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Abstract

This paper presents progress on the conceptualisation and implementation of an extended version of Ford’s

behavioural approach (Ford 1999) to feedback loop dominance analysis. The need for the extension of the

original method is discussed, as are the methodological consequences of changing and implementing the method.

The changed method presented here is refered to as the Generalised Loop Deactivation Method. The automated

version of this method is tested on three models. The first of these is used to check the results of the method,

the second to discuss several methodological changes and the third model is used to demonstrate how to detect

superfluous structure in a larger model. Significant findings include recommendations on how to eliminate loops

from a model, a fully automated version of the loop deactivation method and an extension of its use into model

simplification, moving the method beyond loop dominance analysis.1

1My gratitude goes out to Els van Daalen, Jill Slinger and David Ford, who provided valuable feedback on my initial thoughts and writings.
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2 1 INTRODUCTION

1 Introduction

One of the prominent unanswered questions in System Dynamics is how structure drives behaviour. Several
authors have identified the development of formal methods to find out how structure drives behavior as a major
outstanding issue (Sterman 2000, Richardson 1996). Consequently, in recent years, a wide range of methods
aimed at resolving this issue has been developed.

The most notable of these methods are eigen-structure based methods (Kampmann 1996a, Kampmann and
Oliva 2006, Saleh et al. 2006), the pathway participation method (Mojtahedzadeh et al. 2004) and Ford’s be-
havioural approach (Ford 1999). The first of these, the eigen-structure based methods, use the response of eigen-
structure of linearised versions of the model to perturbation of elements to assess the influence of those elements
on the model’s behaviour. The eigen-structure based methods are considered a highly mathematical and formal
approach to explaining model behaviour. The second, the pathway participation method, uses the contribution of
causal structure to the behaviour of a selected variable of interest to trace dominant structure around the model.
The pathway participation method is implemented in the DIGEST software package (Mojtahedzadeh et al. 2004).
The third method, and focus of this paper, is Ford’s behavioural approach. This method uses the deactivation
of loops and the difference in output between the original model and the modified model to asses the role of
deactivated loops.

The philosophy underlying Ford’s behavioural method is much in line with the classic methods that rely
on hypothesis testing (Richardson and Pugh 1981). In contrast to the classic hypothesis testing, however, Ford
provides a more systematic approach to both what modifications will be made to the model and how the role of a
loop is assessed based on the effect of that modification. Ford (1999) assesses the role of a loop by deactivating it
and comparing the behaviour of the modified model with the original.

This paper presents progress on the formulation, automation and application of an extended version of Ford’s
behavioural approach. The modified method is referred to as the Generalized Loop Deactivation Method (GLDM);
’generalized’ due to its applications beyond loop dominance analysis, ’loop deactivation’ since this is the core
mechanism of the method. Modifications to the original method are listed and their effects on the method’s
application are discussed using three brief analyses. The first of these analyses is a simple verification of the
method by inspecting whether it provides similar results to the non-automated version of the method. The second
addresses several methodological changes. The third analysis uses the automated method to search for possible
ways to simplify the model under investigation.

The structure of this paper is as follows: we will first define why and how we extended Ford’s behavioural
approach in Section 2. After which we test the method and discuss several methodological issues. With the tested
method, we then demonstrate a particular use case on the Market Growth model (Forrester 1968) and compare this
to eigenvalue elasticity analysis. Finally we close with conclusions and recommendations for further research.
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2 Modifications to the Method

In this section we will discuss the extensions made to the method and the background for making htem. Note that
since viewing a model as a directed graph (Diestel 2005) is central to elements in the method, several terms will
be used synonymously; an edge refers to the link between two variables, vertex is used as a synonym to variable.

Ford (1999) introduced a flexible, formal method for assessing the role of particular loops in a model. Based on
deactivating a selected subset of loops, the method provides analysts with a structured approach to assess the role
of the loop at during a particular interval of behaviour. The method is supported by a rigorous analysis procedure
that is able to deal with multiple loops stronly influencing behaviour.

In a nutshell, the procedure consists of selecting a variable of interest, dividing its behaviour up into different
intervals and eliminating a selected set of loops for each interval. Based on the difference between the behaviour
of the unmodified model and the model with a loop eliminated, the role that that loop has in generating behaviour
in that interval is assessed. By eliminating more than one loop at a time, the method is able to provide the analyst
with conclusions even in situation where multiple loops share dominance. There are however, several remaining
challenges concerning the method and how to execute it.

