems engineering process because there is hope in helping all
system engineering projects achieve what is demonstrated as achievable by the most successful
ones.

As indicated in the previous Section, systems engineering projects unfold over time as a result of
interactions between multitude of technical, organizational, and political factors. Therefore the
principles and tools developed for analyzing complex dynamic systems are directly applicable to
the question at hand. We draw on those principles as developed in the fields of system dynamics
and complexity to build a robust theoretical foundation for our research.

A critical insight from studying dynamic systems is that reinforcing feedback processes lie at the
heart of growth and decline dynamics. These processes therefore can derive a wedge between
successful and unsuccessful enterprises and lead to heterogeneity in performance. For example
superior sales performance enables a firm to invest more in product development and marketing,
and thus build better products and sell even more. Similarly, larger market share increases
bargaining power and derives down costs, thus enabling a firm to gain further market share
through lower price. In the next section we illustrate this principle with a stylized simulation model
of an enterprise. We then draw on this insight to discuss the important reinforcing feedback
processes that can impact systems engineering projects and lead to the observed heterogeneity
in their performance.

3.1 Reinforcing Feedback and Performance Heterogeneity: An Illustration

Consider a simple system’s engineering unit in charge of engineering tasks associated with the
system’s life-cycle development, e.g., requirements definition, prototyping, etc. New tasks flow
into the stock of “Tasks to Complete” when assigned by the higher management through the
scheduling of activities. These tasks flow out of this stock through “Task Completion” (See Figure
1; Variable names are italicized). For the moment, let us assume that Task Completion is a
function of the number of people in the enterprise (“Resources”), their productivity, and the quality
of their work, i.e. “Fraction Acceptable”. Following previous research (Cooper 1994; Graham
2000; Ford and Sterman 2003; Nepal, Park et al. 2006; Taylor and Ford 2006) we note that
productivity and quality are not constant, but depend on the schedule pressure. Schedule
pressure compares the expected time to finish the current Tasks to Complete, given available
resources and productivity, with the Desired Completion Time.

Schedule Pressure often increases (gross) productivity, as people work harder, spend more time
at work, or cut down on training, and other perceived non-urgent activities. The productivity-

9

enhancing effect of schedule pressure is bounded and saturates at some level. On the other
hand, if schedule pressure is very low, people produce less because there are few tasks to
complete. These relationships are graphically illustrated inside Figure 1. The impact of schedule
pressure on productivity creates a balancing feedback process: if Tasks to Complete grow,
schedule pressure increases, that leads to higher “Effect of Pressure on Productivity”, which
(everything else being equal) increases “Task Completion” and therefore reduces Tasks to
Complete and balances the pressure. This balancing loop is specified as “B: Work Harder” in the
Figure 11.

On the other hand, as one may expect, there are unintended side effects to Schedule Pressure
as well. Under pressure people are more likely to take shortcuts and cut corners, leading to
increased error rates in their work. Moreover, sustained schedule pressure leads to burnout and
further decline in quality. Overall, these processes lead to a negative relationship between
Schedule Pressure and the fraction of completed tasks that are acceptable (Fraction Acceptable).
This relationship (illustrated in Figure 1) creates a reinforcing feedback loop: An increase in
Schedule Pressure leads to lower Fraction Acceptable, and therefore reduces Task Completion.
As a result the Task to Complete grows beyond what it would have been otherwise, and fuels
even more Schedule Pressure (The reinforcing loop “R: Rework” in Figure 1). In fact, one may
combine the impact of schedule pressure on productivity and quality, to calculate the net
relationship between Schedule Pressure and Task Completion. This relationship suggests that
up to some point schedule pressure is functional (leads to higher performance (i.e. Task
Completion), as the balancing loop dominates) but after that it hurts enterprise performance as
the reinforcing loop take over (See Figure 1a).

Now consider the behavior of two identical systems engineering enterprises, modeled as above.
These enterprises are exposed to random streams of Task Assignment which have identical
distribution, but two different realizations. One may expect that given their identical structures
and same demand distribution (task assignment), the two enterprises should behave very
similarly. However, this is not necessarily the case. Figure 2 shows one such experiment. We
have graphed Task Assignment, Task Completion, and Tasks to Complete for each enterprise.
While the first enterprise is successfully managing to complete all the tasks assigned in a timely
fashion and thus keeps the stock of Tasks to Complete under control (Figure 2-a), the second
enterprise collapses in this experiment (Figure 2-b).

The first enterprise remains in a relatively stable domain because, by luck, the stock of Tasks to
Complete and therefore Schedule Pressure do not grow into the domain where the negative
effects of the Rework reinforcing loop dominate. As long as the Work Harder loop is stronger,
temporary random increases in demand are compensated by increased task completion, and the
enterprise manages its workload successfully. However, the second enterprise, by chance,
experiences a little longer exposure to high Task Assignment levels. At about time 40 the
accumulation of Tasks to Complete starts to push the Schedule Pressure beyond functional
levels. Once the reinforcing loop of Rework gains the upper hand the enterprise completes fewer
tasks due to errors and rework, falls further behind the unrelenting stream of Task Assignment
and faces even higher levels of pressure. The cycle continues, eroding the capability of the
enterprise to produce as before (see the permanent decline in Task Completion in Figure 2-b),
and leading to accumulation of unfinished tasks, late projects, and unsatisfied customers.

