
Individual Versus Group Rationality: A
Coevolutionary Approach to the Beer Game

Hongliang Liu, Enda Howley and Jim Duggan
Department of Information Technology, National University of Ireland, Galway

Email: liuhonglianger@gmail.com, enda.howley@nuigalway.ie, and jim.duggan@nuigalway.ie

Abstract
In this paper, we examine the evolution of strategies in the Beer Distribution Game (BDG).

This is a well known game which has many parallels with supply chain optimisation problems.
This paper explores the strategies used by individuals participating in this game. The issue of
bounded rationality is addressed in detail throughout our simulations. This paper presents a new
and alternative approach to evolving strategies for the BDG. This includes a co-evolutionary archi-
tecture which provides a means of evolving strategies across the various sectors of the BDG. Our
results identify the best performing or fittest strategies for the BDG when two alternative fitness
approaches are used. We show the significant implications for individual strategies in the BDG
when agents are influenced by greater levels of bounded rationality. Our conclusions indicate the
implications of individual and group rationality on the BDG.

1 Introduction
The BDG is a well-known model in the system dynamics literature (Forrester, 1961; Sterman,
1984). This production distribution game has been widely used to examine human decision making
behaviour and inventory management optimisation (Sterman, 1987; Thomsen et al., 1992; Knol-
mayer et al., 2007). The traditional game normally involves four individuals, a retailer, a whole-
saler, a distributor and a manufacturer. Each of these individuals faces a decision making challenge
involving how they manage their current stock inventories. Each individual in the game seeks to
minimise their total cost by managing their inventories in the face of uncertain demand. It has been
shown that this simple game provides complex and often non-linear dynamics due to feedbacks and
time delays. It has also been shown through simulation and also real life experiments that game
participants find it extremely difficult to perform well in this game. Their decisions commonly
result in large divergences which are far from optimal behaviour. These result in large oscillations,
deterministic chaos and other forms of complex behaviour (Mosekilde and Larsen, 1988).

In order to identify the most optimal strategies for all game participants, numerous optimisa-
tion techniques have been successfully applied in the BDG, such as Genetic Algorithms (GAs) and
Particle Swarm Optimisation (PSO) (Strozzi et al., 2007; de Souza et al., 2000). Most existing
research has focused on one common assumption that all the game participants have one common
goal which is to minimise the cost of the whole supply chain. However, in the real world, it is
intuitive to argue that in the BDG that any two participants are only ever concerned about their
own performance in the game. A retailer is never concerned about the performance of the factory,
and vice-versa. Thereby, due to the conflicting preferences and incomplete information involved
in these interactions the reality is that participants determine their actions based on their own cir-
cumstances. This reflects their inherent bounded rationality (Simon, 1997) which is a fundamental



factor in real world supply networks. In this paper, we aim to address this issue and provide a
series of simulations investigating this property.

In this paper, we must consider game participants as agents which have individual strategies.
In order to examine the effects of bounded rationality on the evolution of strategies in the BDG, we
require a evolutionary framework which offers a means of evolving these agent strategies indepen-
dently in each sector of the BDG. Therefore, we propose a coevolutionary architecture to address
this issue. Coevolution is a process of mutual adaptation that occurs amongst a set of individuals
that interact strategically in some domain. Each agent’s strategy is evaluated based on its fitness,
and subsequently this is used to determine the evolution of strategies over successive generations.
This adopts the same approach as a genetic algorithm, however, we consider each sector of the
BDG to be a distinct agent population upon which a genetic algorithm is applied. Crossover and
mutation only occur within a given sector and not between sectors of the game. This is therefore
considered the coevolution of agent strategies. Strategies across all sectors of the game evolve in
parallel, and influence each other only through their game interactions.