First, the method is labour intensive, which has consequences for how it can be used in analysis. A decent
size model easily has tens of loops in it and isolating every single loop (even if that is possible) and manually
deactivating them would take hours, if not days. Consequently, the analyst has to limit himself to assessing the
role of only a selected subset of the loops in the model. An automated version of the method that rapidly scans the
loops in the model would circumvent this disadvantage. Second, the method assumes the interesting loops in the
model to be known; it is not formally supported by structural analysis. Third, there are several methods available
to the analyst in eliminating a loop. A loop is eliminated by deactivating a link that is unique to that loop (not
included in any other loop). the link, the loop is eliminated. The open question is to what value to fix the link.
Fourth, the method restricts itself to eliminating loops only at inflection points or minima/maxima of the trajectory
of the selected variable of interest. More detailed information on the role of a loop can be obtained by allowing
more flexibility in this step of the method.

The issues identified in the above paragraph will be discussed in this section. We will first discuss what edges
(links) to deactivate, how to deactivate them and when to deactivate them. After this, the main ideas behind the
automation of the method are explained.

2.1 What edges in the model to deactivate

The published version of Ford’s behavioural approach has no explicit method for identifying the edges to deacti-
vate. It assumes sufficient existing knowledge of the feedback structure of the model to identify these by hand.
Consequently, the method can be extended by using existing formal methods for loop detection.

Since it is necessary to identify the edges that make up the loops in a system, a representation of feedback
structure is needed that provides the analyst and method with this information. The formal representation of a
feedback loop that directly provides the required information is the Directed Cycle Matrix (DCM, an edge-cycle
incidence matrix (Oliva 2004, Kampmann 1996b)). Any loop detection method that produces such a matrix can be
used as input for the method. The modified method presented in this paper makes use of the Shortest Independent
Loop Set (SILS) method as developed by Oliva (2004). The SILS method guarantees that any loop that has a
unique edge associated with it will automatically be included in the loop set. Alternatives include an extensive
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depth-first search, the algorithm as designed by Kampmann (1996b) or selecting loops by hand and building a
DCM.

Since the directed cycle matrix identifies what edges make up what loops, it can assist in executing Ford’s
behavioural approach in two ways:

1. Finding those edges that uniquely identify a loop. Any edge for which the associated row sum is 1 occurs in
only one loop. These edges identify the set of loops that can be eliminated independently; by deactivating
these edges only one loop is eliminated. Any loop that does not have an edge uniquely associated with it,
can not be analyzed independent from other loops.

2. Finding the loops eliminated by deactivating a particular edge. If the analyst starts out with a set of edges,
the DCM allows for the identification of the loops associated with each edge.

For all intents and purposes, the DCM provided by the structural analysis tools is considered as representative for
the loop set in the model. If the analyst wants to use a particular loop set, he need only replace the loop detection
method.

2.2 How to Deactivate them

A loop is eliminated by deactivating an edge between to variables. To deactivate an edge the representation of the
indepedent variable (the ’from’ variable) is set to a fixed value within the equation of the dependendent variable

(the ’to’ variable). So, if a = b · c and we seek to deactivate the edge from b to a, we set the equation of a to
a = bs·c, where bs is some fixed, constant value. The equation of b itself is not changed. We identify three methods
of deactivating links in the model, distinguished by what fixed value the representation of the independent variable
is set to: fixing a specific relation to zero, to steady state gain, or the value it has at the moment of deactivation1.

With regards to the first method, setting a link to zero often eliminates more than just one link. For example,
if an auxilary a is determined according to a = b · c, setting the b → a link to zero by changing the equation of
a to a = 0 · c also deactivates the c → a link. Taking into account that a itself is set to zero as well, this change
will probably be felt throughout the entire system; the shock will propagate through the system. The deactivation
method does not fully isolate the feedback loop the analyst is investigating.

The propagation effect mentioned above will also be present when using the second method of deactivation.
Using this method, to eliminate the edge a→ b, the equation for a would be changed to a = bs · c, where bs is the
steady state value of b. Especially in higly connected, non-linear systems in a state that is relatively far from steady
state, setting the value of a relationship to its value at steady state will cause a significant shock to the system. In
the example, the difference between bs and b may be large, so modifying the equation for a would immediately
significantly change the value of a as well.

The third and only remaining method is fixing the value of a link/relationship to the value at the time of
elimination. So, at the time of elimination the equation for a becomes a = be · c, where be is the value of b at
the time of elimination. This seems to work well in smaller models. In larger models, however, it is often not
able to cause a dramatic switch in behaviour immediately, where the other two methods do. At the moment of
deactivation, the dependent variable (a in the example) retains the same value.

In a sense, the solution to this dilemma is not offered in this paper. The method, however, does use the third
method as the default choice. Why this is the case is explained and demonstrated in Section 3.2.
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2.3 When to Deactivate

Over an interval displaying one type of behaviour (balancing/exponential growth, balancing/exponential decline)
there may be several loops generating the behaviour, one after the other. Only inspecting the effects of elimination
at the beginning of the interval will never surface the later loops as being responsible for driving behaviour. So, in
order to find those changes in driving structure, it is necessary to deactivate edges at more points in time.