The divergence in the behavior of the two enterprises is not an anomaly. Figure 3 shows the
Tasks to Complete for one hundred identical enterprises with same demand distribution, which
only differ in random realization of Task Assignment values they face. Here a few firms avoid the
collapse under the reinforcing feedback while others succumb at different times. These

1 Loop names are used to summarize the basic idea behind a feedback process and are used as
memory aids.

potentially harmful dynamics could be mitigated by different interventions, each essentially
existing of removing a reinforcing loop or creating a control mechanism (balancing loop) to keep
the reinforcing process in check. For example, a balancing mechanism can be added that
endogenously changes available Resources (or Task Assignment) based on the current schedule
pressure. Alternatively, by using more effective work processes (such as, iterative prototyping,
effective translation of user needs to requirements, etc.), the enterprise members could
significantly weaken the Rework reinforcing loop (potentially with the cost of also weakening the
Work Harder loop).

Tasks to
Complete STask

Assignment A
Task

Completion C

Effect of Pressure
on Productivity e

Normal
Productivity n

Fraction
Acceptable a

+
+

+

Resources r

+

Schedule
Pressure P +

+

-

Desired
Completion Time t

-

-

- B
Work Harder

R

Rework

2

1.5

1

0.5

0
0 0.50 1 1.50 2

1

0.9

0.8

0.7

0.6
0 0.50 1 1.50 2

Figure 1: System Engineering Task Assignment and Completion

 Task Completion vs. Schedule Pressure
20

0
0 2

Schedule Pressure

Reinforcing Loop
Dominates

Balancing Loop
Dominates

Figure 1a: Loop Dominance Implications

10

Task Assignment and Completion
30 Task/Month

200 Task

15 Task/Month
100 Task

0 Task/Month
0 Task

3 3 3 3 3 3

3

3

3

Task Assignment and Completion
30 Task/Month

200 Task

15 Task/Month
100 Task

0 Task/Month
0 Task

3 3 3 3 3 3 3 3 3 3 3 3

11

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2

1 1 1 1 1 1
1

1 1
1 1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Task Assignment : Fig2-b Task/Month

1 1 1 1
1

1 1 1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Task Assignment : Fig2-a Task/Month1 1 1 1 1 1 1 1 1
Task Completion : Fig2-a ask/Month

1 1 1 1 1 1 1 1 1
Task Completion : Fig2-b ask/MonthT2 2 2 2 2 2 2 2T2 2 2 2 2 2 2 2

 Tasks to Complete : Fig2-b TaskTasks to Complete : Fig2-a Task 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3

Figure 2: Performance of Two Systems Engineering Enterprises (a-Tasks to Complete Under
Control; b-Tasks to Complete Growing)

Fig3
Tasks to Complete

600

450

300

150

0
0 25 50 75 100

Time (Month)

Figure 3: Tasks to Complete for Multiple Enterprises

This model is very simple and only intended to illustrate how reinforcing processes can lead to
heterogeneity in the performance of systems engineering enterprises. The basic insight is that
small random differences among otherwise similar enterprises (or projects, teams etc) can be
magnified through reinforcing feedback processes. In other words, similar enterprises can
perform very differently because of the internal dynamics they are embedded in, and not
necessarily because of the exogenous factors, e.g. congressional budgeting process, system
engineering labor market, etc., that impact their performance. This is potentially good news for
those interested in improving the performance of the systems engineering process: if exogenous
factors were the only driver of project performance, there would have been little leverage
available to those in charge of the project. They would be at the mercy of the legislator, funding
cycles, the economy, or other exogenous factors. However, once the reinforcing feedback
processes that differentiate success and failure in systems engineering projects are identified, the
managers are enabled to design mechanisms to control the undesirable effects of these
processes or strengthen the beneficial feedback loops. In the next section we build on this basic
insight and identify several reinforcing feedback processes that are in effect in the systems
engineering process, and can potentially take over the dynamics of success and failure in these
settings.

12

3.2. Feedback Processes across the Systems Engineering Process Lifecycle

In this section we draw on literature in system dynamics, project management, systems
engineering, as well as our previous research in systems engineering and product development
dynamics, to provide an overview of reinforcing feedback loops that can impact systems
engineering projects’ performance. This survey aims at a comprehensive survey of potential
feedback processes. Therefore, most enterprises include the structure that leads to only a subset
of these possibilities, and yet fewer of the feedback effects are strongly felt in any given
enterprise. Detailed research at project or enterprise level is needed to identify specific
processes most relevant to each enterprise.