In this paper we are particularly interested in the effects of greater agent autonomy of game
participants. Therefore, we seek to explore the effects of allowing these individuals determine
their strategies based on their own individual choices and preferences. We propose allowing these
individuals evaluate their strategies based on individual fitness functions whereby their sole con-
sideration is the minimisation of their costs in the game. This allows us to explore the effects
of individuals evolving their strategies in a more bounded context. Therefore, their decisions are
determined through their limited view of the world around them and their goal to maximise their
own benefit, thereby reflecting a greater degree of bounded rationality.

In contrast to evaluating fitness individually, we will also show a series of simulations which
evaluate each participants fitness on the overall performance of the supply chain and not their own
costs. Thus, reflecting a more traditional approach commonly used when attempting to optimise
the BDG. Thereby showing two sets of experiments which reflect the evolution of agent strategies
in the BDG. Two evolved BDG strategy sets will be discussed:

1. Strategies evolved when individual fitnesses are evaluated based on their individual costs.
This represents an approach that each agent chooses to minimise their own cost regardless
of the whole supply chain cost in the BDG. Thereby this reflects agents who are individually
rationality.

2. Strategies evolved when individual fitnesses are evaluated based on collective supply chain
costs. In the BDG, this represents an approach where all agents are rewarded for making
choices which maybe individually irrational for the sake of the entire supply chain. This
correlates to a collectively rational approach and thus reflects agents which behave with
group or collective rationality.

Throughout the simulations presented in this paper we will compare the effects of using these
two approaches in a coevolutionary framework. Agent strategies will evolve using genetic algo-
rithms independently in each sector of the game. Thereby this reflects that each sector of the
game has certain unique properties related to its position relative to the other sectors. The agent
populations in each sector will co-evolve independently over many generations.



This differs significantly to existing approaches to BDG optimisation which focus on optimis-
ing strategies based on a global fitness function in order to minimise the costs of the entire supply
chain. This paper will address a number of important research questions:

1. What are the effects on the BDG when agents use individual rationality or group rationality?

2. How do the most fit strategies for each sector from the BDG evolve over time?

3. In light of our results what are the broader implications for BDG optimisation and supply
chains?

These research questions will be referred to regularly throughout this paper and answered di-
rectly in the Conclusions section. The following sections of this paper are structured as follows.
In Section 2, we will discuss background research and in Section 3 we will outline our simulator
design. In section 4 we will outline our experimental setup. Section 5 will provide a detailed ex-
amination of our experimental results. In Section 6 we will outline our conclusions, while finally
in Section 7 we will briefly summarise the contributions of this paper and outline some future
work.

2 Background Research

2.1 Beer Distribution Game
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Figure 1: The structure of the Beer Distribution Game

The BDG is a classic supply chain game which has been widely used in the domain of system
dynamics and supply chain management (Sterman, 1987; Huang et al., 2003; von Lanzenauer et al.,
2001; de Souza et al., 2000). This game offers a simplified implementation of common real world
production and distribution systems. As shown in Fig. 1, this system consists of four participants:
Retailer, Distributor, Wholesaler and Manufacturer (R, W, D, M). Each participant has control and
responsibility for its own inventory.

2.2 The Beer Distribution Game Equations
In this section, we briefly outline the decision rules for stock management in each sector of the
BDG. More detailed information can be found in Sterman (1987).



The decision rule for each sector utilizes information locally available to each sector. The
information includes the current demand from the direct downstream sector, the current inventory
level and supply line level. Each sector does not know the other sectors’ inventory level or supply
line information. This incomplete information is what makes the BDG notoriously difficult. In a
given week t, each sector applies this rule in order to satisfy its expected demand Let, reduce the
discrepancy between the desired and actual stock AS t, and maintain an adequate supply line of
unfilled orders AS Lt. First, orders Ot must be nonnegative:

Ot = max(0, IO∗t ) (1)

The indicated order IO∗t is represented as follows:

IO∗t = Let + AS t + AS Lt (2)

The expected demand Let is weighted between the actual demand Lt−1 and the expected demand at
week t − 1:

Let = θ ∗ Lt−1 + (1 − θ) ∗ Let−1, (3)

In Equation (3), the parameter θ is the weighting towards considering the actual demand in the
last week.