Deactivating edges at more times of the analysis also has the benefit of providing a richer picture of the role
of the eliminated loop over time. Consequently, we are less rigid in determining at what times a loop can be
deactivated. While this reduces the rigor of the method slighty, it opens up novel ways of analyzing the role of a
loop. This feature is illustrated in Section 3.2.

2.4 Specification

Even with the support of structural analysis (i.e. loop detection methods), the analyst would still be left with
significant manual tasks. This subsection addresses how these, often menial, tasks have been automated. The
tasks are: formulating switch variables, taking out combinations of loops and performing the analysis for more
than one variable. Finally, it must be mentioned that, given that the method can be used in several different ways,
many of the choices of how exactly to execute it are left to the analyst; they are arguments in calling the function.
Flexibility and power of analysis are design requirements.

2.4.1 Formulating switch variables

In the previous formulation of the method, much of the analyst’s time was invested in specifying switch variables.
Variables that, at a certain point in time, would deactivate a certain loop. These take significant effort to formulate
and, in addition, clutter up the equations. The automation uses a java-based representation of System Dynamics
models2 that mitigates the need for formulating the control variables (Appendix A.1).

2.4.2 Combinations of Loops

One of the strengths of Ford’s behavioural approach is its ability to deal with multiple loops sharing dominance.
The preferred method of deactivating combinations of loops, however, is labour intensive. In simple four loop
model for instance, to test for shared dominance or shadow loops, the modeller would have to deactive 16 different
combinations of loops for every time the analysis is executed, just to test all pairwise combinations. While this
task is still feasible (if tedious) for a small model, even for medium sized models the costs in terms of effort and
time would be disproportionate.

The implemented solution is to define what combinations of edges to deactivate in advance and to leave the
actual deactivation to the method itself. Which combinations of loops to deactivate in what order is defined in the
so-called deactivation matrix. The deactivation matrix represents what combinations of edges will be eliminated
for each iteration of the method. The matrix is binary matrix of size n × m, where n is the number of edges.
Appendix A.1.1 contains further details.

2.4.3 Variable of Interest

One minor change is that the current version of the method explicitly allows for the selecting of more than one
variable of interest. This enables the analyst to quickly analyze the effect of taking out a loop on, for instance, all
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states or a selected set of performance indicators.

2.4.4 Control for the Analyst

Given the design requirement of flexibility, the analysis method has several options that can be set by the analyst.
The elements of the method that are still debatable, such as the method of deactivating edges, are left to the analyst.
The options are:

• Variables of Interest. The variables the analyst is interested in. The role of a loop will be assessed based
on the change in behaviour of the variables of interest.

• Times of Analysis. The analyst has complete control over when the loops will be deactivated.

• Edges. If the analyst specifies the edges to be deactivated, the method will focus on these without using
structural analysis to determine the edges to deactivate. If it is not given, the function will derives the edges
it will deactivate from the Directed Cycle Matrix of its loop set.

• Directed Cycle Matrix. The Directed Cycle Matrix (DCM) represents the loop set the function uses to
analyze the model. It is used in two ways. First, if the edges to deactivate are not given by the analyst, it
will derive the edges to deactivate from this matrix. Second, if edges are given, it will determine the loops
associated with the edges; in which loops the edges are included. If no DCM is given, the method will use
the given structural methods to determine a DCM.

• Structural Methods. The methods used to determine the DCM if none is given. By default, the function
uses the SILS algorithms (Oliva 2004) to determine the DCM.

• Deactivation method. This option controls the method by which the edges are deactivated. This is a
reference to a function as defined by the analyst and hence can take any form desired, from setting edges to
zero to using lookups to set specific edges to specific values. The default method is to fix the edges to the
values they have at the moment of deactivation.

• Deactivation Matrix. This option defines the deactivation matrix according to which to deactivate edges
and combinations of edges. If the analyst does not specify this, the method uses a n × n identity matrix,
where n is the number of nominated edges.

• Report interval. Once the edges are deactivated, the model must be run in its modified form. The values
of the variable(s) of interest have to be tracked over the course of the simulation run. The report interval
controls how often the value of the variable of interest is checked. There is no default for this option; it has
to be set.
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3 Application

This section will show two different uses of Ford’s behavioural approach. Namely:

1. The classical use of Ford’s behavioural approach that aims to find dominant loops.

2. The inspection of the changing role of a loop during a highly dynamic interval.

The matlab code used to generate these analyses is included in Appendix D.