These feedback processes cut across multiple levels of analysis: some are limited to a specific
phase of the systems engineering process, some include interactions across multiple phases of
the systems engineering process (e.g., the impact of the requirements definition in the conceptual
phase is pervasive throughout the life-cycle of the system design), and some relate to interactions
across multiple projects and enterprise capabilities. The distinction between these levels of
analysis is useful because it enables different individuals at different positions to have an impact
on project and enterprise performance. For example the reinforcing loops at the level of single
phase are often endogenous to individual engineer, that is, a typical engineer has leverage points
at her disposal that can change the strength and impact of those loops. The same individual may
find few options to change the impact of loops that cut across multiple projects, and are only
subject to interventions by enterprise leaders.

3.2.1 Intra-phase Dynamics

While they differ in technical content and complexity, all systems engineering design projects go
through similar phases throughout their life-cycle. These include: conceptual design, preliminary
design, detailed design, development, production/construction, utilization, evaluation, and
support, and, finally, phase-out and disposal. Within these phases, a set of tasks are executed
such as identification of customer needs, translation of needs into requirements, trade studies,
testing, prototyping, measuring, training, maintenance, etc. Each phase of the systems
engineering process includes multiple tasks often assigned to a team of individuals within the
enterprise. The work within these phases usually follows a project structure: a relatively fixed set
of tasks are assigned to a specific group to be completed within a planned schedule and cost.
Therefore, regardless of the nature and complexity of the tasks, these phases embed several
feedback processes that are documented in this discussion. Figure 4 provides an overview of
these dynamics.

Task assignment and completion are the main ways through which the stock of tasks to do is
changed. Different estimation processes are used to decide how long the completion of the
current tasks take based on the available Human Resources and their Productivity and quality
(Error Rate). The resulting Scheduled Finish Time compared to the current Tasks to Complete
and available resources can lead to Schedule Pressure. Early studies showed that inclusion of
the expected error rate in the project estimation process is critical but not always done rigorously.
The error rate is critical because it wastes a fraction of tasks completed and requires additional
rework that may not be discovered for a while, catching the project team by surprise later (Cooper
1980; Abdelhamid and Madnick 1983). For simplicity we have not explicitly shown the cycle of
defect generation, discovery, and rework (rework cycle), yet we model its main ramifications
through the link from the Error Rate to Task Completion. As we discussed in Section 3.1,
schedule pressure impacts both productivity and quality of work, completing a balancing (B1:
Work Harder) and a reinforcing (R1: Rework) loop. While moderate levels of schedule pressure
increase output, high pressure can be dysfunctional, reducing the overall output given the
disruptive impacts of lower quality and rework. One possible way to control excess schedule
pressure is to bring new people to work on the current phase of the systems engineering project
(B2: Bring New Resources). However, this controlling loop can have its own side effects as new

people are not up-to-speed with current project and thus have low productivity/quality, and their
training takes away productive time from the experienced personnel (R2: Skill Dilution). Further
negative impacts are observed if new hires disrupt the cohesiveness of the team and reduce
productivity through additional communication costs. The resulting reinforcing processes are
shown to be potentially harmful traps in many domains, including software development, where it
has evolved into the Brook’s law: adding people to a late project will delay it further (Brooks
1995). Schedule pressure can also disrupt a project indirectly when it contributes to burnout that
leads to the attrition of key personnel and further pressure (R3: Burnout) (Cooper 1994).

Tasks to
Complete Task

CompletionTask
Assignment

Productivity

Human
ResourcesHiring Attrition

+ +

-

Schedule
Pressure

-

+

Scheduled
Finish Time

-

+

Error Rate

+

+

-

Morale+

-

-

Schedule
Extension

+

+ -

Coordination and
Meeting Time+

+

Cancellation

Architecture and
Design Quality

-

-

B1
Work Harder

R2
Skill Dilution

B2
Bring New
Resources

R1

Rework

+

R3
Burnout

B3
Delay R5

Morale

R4
Late Again!

R7

Always In
Meetings

B4
Cancellation

R6
Cancellation

Disrupts Design

-

Figure 4: Intra-phase Systems Engineering Process Dynamics

Another control mechanism to relieve the schedule pressure is to extend the schedule for the
current phase (B3: Delay). Besides the resistance to this solution that comes from the people
involved in the next phases of the project or the client, delays may also have other subtle
impacts. For example, in a recent study of a large IT product development organization, we
heard about the negative impact of multiple delays on the team’s morale (Rahmandad 2005).
Given the impact of employees’ morale on their productivity (Weakliem and Frenkel 2006) this
can lead to another reinforcing loop, R4: Late Again!. Morale also has a reciprocal relationship
with attrition: on the one hand lower morale leads to higher attrition probability (Johnsrud, Heck,
and Rover. 2000), on the other hand, people whose friends have left are more likely to face a
decline in their morale, completing another reinforcing loop (R5: Morale).