The adjustment of the stock level AS t has a linear relationship to the discrepancy between the
desired stock S ∗ and the actual stock S t at week t. This is formulated as follow:

AS t = α(S ∗ − S t) (4)

The stock adjustment parameter α is the fraction of the discrepancy ordered each period. This
is usually represented in the range (0 6 α 6 1).

The adjustment for the supply line is formulated analogously as

AS Lt = αS L(S L∗ − S Lt) (5)

where S L∗ is the desired supply line and S Lt is the actual supply line, and αS L is the fractional
adjustment rate for the supply line.

Defining β = αS L/α and S ′ = S ∗ + βS L∗ and then we can get:

IO∗t = Let + α(S
′ − S t − βS Lt) (6)

where β is the fraction of the supply line taken into account by the sectors. This parameter is
usually represented in the range (0 6 β 6 1). If β = 1, the participant factors in all orders in the
supply line or conversely, if β = 0, the participant factors in no orders in the supply line.

The combination of the adjustment parameters (α, β) corresponds to a set of strategies for the
game participants in their inventory management. In this paper, we will allow each participant to



freely choose their strategies and evolve with each other within our coevolutionary model.

2.3 The Objective Function
The objective of each sector is to minimise cumulative costs over N weeks by keeping inventories
as low as possible while avoiding out-of-inventory conditions which cause backlogs. The BDG
commonly uses the following costs to penalise inventory holding and backlogs. The cost of inven-
tory holding is $0.5 for each case of beer per week and the cost of backlogs is $2.0 for each case of
beer per week. It is intuitive for a player to order more beer when inventory falls below a desired
level. Similarly a player is likely to order less beer when stocks begin to accumulate.

Table 1 shows the objective functions for individuals in each sector of the game. These are the
retailer CR, wholesaler CW , Distributor CD, and manufacturer CM. Finally we show the collective
costs CT of all sectors over N weeks. In this table, the inventory level and backlogs at each end of
week are presented as INV and BL, respectively.

Table 1: The Objective Function

Objective Function
Retailer CR =

∑N
i=1(0.5 ∗ INV i

R + 2.0 ∗ BLi
R)

Wholesaler CW =
∑N

i=1(0.5 ∗ INV i
W + 2.0 ∗ BLi

W)
Distributor CD =

∑N
i=1(0.5 ∗ INV i

D + 2.0 ∗ BLi
D)

Manufacturer CM =
∑N

i=1(0.5 ∗ INV i
M + 2.0 ∗ BLi

M)
Whole Supply Chain CT = CR + CW + CD + CM

2.4 Coevolutionary Approaches
In this section, we introduce a number of alternative evolutionary approaches and coevolutionary
approaches. Evolutionary approaches(EAs) are generic population-based metaheuristic optimiza-
tion algorithms such as Genetic Algorithms (GAs). EAs are inspired by biological evolution:
reproduction, recombination, mutation, and selection. In general, each individual in a population
representes a solution to a optimization problem in some domain. The individual’s fitness sym-
bolizes the quality of the solution and subsequently plays a vital role in its evolution. EAs share a
similar framework which involve firstly randomly generating a population and subsequently eval-
uating each individual. Then the selection, recombination, mutation operators will be used. Over
repeated iterations of the specified process, a population will evolve with respect to the fitness
landscape involved. Alleles associated with the most fit individuals are propagated throughout the
population while less fit alleles are less likely to propagate. EAs have been successfully applied
to optimisation problems such as the traveling salesman problem, scheduling, adaptive control,
supply chain management, etc (Goldberg and Lingle, 1985; Michalewicz, 1992; Sourirajan et al.,
2009).