3.1 Finding Dominant Loops

This analysis is performed on the Yeast model(Güneralp 2006, Phaff et al. 2006, Mojtahedzadeh 2007). The
approach is the default execution of Ford’s behavioural approach on a previously analysed model. This section
serves to show how to execute and set up the automated analysis, the actual results have been discussed by other
authors in other papers . The analysis is of a small model and it is identical to the classic Ford method, but
fully automated. The secondary purpose is to compare the results of the automated version of the method with
the results of previous analyses. The code for this analysis can be found in Appendix D.1, line numbers will be
mentioned in the text to indicate what section of code represents what activity.

First, the initial setup of the analysis defines the model, the integration settings, what function to use to analyze the
model and what the variables of interest are (line 9 to 22). Second, a reference run of the model is generated and
the times at which the model swithes behaviour pattern are detected (line 24 to 41). Note that the analysis run is
done at the inflection points and maxima of the variable of interest. The classical variant of the method divides the
behaviour of the variable of interest up into intervals based on the so-called atomic behaviour pattern (ABP, Ford
(1999)). Balancing behaviour results in an ABP less than zero, accelarating behaviour results in an ABP greater
than zero. In contrast to Ford, we calculate the ABP by

ABP = sign

(
dx

dt

)
sign

(
d2x

dt2

)
(1)

where x is the variable of interest. An interval is a period during which the ABP keeps the same sign. Given that
the method is supposed to be run at any time the analyst desires and analysis times can be at any time during a
model run, the ABP is determined outside the rest of the method. The times at which loops are deactivated are
the times at which the ABP switches sign. These times are then passed to the method, no information on the ABP
itself is passsed. Finding where the variable of interest switches behaviour pattern is a trivial exercise (line 37 to
41), assuming the behaviour of the variable is smooth.

After this, the analysis is executed and results are stored (line 43 to 54). The results of this can be found
in Figure 1. To interpret the results of deactivating the loops, the method uses the ABP again. Only when the
deactivation of a loop results in a radical change of behaviour is it considered dominant. A radical change of
behaviour is defined as switching the ABP of the variable of interest immediately after the deactivation of the
loop.

Consequently, using the switching of the ABP as a signal for dominance, we consider the following loops as
chiefly responsible for behaviour:

• Interval 1. Loop 2, a positive birth loop is considered dominant.
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• Interval 2. Loop 3, a loop constraining the variable of interest is considered dominant.

• Interval 3. No clear dominant loop. Further investigation leads towards a pair of loops dominating.

• Interval 4. Although not immediately apparent from the graph, eliminating loop 1, a balancing loop, results
in a switch of behaviour pattern. Loop 1 is considered dominant in this interval.
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(a) t = 0 (b) t = 51.5

(c) t = 66 (d) t = 75

Figure 1: These graphs show the effects of eliminating all the loops in the Yeast
model at different moments in the model run. Each line is named after the
eliminated loop. The more a line deviates from the original model (refrun), the
more influential the eliminated loop was. According to Ford’s original method,
only if the elimination of a loop triggers a change in atomic behaviour pattern is
it considered ’dominant’. Results confirm those found in other applications of
the method (Mojtahedzadeh 2007, Phaff et al. 2006).
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3.2 Analyzing the Effect of One Particular Loop

This demonstration focusses on the changing role of a single loop. In this case, the Self Ordering loop in the
Long Wave model (Sterman 1985) is analyzed. This is a highly nonlinear economic model developed by Sterman
(1985) to explain the long term economic cycles caused by capital self-ordering in the simplest possible terms.
Two different methods of eliminating an edge are contrasted; setting a link to steady state gain and fixing the link
to its value at the moment of deactiviation. The second feature shown in this script is the ability to focus on a
particular interval within a run, at desired moments. While the model runs for around 150 time units, we are only
interested in the behaviour in the last 20 time units. The analysis is performed at a relatively high frequency: every
1 time unit. The matlab code can be found in Appendix D.2; line numbers will be mentioned in the text to indicate
what section of code represents what activity.

Again, the analysis starts with setting certain elements general to the all analyses and generating a reference run
to compare the results of deactivating the loops to (line 8 to 27). For the reference run, we are interested in
two variables; backlog and relative orders. Relative orders is tracked to indirectly determine the gain of the Self
Ordering loop; if it is at it’s minimum or maximum, the gain of the Self Ordering loop is 0. The tracking of the
two selected variables starts and ends at the same time as the analysis.

With the reference run generated and the model reset to its initial state, the analysis is set up. First, the edge is
selected that uniquely controls the activity of the Self Ordering loop (line 32 to 34); this is the edge leading from
desired production to desired cap(ital) (Ford 1999, Kampmann 1996b). This is then set in the analysis data, as the
only edge to eliminate (line 42). The analysisfunction is set to the GLDM, while the deactivation matrix is 1 and
the variable of interest is set to backlog (line 43 to 46). The times at which the loop is deactivated are set to every
time unit after t = 130, so the loop is deactivated at t = 130, t = 131, t = 132, . . . t = 150 (line 47). The analysis
is then executed (line 48 to 49).