Reducing the Tasks to Complete through cancellation of parts of tasks for a phase is another way
to reduce the schedule pressure and get a troubled project back on track (B4: Cancellation). On
the other hand, the interdependencies between different tasks mean the quality of doing one
depends on the others as well (Sobrero and Roberts 2001). Therefore late stage cancellation of
some of the tasks may negatively impact the quality of the other pieces of work and increase
schedule pressure inadvertently (R6: Cancellation Disrupts Design). Finally, low discovery
rework due to high error rates often triggers additional administrative and coordination work
including new meetings, re-estimations, and scores of e-mails and phone calls. These all take
away from productive work otherwise spent on task completion, and thus increases schedule
pressure (R7: Always in Meetings).

13

14

In summary, there are several reinforcing processes within each phase of the systems
engineering process. These processes, if active in an enterprise, can lead to increasing delays,
cost and schedule overruns, and quality issues. Once these loops are triggered, they can
become self-sustaining and continue to erode the performance of the phase involved. As a
result, they can make the difference between successful and unsuccessful projects and lead to
diverse performance outcomes from otherwise similar projects. Lyneis and Ford (2007) provide a
more detailed treatment of many of these dynamics.

These dynamics are largely dependent on schedule pressure inside the group and highlight an
important tradeoff: on the on hand low levels of schedule pressure point to low resource
utilization. On the other hand, very high-levels of schedule pressure are disruptive through many
second order effects. Once the enterprise moves to this dysfunctional region of schedule
pressure (i.e. right hand side of the peak in Figure 1a), it is very hard to stop further deterioration
of the performance because of the reinforcing nature of the feedbacks involved. This leads to a
critical insight: most systems engineering projects face a tradeoff between resiliency and
efficiency. Maximum output is achieved when schedule pressure is at the peak of the schedule
pressure-task completion curve. However, keeping the schedule pressure at that peak level is
very risky as any unexpected disruption can tip the enterprise into a state of making more errors,
losing skills and morale, and thus achieving less despite working harder. Such tipping dynamics
are documented in different domains from air traffic control (Rudolph and Repenning 2002) to
software development (Rahmandad and Weiss 2008). It is required to sacrifice some efficiency
by lowering schedule pressure below peak levels to increase enterprise resiliency against random
events and unplanned changes. Larger resiliency margins are needed for projects with higher
probability of unexpected disruptions.

3.2.2 Inter-phase and Project Level Dynamics

The phases of systems engineering process are tightly connected to each other, and therefore
many feedback processes cut across more than one phase. Some of the coupling mechanisms
across different phases of a system design that can lead to reinforcing processes are
summarized in Figure 5. Here we have included only two phases for simplicity (conceptual and
detailed design). Successive phases build on each other. Requirements are based on identified
customer needs and inform a solution concept, the latter in turn impacts preliminary, conceptual
and detailed design, and so on. The productivity and quality of work in each phase therefore
directly depends the quality of work completed previous in phases. A solid and precise set of
requirements can significantly help the solution identification process and save overall resources
needed to complete the project. In fact the savings from doing a good job in the early phases are
quite significant, as much as an order of magnitude in some domains (Boehm 1981). Therefore
overall project performance (in terms of schedule, cost, and quality) depends on the quality of the
work of the early phases. Poor needs assessment, requirements translation and definition, and
conceptual design leads to many problems later on that trigger schedule pressure for all the
remaining work and activates many intra-phase dynamics discussed (R8: Error on Error).
Moreover, one of the hidden reactions to pressures is the relaxation of some of the testing criteria
for acceptance of work in one phase. Such relaxation later hurts overall performance as it leads
to the introduction of more defects into the work underlying the next phase (R9: Cutting Tests).

Systems Engineering Project

Testing
Quality P2

Defects in
Completed
Tasks P2Defect

Introduction P2

Productivity
P2

Error Rate
P2

-

+

Completed
Tasks P2Task

Completion P2

+

-

Testing
Quality P1

Defects in
Completed
Tasks P1

Defect
Introduction P1

Productivity P1

Error
Rate P1 -+

Completed
Tasks P1Task

Completion P1

+

-
+

Schedule
Pressure

+

+

- -

Organizational
Capability in

Systems
Engineering

+

- -

+

Capability
Development

Project
Performance

++

Resources
Allocated to

Project

+

R11

Training &
Process

Improvement

+

R12

Robust
Processes

R8 Error on
Error

R13
Effective

Processes

R10
Resource

Availability

-

R9

Cutting
Tests

Concept Design (P1) Detailed Design & Implementation (P2)

Experience

Effective
Communication

R14

Learning
Curves

R15
Defensive
Routines

-

Figure 5: Inter-phase Dynamics

Project performance also often impacts the resources available for the continuation of the project.
In the competition for limited enterprise resources, projects that have delivered according to their
plans find themselves at a better bargaining position. Therefore in many enterprises a “success
to successful” dynamic (Senge 1990) creates a link between project performance and schedule
pressure in a project, closing the R10: Resource Availability reinforcing loop.