Coevolutionary approaches are also a subdomain of EAs. The main difference is that coevolu-
tionary approaches usually involve many populations. Each population contains part of a solution



compared with the standard EAs. Coevolutionary approaches also use the recombination, muta-
tion, selection operators. Coevolutionary approaches have been used extensively in a number of
difficult problem domains such as function optimisation (Hillis, 1990; Potter and Jong, 1994; Pot-
ter and De Jong, 2000; Yang et al., 2008) and inventory control optimisation (Eriksson and Olsson,
1997).

3 Simulator Design
In this paper, we use a co-evolutionary approach to investigate individual rationality and group
rationality in the BDG. Each agent must make decisions according to their specified goal. In this
section, we will first outline our coevolutionary framework, and then our two alternative agent
fitness evaluation criteria.

3.1 Coevolutionary Framework
In this section, we will present our coevolutionary algorithm design, and then present our simula-
tion design as a whole.

3.1.1 Coevolutionary Algorithm Design

In these simulations we use a coevolutionary algorithm to allow each agent population to evolve
independently in each sector of the BDG. The Figure 2, shows a pseudo code representation of
our coevolutionary approach. As shown, we first randomly generate M populations where each
population has N individuals. This results in a uniform distribution of agent strategies in each
agent population. Individual agents from each sector of the game then participate in instances of
the BDG. This provides a means of determining their relative performance in the game and allows
us to allocate them fitness values. Subsequently, the selection, crossover and mutation operators
will be applied in each population independently. This process will continue repeatedly until it
reaches the max allowed generations.

Initialise populations and each population has individuals;

for ( )  {
for( ) {

for(each individual ) {

}

Selection;
Crossover;
Mutation;

}
}

M N

=0; < ; i++
each population

(a)

i i MAX_ALLOWED_GENERATIONS

Calculate fitness  = f(a);

Figure 2: Our Coevolutionary Algorithm
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3.1.2 The Simulation Model

The Figure 3 shows the entire simulation model. In this model, there are four agent populations:
retailer PR, wholesaler PW , distributor PD and manufacturer PM.

Through coevolution each population evolves independently from the other agent populations.
Figure 3 indicates the particular phase of the simulation model when we are evaluating the agents
from the retailer agent population PR. Each of the other agent populations PW , PD, PM provides
agent representatives to participate in the process. As a result, each agent from the retailer will
play an instance of the BDG with all the representative agents from the other sectors. This means
that each agent from the Retailer Population (R) will participate in NM−1 interactions with the other
representative agents. The representative agents will fulfill only the role defined by their associated
sector. For example, an agent from the distributor agent population will always play the role of
a distributor in all games it participates in. This is similar to a round robin type implementation
whereby each of the relevant agents are paired in order to participate in a instance of the BDG.

Furthermore, in order to evaluate an agent’s fitness, we will average their total cost over all
these interactions (NM−1) and then assign this value as their individual fitness. We believe this is
the fairest approach in order to compare the performance of individuals in each agent population.
However, our approach is very computationally expensive 1.

After evaluating all the agents from the retailer agent population, we will apply this process to
the other agent populations in a sequential pattern. The sequential pattern is: retailer, wholesaler,
distributor and finally manufacturer. This is similar to other coevolutionary approaches such as Pot-
ter and Jong (1994). However, this process could also be evaluated purely in parallel. This reflects
the process of evaluating each agent’s fitness in the specific sector population concerned. Once
all agent’s in the sector population have an associated fitness we then apply selection, crossover,

1Each generation involves NM evaluations or the BDG simulations.



mutation operators to that sectors agent population as shown in Figure 2.