To run the same analysis with a different method of deactivation, all the analyst has to do is add two lines to
define the method of eliminating the edge. The lines define a function according to which the edge is taken out,
this function is then set as a value in the appropriate field of the analysis data (line 39 to 40). In effect, the function
just sets the edge to a predetermined value; when applied to multiple edges, the function could use a hash-table
(with edges and values as key-value pairs) to look up the steady state value of each edge. The analysis method is
set up as below.

The results of both analyses are plotted according to a color-scale (HSV, Foley and van Dam (1982)), based on
which analysis is plotted; later analyses are higher in the color scale. Besides the results of the analysis, the original
trajectory of the variable of interest is also plotted in the black, solid line, while relative orders is drawn next to it,
in the dashed black line (Figure 2). The graphs clearly show that setting the link to steady state gain results in the
trajectory of backlog immediately deviating significantly from the reference behaviour. Consequently, the method
would consider the Self Ordering loop dominant when its gain is zero, since the behaviour pattern switches even
when relative orders is at its maximum. The default method however shows that at the moments where relative

orders is in flux (its time derivative is not zero), the behaviour of the modified model deviates faster from the
reference run than when relative orders is not in flux. While the classical method would only consider the loop
dominant at t = 136, it shows that the modified model deviates more quickly from the reference run when relative

orders is in flux. So, dominance would be harder to allocate in the final case, but we can clearly see when the loop
becomes more or less influential in the analyzed interval.

In conclusion, the method of setting a link to its steady state value is shown to result in the classic method
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(a) Default Method (b) Steady State Gain

Figure 2: These graphs show the effects of taking out the Self Ordering loop
in the Long Wave model according to two different methods. The first method
’Default Method’ sets the edge to the value it has at the moment of deactivation.
The second method ’Steady State Gain’ sets the link to the value that it would
have if the model were in steady state. The solid black line is a time plot of the
variable of interest, backlog. The dashed black line is a plot of relative orders,
which shows where the gain of the Self Ordering loop is 0; the gain is zero
where the time derivative of relative orders is zero.

attributing dominance to a loop when its gain is zero. This casts serious doubt on the reliability of this method of
elimination. The default method of deactivating an edge is set to fixing it to its value at the moment of deactivation.
The analyst can still change this to any method he deems more appropriate.

In addition, the automated version of the method makes it easy to eliminate links at many moments in time
close together. The closer these moments are together, the more precisely the analyst can follow the changing
influence of the loop.
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4 Structured Approach to Model Simplification

Given the nature of the method presented here, it can be used to automatically scan structure, investigating the
effects of eliminating a large amount of links in the system. Investigating dominance is not the only use of this
procedure. One of the more promising uses lies in finding those loops that do not have a significant influence on
behaviour; these loops might point to what structure in the model is superfluous.

Consequently, another potential application of the modified version of Ford’s behavioural approach is to sys-
tematically eliminate relations from the model to see how it could be simplified. In the analysis presented in this
paper, we will eliminate edges according to the default method, but will do so only from the start of the model
run. In effect, we simplify the model to have one less edge and does so for each edge in the model that uniquely
identifies a loop. We will then, in contrast to Ford’s behavioural approach, focus on the loops whose elimination
made no significant difference in generating the reference behaviour of the model. The mechanics of the method
are similar to Ford’s, but the difference lies in what conclusions are drawn from the results.

The example model the techique will be applied on is Forrester’s Market Growth Model. In addition, the
implemented version allows for the analyst to track the behaviour of several variables of interest in one analysis.
Consequently, the effect of eliminating loops is judged by the change in behaviour in two different variables.

The matlab code can be found in Appendix D.3; line numbers are listed in the text.

4.1 Deactivating the Loops

An analysis performed on the Market Growth Model (Forrester 1968, Morecroft 1983) will be used to demonstrate
the approach. The Market Growth Model is a classic Forrester model, used by Morecroft (1983) to showcase
the modelling of bounded rationality in System Dynamics Models. It is also an example of the ’growth and
underinvestment’ archetype (Senge 1990). The model represents a electronics company where an initial increase
in salespeople leads to and increase in the budget for salespeople, which, in return results in more salespeople.
These sales drive the selling of items. The problem is, however, that the production capacity of the company
cannot keep up, which results in the speed at which orders are delivered rapidly declining. This leads to the
eventual collapse in orders booked (Figure 3). The appendix contains both the code for an eigenvalue elasticity
analysis and the GLDM-based analysis.
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(a) Orders Booked (b) Production Capacity

(c) Sales People (d) Delivery Delay

Figure 3: Behaviour of several of the central variables in the Market Growth
model.
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Selecting Production Capacity and Sales People as variables of interest for the analysis, we run the analysis as
described; for t = 0 only and with the default selection of loops and edges based on the SILS algorithm (line 47
to 63). Reference runs are generated as well. The analysis only has to be run once when analyzing more than one
variable of interest.