Enterprise capabilities are a central concept in the strategy literature (Grant 2002) and are helpful
for understanding some other dynamics of interest in systems engineering projects. Capabilities
are generally defined as routines and operating procedures (e.g., concurrent engineering, rapid
prototyping, etc.) used to get the task done (Winter 2003). Systems engineering capability
depends on the skills and experience of the team members, the robustness of the systems
engineering processes used, the availability of automated tools and methods, among other. This
capability directly impacts the quality and productivity of the systems engineering work conducted
in an enterprise. Training, process improvement, and experiential learning are among the ways
through which this capability can increase. These, in turn, depend on other endogenous factors:
usually resource cuts first hit the long-term process improvement and training activities, leading to
a potential long-term drop in enterprise capabilities (R11: Training & Process Improvement) while
successful groups are more likely to benefit from such capability building opportunities (Sterman
2000). Projects with declining systems engineering capability level will suffer from lower quality
and productivity, more trouble, and therefore will find fewer opportunities to fix their capability
deficit (Loops R12: Robust Processes and R13: Effective Processes).

Learning curves also play an important, usually positive, role in longer projects. As different
phases of a project progress, the teams involved learn from their experience and build more
effective routines. They can therefore improve their productivity and quality and, everything else
being equal, speed of the later stages of the work (R14: Learning Curves). These dynamics are
shown to contribute to higher late stage quality/productivity in single projects (Lyneis, Cooper,
and Els 2001), and to overall success of more experienced enterprises over longer times (Argote
and Epple 1990). Finally, performance problems in projects lead to political dynamics inside the
enterprise that activate defensive routines (Argyris 1985). Under stress and threats to their
reputation, financial rewards, or job security enterprise members are more likely to reduce

15

effective communication in favor of saving their own position. Such defensive routines, however,
negatively impact the capability of the enterprise to deal with the problems in the project at hand
and solve them effectively. This completes another reinforcing loop, R15: Defensive Routines.

In summary, the dynamics that cut across multiple phases of a systems engineering project are
based on the coupling of different phases through quality of successive phases, through the
development and updating of requirements, the sharing of resources among different phases,
and the enterprise capability in systems engineering used across them. These dynamics provide
additional mechanisms that can explain the difference of successful and unsuccessful projects.
In contrast to intra-phase dynamics, the loops discussed in this section act over longer time
horizons, they start more slowly, but when under way, they are harder to stop. These dynamics
also point to a different set of managerial levers. Specifically, members of teams involved in a
single phase have little input in the allocation of enterprise resources. Strong managerial roles
responsible across phases are required to manage these dynamics and make the necessary
tradeoffs. Product development research has underlined the importance of such heavy-weight
project managers (Wheelwright and Clark 1992).

3.2.3 Dynamics across Multiple Systems Engineering Projects

Most major enterprises, from defense agencies to private firms, are concurrently involved in
several large scale systems engineering projects. The interactions across these projects lead to
a third set of dynamics, summarized in Figure 6.

Resource S1

Quality S1

Cost & Schedule
Overrun S1

Life Cycle
Costs S1

+
-

- -

Resource S2

Quality S2

Cost & Schedule
Overrun S2

Life Cycle
Costs S2

+-
- -

- - Organizational
Performance

Customer
Satisfaction

Budget Allocated/
New Contracts

Organizational Resources
and Capabilities +

+

+

+

+
Aggresive

Goals

Pressure
-

+

-

+

-

System 1 (S1)

System 2 (S2)

R17

Organizational
Budget

R16

Inter-Project
Knock-On

B5

Bold Promises

R18

Unrealistic
Expectations

Figure 6: Dynamics across Multiple Projects

First, resources are often directly, or indirectly, shared across projects. Direct resource sharing
include individuals who are involved in multiple projects at the same time, while indirect resource
sharing is highlighted when one project can not receive all its desired resources because many
key people are still engaged in another project that is running late. Resource sharing can lead to
knock-on effects among different projects: activation of reinforcing loops in one project lead to
delays and cost overruns, which in turn limits resource availability and timeliness for the next
project. In fact, such knock-on effects are seen as more disruptive when we consider the fact that
early stages of systems engineering projects are most critical to their success. Therefore early
resource shortage often leads to low-quality concept development and design, which later
disrupts the detailed solution development, implementation, and increases life cycle costs,
leading to yet longer delays in the next projects (R16: Inter-project Knock-On). Such dynamics
can move like a domino across projects and significantly reduce the capability of the enterprise to
complete its projects on time and on budget (Repenning 2000; Repenning 2001).

Enterprise performance across projects significantly impacts customer satisfaction and therefore
the propensity of winning new contracts (for commercial firms) or receiving the requested budget

16

17

(for governmental agencies). Budget and new contracts, on the other hand, directly influence
available resources for successful completion of existing and new projects. Some firms utilize
this reinforcing loop for their benefit and grow larger or more successful while others are hit hard
by its negative ramifications (R17: Organizational Budget). Some enterprises try to avoid such
decline by promising more aggressive goals to their customers, e.g. finishing the next more
ambitious project with less resources (B5: Bold Promises). However, such aggressive goals are
often counter-productive, as they raise the pressure level inside the enterprise beyond functional
levels and lower the overall performance through higher error rates, poor testing, lower capability
investments, etc (R18: Unrealistic Expectations).