3.2 Individual Versus Group Rationality
In the BDG, it is desirable for all four sectors to fully cooperate with each other in order to reduce
the whole supply chain cost. However, in reality the behaviour of human participants in the BDG
has shown that this is difficult to achieve and rarely occurs. There are at least two reasons. Firstly,
each sector does not have complete information to manage its inventory. For example, all the
sectors do not know the actual customer demand except for the retailer. Secondly, real world
individuals are mostly self-interested, and are primarily concerned with maximising their own
performance. This reflects that there are conflicting preferences between the sectors in the BDG.
Thus, as in the real world, peoples behaviors are effected by bounded rationality as they have
a limited view of the world around them. Therefore, they simply make decisions in order to
maximise their own benefit at any moment in time.

As we have mentioned previously, this paper aims to investigate the effects of bounded ratio-
nality in the BDG. We use two fitness criteria as a means of modeling this feature. Two alternative
fitness criteria are specified as follows:

1. Individual Fitness Function: The agents from each population PR, PW , PD, and PM use
CR, CW , CD and CM respectively as shown in Table 1. These objective functions reflect
that each agent seeks to minimise its individual cost regardless of the whole supply chain
cost. This reflects how these agents are rewarded in our evolutionary algorithm based on
their individual performance, thereby ignoring the performance of other individuals in the
supply chain. This has the effect of rewarding individually rational behavior even if this
behavior may not be collectively rational for the entire supply chain. The agents adjust their
strategies according to their own self-interest and promote their own fitness criteria over each
generation in our coevoluationary model. In the following, we will refer to this approach as
IFF.

2. Global Fitness Function: All the agents from PR, PW , PD,and PM use the whole supply
chain cost as their objective function CT in Table 1. This indicates a situation whereby all
agents are rewarded through our evolutionary algorithm based on the performance of the
entire supply chain. Thereby ignoring whether their actions maybe individually irrational.
They are rewarded if they help maximise the efficiency of the overall supply chain, even
if this is at their own individual expense. Thereby, compared with IFF, this represents a
reduced degree of bounded rationality with respect to the BDG. In the following discussion,
we will refer to this approach as GFF.

These two fitness evaluation approaches provide us with a basis to compare the differences and
similarities between the effects of the bounded rationality in the BDG when individuals behave
individual rationality IFF, or alternatively using their collective or group rationality GFF.

4 Experimental Setup
In this section, we will outline the parameters involved in our simulation model and the BDG. In
our coevolutionary model we must simulate the BDG a number of times. The following parameters



are used throughout our simulations: The total simulation length is 50 weeks. The customer de-
mand is initially four cases per week and increases to eight cases per week in week 5 and remains
at that level thereafter. The α and β values are all in the range of [0, 1]. The θ value used is 0.25
(see Equation (3)). Delays equal 4 weeks and the parameter S

′
in Equation 6 is set to 17.

As shown in Figure 3, there are four sectors representing four agent populations in the simula-
tion model. Each population size is set to N = 10 and the total number of iterations (generations) is
= 150. The population size used is quite small due to the computationally intensive nature of this
approach. A selection operator which selects the best individual (as determined by their fitness) is
used and a selection rate of 0.9 is applied. The crossover rate is 0.85 and the mutation rate is 0.2.

5 Experimental Results
In this section, we will outline a series of experimental results from our simulations. Firstly, we
will examine the evolution of the most fit strategies and their effects on agent fitnesses in each
sector of the BDG. Subsequently, we will show the overall effects on the supply chain when IFF
and GFF are used. We will compare both approaches and outline their differences and similarities.

Please note that each agent records a number of important metrics in our simulation. Firstly,
each agent records the average cost incurred by the whole supply chain (CT ) over a number of
interactions (NM−1) in a generation. Secondly, each agent records its own average cost incurred
over NM−1 interactions. Thirdly, each agent has its own individual strategies (α and β). Finally, all
agents record their own fitness in each generation. As mentioned above, the fitness value equals to
the average of its individual cost or the average of the whole supply chain cost depending on using
IFF or GFF. Our following experimental results are from the agents that have the best fitness
among each sector agent population.