The 14 different model runs - each of them associated with the elimination of one particular loop - are plotted
for all variables of interest showing the effects of eliminating all loops that could be isolatedn (Appendix B). This,
however, suffers from readability issues, so for further analysis we will use these graphs with most of the loops
not shown, focussing on the loops whose elimination does not have much of an effect on the behaviour of the
variables of interest, and, hence, are good canditates for being simplified away (Figure 4).

(a) Sales People (b) Production Capacity

Figure 4: Behaviour of the variables of interest with only four eliminated loops.
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The loops that could possibly contain superfluous structure are Loop10, Loop11, Loop15 and Loop17. Taking
the integral over time of the absolute value of the difference, divided by time for each loop for each variable of
interest gives us the result as in Table 1. Loop 10 and Loop 17 consistently perform better (lower difference) than
Loop 11 and Loop 15. This measure of devation from the reference trajectory (Hearne 1987) would not be suited
for all models3, but in this case gives a reasonable indication of how much the behaviour of the variable of interest
has changed. Given the results of eliminating the loops, we focus on Loop10 and Loop 17 in finding superfluous

Table 1: Integral of the absolute difference between the reference run and the
modified models.

Loop 10 Loop 11 Loop 15 Loop 17
Prod. Cap. 7.4764 47.8136 41.5809 7.6618
Salespeople 0.6434 0.8302 1.2360 0.2182

structure. Both loops include the utilization of capacity (Figure 5). Running the model and inspecting the value of
this variable, we see that it hardly deviates from its initial value, leading to the possibility of excluding the variable
and thereby simplifying the model. Elimination of the variable results in a run virtually identical to the reference
run.

Figure 5: Loop 10 in the Market Growth model, as outlined in the magenta lines.
The black line indicates that a smaller loop is included in the larger loop.
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5 Conclusions

5.1 Methodological properties

In this article we set out to present progress on the formulation, automation and application of an extended version
of Ford’s behavioural approach. We have shown the following:

• Succesful automation of the method. By combing Ford’s standard existing method, with an existing Java
library for System Dynamics models, we were able to fully automate the procedure listed by Ford (1999).
Every step, from the identification of feedback structure to deactivating loops is automated. Results of
previous analyses have been reproduced.

• Method of Deactivation. Using the Long Wave model, we compared two methods of deactivating edges.
The method of setting a link to its steady state value is shown to result in the classic method attributing
dominance to a loop when its gain is zero. The default method of deactivating an edge is set to fixing it
to its value at the moment of deactivation. The analyst can still change this to any method he deems more
appropriate.

• Times of Deactivation. We demonstrated how deactivating a loop at times close together provides more
detailed insight into how the influence of a loop changes over time.

• Extension of the method by using it for model simplification. The automation of the method allows for a
much more rapid scan of the effect of eliminating feedback loops. The analyst can use this to find those
loops whose elimination does not effect the reference mode of behaviour. This can be used as a way to
identify superfluous structure in the model.

In short, the labor intensive nature of Ford’s behavioural approach affects its methodological properties. Given
the limited time an analyst has at his hands, an unautomated version of the method is not well suited to be used to
answer the question what structure is driving behaviour. It is good at assessing the role of a one or several selected
loops, but the effort required to eliminate all loops even in ILSs is large to the point of it being unlikely to be done.
Consequently, exploring the model and finding influential loops without having a preconception of what loops are
influential is difficult.

If the method is automated however, this changes. Loops and their related edges can be identified quickly
and the modifications to the model done automatically, changing the time required from hours, or even days, to
minutes. The effect is that the questions that can be answered with the method, change. It becomes more suited
for initial exploration and can more quickly investigate the changing role of a selected loop over time.

In addition, the ability to quickly eliminate certain loops, makes it possible to use the method to scan for
superfluous structure. The GLDM methods moves beyond dominance analysis. Instead of looking for loops
whose elimination has an immediate and strong effect on the variable of interest’s behaviour, we focus on the
loops whose elimination virtually does not change the behaviour. The variables included in these loops could be
candidates for removal from the model, thus simplifying the model.