The enterprise level, inter-project dynamics are most directly relevant to upper management and
legislators. They relate to the management of a portfolio of systems engineering projects and
defining the rules for participation in such projects. By understanding these dynamics, one can
see how trying to do more actually can backfire and reduce the total output. It also suggests that
enterprises may be better-off cancelling a fraction of their projects all together, rather than cutting
the budget of every project by a similar fraction. However, this solution may not be feasible given
the realities of the current acquisition process.

3.3 Feedback Loops and Exogenous Success Factors

In this paper we have focused on endogenous2 feedback processes that impact systems
engineering projects at multiple levels. This focus is helpful for identifying mechanisms that can
be controlled or changed by managerial actions. Moreover, these feedback processes provide a
framework for understanding the mechanisms through which many exogenous factors related to
success and failure operate. We illustrate by two examples: technological novelty of a project
and the contract awarding procedure.

Technological novelty is considered one of the prime causes of delays and cost overruns in
projects (Tatikonda and Rosenthal 2000; Yetton, Martin et al. 2000). In our dynamic framework,
technological novelty is seen as a factor that increases average error rate above typical projects
since project teams need to learn many factors through trial and error. Higher base error rate, on
the other hand, undermines initial project estimation (because error rate is unknown) and leads to
optimistic estimates. These activate reinforcing loops through increasing schedule pressure, and
therefore increase the chances of cost, budget, and quality problems. Furthermore, technological
novelty leads to more uncertainty in terms of tasks involved and the amount of work that needs to
be completed. In other words, it introduces more frequent and stronger unexpected changes
during the project. As we discussed in Section 3.2.2, those unexpected changes are one of the
main mechanisms for activation of vicious reinforcing loops. With this framework we can see
more clearly through which mechanisms technological novelty can increase the risks of a project.

Contract awarding mechanisms that choose the bidder with lowest price negatively impact project
performance. These contracting rules create an incentive for the bidders to estimate project
costs optimistically. However, optimistic estimation leads to aggressive goals on productivity and
schedule once the project is won. Aggressive goals increase schedule pressure, eat-up the
safety margin associated with each project and compromises the project resiliency against
unexpected changes, and thus increase the likelihood of dominance of dysfunctional reinforcing
loops. Subsequent contract extensions and sub-awards cannot fix the main cause of the problem
as long as the enterprise has passed the tipping point in terms of schedule pressure. Therefore,
the enterprise does much worse than it potentially could.

2 By endogenous we mean causes of success and failure that depend on project performance
through time. Any factor determined independent of project performance or enterprise is
considered exogenous.

18

4.0 Conclusions and Future Work

The feedback processes presented in the previous section provide the initial foundation for the
integrated framework that would serve as the basis for understanding the dynamic complexity of
the systems engineering process and offer the mechanism to test various assumptions about the
design of systems engineering systems in particular. Nevertheless, there are a number of
additional tasks that need to be accomplished. In terms of the inter phase dynamics, described in
Section 3.2.2, they would have to be mapped in detail into the current structure of the systems
engineering lifecycle process (Blanchard and Fabrycky 2006). This is very important given the
dynamic nature of the requirements analysis (Clarke, Eisen, and Wyland 2008) and its
contribution to potential system failures as depicted in Table 1.

Typically user needs are translated into system requirements through QFD or other means.
Throughout each phase of the systems engineering process these requirements are further
defined and allocated. Each time a requirement is analyzed or reconfigured it can change to the
point that the original system requirement may not be allocated into the system with its original
intent. The potential reasons why requirements change are many and can include temporal,
political, fiscal, and/or cultural considerations. During each phase new issues may change the
original intent of the requirement. For example, as noted in Section 3.2.2, budget constraints may
render an initial user requirement too expensive to implement. Additionally one must consider
that the temporal, political, fiscal, and cultural considerations can be responsible for a
requirements creep into the system, diluting the original purpose of the system. This creates
additional tasks that affect both the intra and inter process dynamics.

Another aspect that needs to be considered in the future, relates to one of the issues identified in
Table 1, i.e., that systems designs are often plagued with inadequate cost estimation models.
This is in part driven by the fact that cost estimating needs to be done early in the system’s life
cycle and often involves the consideration of new technologies. Enterprises must continually
adopt and exploit new technologies to ensure that the systems they procure and use meet
changing performance requirements and long-term cost goals. Unfortunately, adopting new
technologies may bring unexpected consequences for the systems the enterprise procures, and
for the provision of the necessary services required for the enterprise’s long-term sustainability.

Nevertheless, the estimation of cost performance for any system requires that on the one hand
analyst track the cost consequences of the dynamics represented in Section 3. On the other
hand, one needs to understand and track the cost ramifications of new technology development
(Monga and Triantis 2002), technology integration (Damle 2003), and systems operations,
support and disposal (Scott 2003). One of the challenges that any analyst faces is that these
cost estimation initiatives require cost data that may exceed the typical work breakdown
approaches that have been used in the past or are currently being used today.