5.1 Strategy Evolution
In this section, we will show a series results showing the evolution of the most fit strategies and the
best fitnesses for each sector from each respective agent population. We will show the differences
and similarities between the results from the agents use IFF and GFF.

5.1.1 Agent Strategies

Each agent has two parameters α and β which represent its strategies. A high α represents an
agent’s high attention to the inventory, a high β represents an agents high attention to the supply
line comparison with the inventory. Existing research has shown that the optimal strategies for
each sector is that α and β are close to 1 (Sterman, 1987).

Figure 7 shows best strategies α value for each sector changes over generation when each agent
uses IFF. Figure 8 represents the best strategies when all agents use GFF. Figure 9 shows the β
value for the best strategies in each sector over successive generations when using IFF. Figure 10
shows the same data when all agents use GFF. Each set of results shows the strategy changes over
one typical run while a corresponding figure shows the average changes over 50 runs.

There are several features from these experiments. Firstly, we observe that there are similar
trends between the data in each single run and the corresponding averaged data in Figures 7,8,9,10.



Secondly, the (α and β) values of the best strategies in each sector increase at quite rapidly initially
and then remain quite steady over successive generations. This reflects that individuals pay more
attention to their inventory and supply line and obtain better performances over repeated gener-
ations. This performance is shown in Figure 4, 5. Finally, our results show the difficulty for
individuals using both IFF and GFF to evolve high α and β values. This is an indication of the
complexity of the fitness landscape inherent in this game environment.

5.1.2 BDG Sector Costs

Figure 4 shows each associated sector cost from the best agents over successive generations agent’s
use IFF. Figure 5 shows the same data when each agent uses GFF. We outline the changes in one
typical run while also showing data showing average changes over 50 runs.

Figures 4 and 5 show no major differences between our typical run and the averaged data. This
indicates the relative stability of the overall evolved behaviors. We notice that cost falls over time
as our populations converge. This reflects the ability of our coevolutionary framework to promote
the best performing strategies in each of our agent populations. For the BDG, this process reflects
how agent strategies evolve over successive generations to converge on the most fit solutions that
can be identified in that particular game environment. This process is guided by each agent’s fit-
ness criteria IFF and GFF. Finally, we observe significant differences in how agents perform
in Figure 4. However, no significant differences are apparent in Figure 5. More specifically, in
Figure 4 the retailer always performs best, with the wholesaler, distributor, and manufacturer fol-
lowing in that order of performance. This indicates the direct implications of allowing each of
these sectors evolve independently through IFF. As a result these agent populations are contin-
uously tuning their strategies to perform as well as possible without regard for the entire supply
chain. The opposite is identifiable in the results outlined for GFF as shown in Figure 5.

5.1.3 BDG Supply Chain Costs

In this section, we will present how the whole supply chain cost evolves over successive genera-
tions. Figure 6 shows the average whole supply chain cost as our populations evolve over a number
of generations. Figure 6(a) shows the changes from one typical run while Figure 6(b) shows these
same changes averaged across 50 runs. We observe from Figure 6 that overall costs are higher
for the entire supply chain when IFF is used. These results are consistent throughout numerous
experimental runs as we can see from the data. Despite both approaches reducing overall supply
chain costs, it is clear that GFF is far more successful at this task. This data confirms our belief
that when agents act solely to minimise their own costs they will in effect end up undermining their
own performance and that of the entire supply chain. Instead they must act counter intuitively and
make initial sacrifices for the sake of the entire supply chain. This displays the clear impact and
significance of individual and group rationality in these environments.