5.2 Remaining Challenges

We identify several points that remain for further research. The first of these comes from the background of the
method as a tool for finding ’dominant’ structure. The original method has as a condition for attributing dominance
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to a loop that the variable of interest should switch the sign of its ABP after the loop is eliminated. This presents an
unambiguous conclusion regarding which structure is considered to be dominant at a certain point in time. Strictly
keeping to only this method of assessing the role of a loop, however, seems to limit the conclusions that can be
drawn by using the behavioural approach. Why not extend to additional conclusions? For instance, if the variable
of interest (VOI) shows exponential growth, and the deactivation of a particular loop results in even faster growth,
a constraining role can be attributed to that loop. The latter could have policy relevance if the problem owner
is interested in accelerating growth, but would never have been found if the method would have only focused
on finding dominant structure. Similar conclusions can be drawn with regards to loops that have (in oscillatory
systems) an influence on frequency or dampening.

In summary, the ABP-condition seems to be based on dominance thinking and the perceived need of finding
dominant structure. If more than just the dominance thinking is allowed, the analyst is allowed to use a more
qualitative assessment of the role of a loop and he might end up with a richer story of how structure drives model
behaviour.

Second, related to the first, is that one possible addition to the automated version could be a quantitative
measure of influence for a loops. For instance, a possible measure would integrating the difference between the
original model run and the modified model over a fixed, short time interval. The higher the difference, the more
influential the loop. Other sources for measures include pattern matching (Yucel and Barlas 2007) and metrics
generally used for validation (Barlas 1989). A measure for indicating the influence of a loop would also eliminate
the need for finding pairs of shadow loops; the two loops would just be considered highly influential.

Third, as it stands now, the method is only suited for incremental simplification. It is good at finding mi-
nor, superfluous sections of structure; eliminating a few variables at most. In contrast, methods such as the one
presented by Eberlein (1989) or methods such as dimensional analysis can be used to reduce the model a much
smaller version; e.g. from a 10th order model to a 3rd order model. The current method is only suited eliminate
superfluous structure. Also, note that the current simplification technique is based on a model reference run. The
fact that the eliminated structure did not play a large role in generating the reference run, does not mean that a)
there is no region in state space where it does not play a role and b) that it does not have an influence on the
performance of policy options that modify structure.

Additional testing can be done by using the method as support for analysing the behaviour of separated sub-
models or other sections of the model. Since the structure to be eliminated can be set by the analyst, one could
think of eliminating the connections between submodels, or all connections between non-parameter elements one
by one. Again, combinations can be deactivated as well, even though the number of possible combinations grows
quickly with the number of disconnected edges.

Another way of further testing the modified method is comparing it to different methods of formal model
analysis. In his original paper Ford (1999), compared the method to eigenvalue elasticity analysis. A preliminary
comparison of the GLDM to eigenvalue elasticity analysis indicate that results agree with eachother, but only to a
certain degree Appendix C.

And, finally, there is no better assessment of a method’s actual power than applying it in a project or study.
The current paper only demonstrates potential uses on well-known, small models, but the method’s true test would
be its application in a full-fledged modelling study.
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Notes
1This issue is also partially addressed by Phaff et al. (2006). We offer new perspectives on the issue however, so it is discussed here as well.
2The java-based representation is part of a larger effort to make models more independent from how they are simulated and in what context

they are used.
3In an oscillatory model, if the elimination of a loop results in a small phase shift, the metric indicates a large difference between the

original and the modified model
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A Specification

This appendix focusses on some of the details involved in specifying the Generalized Loop Deaactivation Method.

A.1 Formulating switch variables

In the previous formulation of the method, much of the analyst’s time was invested in specifying control variables.
Variables that, at a certain point in time, would deactivate a certain loop. These cost significant effort to formulate
and, in addition, clutter up the equations. The automation uses a java-based representation of System Dynamics
models4 that mitigates the need for formulating the control variables.

In short, the full automation of Ford’s behavioural apporach is made possible due to how variables obtain the
values of other variables. At any moment in time, the only variables that have a value in a SD model are states and
parameters. If any other variables wishes to determine its value, it needs to know the values of the variables it is
dependent on, its predecessors, and use those to calculate its value. Consequently, to calculate the value, it needs
to know the value of its predecessors, who face the same problem in their turn. In the implementation this results
in a recursive method call over the graph of variables. The recursion stops as soon as it arrives at a variable with a
known value; a state or a parameter.

In our java-based representation, however, a variable never obtains the value of a predecessor directly, it asks
the edge between the two vertices the value of the predecessor. For the analyst this opens up the possibility to
manipulate the edge and consequently the value of the predecessor as it is used in the successor, without changing
the predecessor itself. This is without introducing any control variable and it is a generic construction used for all
connections between all variables. To complete the setup, every edge can be fixed to any given value; it returns the
fixed value without calling the predecessor, effectively cutting the link between two variables. Figure 6 provides
an overview of an auxiliary obtain the value of a state, both with and without the link from the state to the auxiliary
fixed to a certain value.