Another challenge is employing the wide-spread use of analytical tools within the systems
engineering discipline. Systems engineers are often viewed as the owners of the systems
processes, and nothing more. However, systems engineers bring a wide array of analytical tools
that can help mitigate the problems addressed in the literature and in this paper. In this vane,
one of our objectives is to define a unifying framework that will accommodate quantifiable
systemic views of the entire systems engineering life-cycle process. Our research will include: (i)
providing a comprehensive view of Model Based Systems Engineering (we find current definitions
of Model Based Systems Engineering inadequate for application in engineering problems); (ii)
defining how legacy, and potentially new, tools will be used for each phase of the life-cycle; and
(iii) how these tools will be used together to support the systems engineering process. Some of
our current work explores how to successfully use architecture based products (IDEF0, N2,
FFBD) to generate requirements. We then link architectures to modeling and simulation to test
and refine many of the requirements and overall systems goals. Our linking of architectures to

19

requirements is a new endeavor, but we are encouraged by the findings thus far. We believe that
analytical processes, models, and frameworks are what allow the Systems Engineer to look out
counterparts in other engineering disciplines in the eye and say. “This is our answer as derived
through analytical means.”

20

References

Abdelhamid, T. K. and S. E. Madnick (1983). "The Dynamics of Software Project Scheduling."

Communications of the ACM, 26(5): 340-346.
Argote, L. and D. Epple (1990). "Learning-Curves in Manufacturing." Science 247(4945): 920-

924.
Argyris, C. (1985). Strategy, Change, and Defensive Routines. Boston, Pitman.
Bar-Yam, Y. (2003). When Systems Engineering Fails – Toward Complex Systems Engineering.

New England Complex Systems Institute.
Bahill, A. T. and S. J. Henderson (2005). “Requirements Development, Verification, and

Validation Exhibited in Famous Failures.” Systems Engineering, 8(1):1-14.
Blaisdell, J., Brazie., L., and K. Pelletier-Costa (2008). "Runway Incursions Elimination through a

Cockpit Based Runway Incursion Prevention System. Systems Engineering Masters
Project, Virginia Tech, Grado Department of Industrial and Systems Engineering.

Blanchard, B.S. and W. J. Fabrycky, W.J (2006). Systems Engineering and Analysis. 4th Edition,
Pearson Prentice Hall.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, N.J., Prentice-Hall.
Boppana, K. et al. (2006). "Can Models Capture the Complexity of the Systems Engineering

Process?" Engineering Systems Division, Massachusetts Institute of Technology, and
Wojcik, L.A., Center for Advanced Aviation System Development, The MITRE
Corporation.

Briggs, C., and P. Little (2008). “Impacts of Organizational Culture and Personality on Decision-
Making in Technical Organizations.” Systems Engineering, 11(1): 15-26.

Brooks, F. P. (1995). The Mythical Man-Month : Essays on Software Engineering. Reading,
Mass., Addison-Wesley Pub. Company.

Clarke, K., Eisen, B., and M. Wyland (2008). "System Engineering and Integration: A Traffic
Information System." Systems Engineering Masters Project, Virginia Tech, Grado
Department of Industrial and Systems Engineering.

Cooper, K. G. (1980). "Naval Ship Production: A Claim Settled and a Framework Built."
Interfaces 10(6).

Cooper, K. G. (1994). "The $2,000 Hour: How Managers Influence Project Performance through
the Rework Cycle." Project Management Journal 15(1): 11-124.

Damle, P. (2003). “The Implementation of New Technologies on Ship Systems: A System
Dynamics Approach for the Integration of New Technologies.” MS Thesis. Virginia Tech
Grado Department of Industrial and Systems Engineering.

Eriksson, M., Borg, K, and J. Borstler (2008). “Use Cases for Systems Engineering – An
Approach and Empirical Evaluation." Systems Engineering, 11(1): 39-60.

Ford, D. N. and J. D. Sterman (2003). "Overcoming the 90% Syndrome: Iteration Management in
Concurrent Development Projects." Concurrent Engineering-Research and Applications
11(3): 177-186.

Graham, A. (2000). "Beyond PM 101: Lessons for Managing Large Development Problems."
Project Management Journal 31(4): 7-18.

Grant, R. M. (2002). Contemporary Strategy Analysis : Concepts, Techniques, Applications.
Malden, Mass., Blackwell Business.

Hari, A., Kasser, J. E., and M. P. Weiss (2007). “How Lessons Learned from Using QFD Led to
the Evolution of a Process for Creating Quality Requirements for Complex Systems.”
Systems Engineering.10(1): 45-63.

Haskins, C. (2007). "Using Patterns to Transition Systems Engineering from a Technological to
Social Context." Systems Engineering 10, 1-9.

Johnsrud, L. K., R. H. Heck and V. J. Rosser (2000). "Morale Matters - Midlevel Administrators
and their Intent to Leave." Journal of Higher Education 71(1): 34-+.