5.2 Supply Chain Analysis
In this section we will present a series of results showing the performance of the agent populations
from each sector while participating in the BDG. We will show the differences and similarities
between the results from our simulations involving IFF and GFF.
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Figure 4: Average Sector Costs (1 Run)Vs(50 Runs) Using IFF
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Figure 5: Average Sector Costs (1 Run)Vs(50 Runs) Using GFF
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Figure 6: Average Total Cost (1 Run)Vs(50 Runs) using IFF and GFF
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Figure 7: α (1 Run)Vs(50 Runs) using IFF
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Figure 8: α (1 Run)Vs(50 Runs) using GFF
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Figure 9: β (1 Run)Vs(50 Runs) using IFF
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Figure 10: β (1 Run)Vs(50 Runs) using GFF

5.2.1 Simulation Results using Individual Rationality (IFF)

In this section we will present our experimental results from our evolved agent populations when
using IFF as the fitness evaluation function.

Table 2: Results from Individual Rationality (IFF)

Worst Best µ σ

CR 166.1 116.7 136.6 13.4
CW 387.0 253.9 303.0 27.9
CD 1009.7 679.1 847.2 82.1
CM 1538.9 998.1 1262.7 100.6
CT 3177.1 2123.3 2618.2 215.0

The results presented in Table 2 are are from 50 individual runs of our coevolutionary algo-
rithms when all agents use IFF. Thereby, this reflects that each agent strategy evolves based on
their own costs incurred. Therefore we show the most relevant data in bold italic font. The data
shows the cost associated with each potential role in the BDG. We also show the average total sup-
ply chain cost TC incurred by the four sector populations in the BDG. The data in Table 2 shows
the maximum cost (Worst), the minimum cost (Best), the average cost (µ) and standard deviation
(σ). From this table, we observe that the more upstream individuals in the BDG incur higher costs
and σ. The underlying reason for this is that the knowledge of the downstream orders tends to be
distorted and can subsequently misguide the upstream individuals in their inventory and produc-
tion decisions. This distortion tends to increase and thus causes a larger inventory fluctuation as
one moves upstream. This is a phenomenon commonly referred to as the “bullwhip effect” (Lee
et al., 1997).



5.2.2 Simulation Results using Collective Rationality (GFF)

In this section we will present our experimental results from our evolved agent populations when
using GFF as the fitness evaluation function. As in the previous experiment described in section
5.2.1, the data presented here in Table 3 is from 50 experimental runs. We will discuss these results
in detail when comparing them to those evolved using IFF in the following section.

Table 3: Results from Collective Rationality (GFF)

Worst Best µ σ

CR 636.5 216.1 429.0 107.0
CW 564.8 157.2 326.4 82.7
CD 582.8 184.2 297.5 93.6
CM 706.8 237.5 387.7 108.2
CT 1843.5 1103.7 1406.9 206.8

5.2.3 Comparison of Individual Rationality (IFF) and Collective Rationality (GFF)

In this section we will identify the differences and similarities between our two evolutionary models
IFF and GFF.

Table 4: The Percentage Cost Reduced When The Agents Use Individual Rationality (IFF) Com-
pared with That The Agents Use Collective Rationality (GFF)

Worst Best µ

CR 73.9% 46.0% 68.2%
CW 31.5% −61.5% 7.2%
CD −73.2% −268.7% −184.8%
CM −117.7% −320.3% −225.7%
CT −72.3% −92.4% −86.1%

We also examined our evolved agent strategies when GFF is used to evaluate their fitnesses.
From the data shown in Table 3 we can identify clear differences with the results shown in Table 2.
We observe that retailer is the worst performer, as identified by µ in this table. This primarily due
to individuals throughout the supply chain adjusting their strategies based on the common goal of
minimising the whole supply chain cost. Individuals will sacrifice their individual profit in order
to benefit the performance of the overall supply chain.

The results presented in Table 4 show the cost reduction when the agents use GFF compared
with that the agents use IFF. The data in this table shows the performance differences and the
effects on the whole supply chain between individual rationality and collective rationality. The
agents using IFF had attempted to reduce their own cost, however the benefits of this falls signifi-
cantly as one moves upstream. From this table, we can see only the retailer agents gains from this



approach while the distributor and manufacturer suffer significant losses. The wholesaler performs
quite similarly in both IFF and GFF. These observations reflect many of the characteristics we
would expect given the existing research involving supply chains. If downstream sectors mange
their inventory selfishly, this will impact significantly on any upstream sectors. These simulation
results provide further evidence of the importance of cooperation and information between the
sectors of the supply chain.