Kossiakoff, A. and W. N. Sweet (2003). Systems Engineering Principles and Practice. John Wiley
and Sons, Inc., Hoboken, NJ.

21

Lewis, J. P. (2007). The Project Manager’s Desk Reference. 3rd edition, McGraw-Hill, New York,
NY.

Lyneis, J. M., K. G. Cooper and S. A. Els (2001). "Strategic Management of Complex Projects: A
Case Study using System Dynamics." System Dynamics Review 17(3): 237-260.

Lyneis, J. M. and D. N. Ford (2007). "System Dynamics Applied to Project Management: A
Survey, Assessment, and Directions for Future Research." System Dynamics Review
23(2-3): 157-189.

McConnell, S. (1988). Software Project Survival Guide. Microsoft Press, Redmond, WA, 1998.
McLucas, A.C. and M. J. Ryan (2005). "Meeting Critical Real-World Challenges in Modeling

Complexity: What System Dynamics Modeling Might Learn from Systems Engineering."
University College, University of New South Wales, Australian Defense Force Academy,

Monga, P. and K. Triantis (2002). “The Behavior of New Technology Development: A System
Dynamics Approach.” Twentieth International Conference of System Dynamics Society.
Palermo, Italy, August 2002.

Nepal, M. P., M. Park and B. Son (2006). "Effects of Schedule Pressure on Construction
Performance." Journal of Construction Engineering and Management-ASCE 132(2): 182-
188.

Nowinski, E.H. and R. J. Kohler (2007)."The Lost Art of Program Management in the Intelligence
Community."
http://www.cia.gov/csi/studies/vol50no2/html_files/Program_Management_4.htm.

Rahmandad, H. (2005). Three Essays on Modeling Dynamic Organizational Processes. Sloan
School of Management. Cambridge, Massachusetts Institute of Technology. Ph.D.
Dissertation.

Rahmandad, H. and D. Weiss (2008). "Dynamics of Concurrent Software Development." System
Dynamics Review Under Review.

Repenning, N. P. (2000). "A Dynamic Model of Resource Allocation in Multi-project Research and
Development Systems." System Dynamics Review 16(3): 173-212.

Repenning, N. P. (2001). "Understanding Fire Fighting in New product Development." The
Journal of Product Innovation Management 18: 285-300.

Rudolph, J. W. and N. P. Repenning (2002). "Disaster Dynamics: Understanding the Role of
Quantity in Organizational Collapse." Administrative Science Quarterly 47: 1-30.

Sage, A.P. and S. M. Biemer (2007). "Processes for System Family Architecting, Design, and
Integration." IEEE Systems Journal, 1(1).

Scott, J. (2002). “A System Dynamics Model of the Operations, Maintenance and Disposal Costs
of New Technologies for Ship Systems.” MS Thesis. Virginia Tech Grado Departmen t of
Industrial and Systems Engineering.

Senge, P. M. (1990). The Fifth Discipline: The Art and Practice of The Learning Organization.
New York, Currency Doubleday.

Sobrero, M. and E. B. Roberts (2001). "The Trade-Off between Efficiency and Learning in Inter-
organizational Relationships for Product Development." Management Science 47(4): 493-
511.

Smith, A. E. (October 22, 2007). "Where's the Leadership?" Space News, p. 19.
Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World.

Irwin, McGraw-Hill.
Tatikonda, M. V. and S. R. Rosenthal (2000). "Technology Novelty, Project Complexity, and

Product Development Project Execution Success: A Deeper Look at Task Uncertainty in
Product Innovation." IEEE Transactions on Engineering Management 47(1): 74-87.

Taubman, P. (2007). "In Death of Spy Satellite Program, Lofty Plans and Unrealistic Bids." New
York Times, November, 2007.

Taylor, T. and D. N. Ford (2006). "Tipping Point Failure and Robustness in Single Development
Projects." System Dynamics Review 22(1): 51-71.

Weakliem, D. L. and S. J. Frenkel (2006). "Morale and Workplace Performance." Work and
Occupations 33(3): 335-361.

Wheelwright, S. C. and K. B. Clark (1992). Revolutionizing Product Development : Quantum
Leaps in Speed, Efficiency, and Quality. New York, Free Press.

http://www.cia.gov/csi/studies/vol50no2/html_files/Program_Management_4.htm

22

Winter, S. G. (2003). "Understanding Dynamic Capabilities." Strategic Management Journal
24(10): 991-995.

Winter, D. C. (2007). "Getting Shipbuilding Right." Naval Institute Proceedings, June, pp. 16-20.
Wojcik, L.A. and K. C. Hoffman (2006). "Systems of Systems Engineering in the Enterprise

Context: a Unifying Framework for Dynamics." Center for Advanced Aviation System
Development and Center for Enterprise Modernization, the MITRE Corporation, IEEE,
24-26 April 2006.

Yetton, P., A. Martin, R. Sharma and K. Johnston (2000). "A Model of Information Systems
Development Project Performance." Information Systems Journal 10(4): 263-289.