Table 5: The statistical significance using IFF vs GFF

T test CR CW CD CM CT

P 0.00% 6.28% 0.00% 0.00% 0.00%
T Value −18.698 −1.896 31.219 41.878 28.712

Significance TRUE FALSE TRUE TRUE TRUE

To further reinforce our observations regarding the differences between individuals evolved us-
ing individual rationality and collective rationality, we conducted a statistical T test to demonstrate
the significance of the differences between our two sets of results (IFF and GFF). Furthermore,
we use the conventional criteria to determine whether differences are significant (S). That is if the
two tailed p value is less than 5%, the difference is statistically significant (TRUE), or else, it is
not (FALSE). The data in Table 5 verifies our earlier analysis, and that the behaviours evolved in
the two models are significantly different. The only sector not showing a significant statistical dif-
ference was the Wholesaler and we believe this is purely down to his location in the supply chain
relative to its peers. This results is expected and confirms that the results of our two models are
significantly different.

6 Conclusions
This paper presents a new and alternative approach to evolving strategies for the BDG. This in-
cludes a co-evolutionary architecture which provides a means of evolving strategies across the
various sectors of the BDG. We propose two alternative sector evolution preference, one reflects
individual rationality and the other reflects group or collective rationality. A comprehensive defi-
nition and comparison between these preferences has been presented.

Earlier in this paper, we posed a number of important research questions. In response to our first
research questions, it is clear that in most cases individual and collective performance improves
significantly when individuals avoid acting purely through their individual rationality but instead
determine their behavior based on group rationality. The effects on upstream individuals are more
significant than those downstream. Only the downstream retailer gains when individuals use their
individual rationality. The upstream sectors suffer heavily in this case, and this thereby reflects
aspects of the “bullwhip effect”.

Our second research question refers to the changes of the most fit strategies for each sector over
successive generations in our simulation model. We observe that the most fit strategies for each
sector tend to increase over time. However, these still fail to reach optimal strategies in our simu-
lation model. This stems from each sectors in the BDG suffering through their lack of information.



In the BDG, each individual makes its decisions based on local information such as the demand
from their direct downstream sector, the current inventory level, and supply line level. They are
never aware of the actual custom demand (except for the retailer) or their neighbor’s inventories
levels. Furthermore, we use a small number of agents in each population in our coevolutionary
model. This would undermine our ability to evolve certain strategies. In future, we would like to
investigate this issue further.

Our results have shown that bounded rationality is a significant factor when examining the
BDG. The conflict between individually rational choices and collectively rational choices are very
difficult for BDG participants to clearly identify. Our results also have demonstrated the difficulty
of trying to make individually rational choices in the BDG, as this can directly contribute to poorer
performances for the individual concerned and the entire supply chain. This reflects many of the
properties of a typical social dilemma. In summary, our results underscore the importance of
cooperation in supply chain management.

7 Summary and Future Research
This paper has presented a novel extension to existing research involving the BDG. This includes
simulating BDG participants which have greater autonomy to determine their strategies based on
their individual preferences. Furthermore, we introduce for the first time a coevolutionary model
to examine the effects of bounded rationality on the sectors in the BDG. However, a number of
fundamental factors influence this study. Firstly, the degree of bounded rationality reflected by
the game participants. As we have shown this has significant implications for performance of any
given supply chain. Even in the limited case of this paper, we have seen the effects of individual
rationality and group rationality on the supply chain. A number of limitations are inherent in our
simulations. Firstly, our study only involves one very simple customer demand pattern and also
includes very small agent populations. We hope to address these limitations in future research.
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