A.1.1 Combinations of Loops

One of the strengths of Ford’s behavioural approach is its ability to deal with multiple loops sharing dominance.
The preferred method of deactivating combinations of loops, however, is labour intensive. In simple four loop
model for instance, to test for shared dominance or shadow loops, the modeller would have to deactive 16 different
combinations of loops for every time the analysis is executed, just to test all pairwise combinations. While this
task is still feasible (if tedious) for a small model, even for medium sized models the costs in terms of effort and
time would be disproportionate.

The implemented is solution to define what combinations of edges to deactivate in advance and to leave the
actual deactivation to the method itself. Which combinations of loops to deactivate in what order is defined in the
so-called deactivation matrix. The deactivation matrix represents what combinations of edges will be eliminated
for each iteration of the method. The matrix is binary matrix of size n×m, where n is the number of edges. One
colum represents what edges of the selected edges are to be turned off for this iteration of the method.

For example, in an analysis using three edges, a 3× 3 identity matrix signifies that, for every point of analysis
in time, the analysis will only deactivate the individual edges in sequence, no combinations. In contrast, the
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(a) Normal operation of the edge (b) Operation if the edge is fixed

Figure 6: UML sequence diagrams (UML 2008) demonstrating the recursive
method call used to obtain values. The boxes at the top are objects, the time axis
is down. If a dotted line becomes a box, the object is active. Arrows indicate
exchanged messages between the objects. The left diagram shows the sequence
used in normal operation, with an active link. The auxiliary obtains the value
of the state indirectly by calling a method of the edge. The right diagram shows
the procedure for the same structure, but with a fixed edge. The auxiliary calls
the method on the edge, but the edge never contacts the state and just returns the
fixed values.

deactivation matrix D, where

D =

 1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 (2)

will first test each of the three edges individually, then all combinations of two edges and finally all edges together.
The deactivation matrix can be used to specify searches for shadow loops as desired by the analyst. While formu-
lating the matrix does not require much analyst-time, running the model, investigating a multitude of combinations
may still take significant computer-time.
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B Support for the Simplification of Market Growth

B.1 Results of Eliminating All Loops

(a) Delivery Delay (b) Orders Booked

(c) Production Capacity (d) Sales People

Figure 7: Graphs of the effects of eliminating all loops in Market Growth. The
graph for Sales People shows the legend for which line represents the system
with which loop eliminated.
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C Comparison with Eigenvalue Elasticity Analysis

To compare our results to a second method for formal model analysis, we analyze the Market Growth Model using
eigenvalue elasticity analysis (EEA). The variant of EEA used is the one developed and published by Güneralp
(2006), but fully automated and generalized. In setting up the method, we focus on the same two variables of
interest as used in the previous analysis. The results can be found in Figure 8, the matlab code defining the
analysis is Appendix D.3(line 14 to 26).

The two methods agree to some extent, but not in everything. While Loop 10 and Loop 17 stay fairly close to
zero during the entire model run, we see that Loop 15 and Loop 11 are strongly influential over certain intervals.
The influence of Loop 15 and 11, however, appears to alternate. It could be that, even though the loops are
strongly influential at certain points in time, that their net influence over time is still low since the influence in a
certain interval cancels out the effect built up in the previous interval. This raises questions on how to interpret the
outcomes of the eigenvalue elasticity analysis and how they relate to the GLDM.
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(a) Salespeople

(b) Production Capacity

Figure 8: Results EEA. The visible lines in the plot are the elasticities of the
loops that are least influential according to their deactivation. The grey, shaded
area shows the maximum elasticities at the point in time of all other loops in the
Shortest Independent Loop Set (SILS).
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D Matlab Code

This appendix contains the code for the analyses presented in this paper.

D.1 Dominance Analysis

1 function gldmYeastDemo()

2 %GLDMYEASTDEMO Short demo of the automated, generalised version of Ford

3

4 import nl.tudelft.tbm.pa.sd.yeast.builder.*

5 import nl.tudelft.tbm.pa.sd.support.*

6 import java.util.Arrays

7

8 % build and initialize the model

9 yb = YeastBuilder();

10 model = SDModelBuilder.buildModel(yb);

11 model.setTime(0);

12 model.initializeModel();

13

14 % Define timespan and moments of analysis

15 timespan = 0:0.1:90;

16

17 % reportinterval to .1, normal ford with default selection

18 analysisData.analysisFunction = @analyzeFord;

19 analysisData.reportInterval = .5;

20

21 % variables of interest

22 analysisData.vois = selectVertex(model,’cells’);

23

24 % Store the initial values of the model

25 inits = model.getStateValues();

26

27 % Generate a reference run

28 refSnap = 0:.5:90;

29 [cellValues, analysisData] =...

30 variableTracker(model, timespan, 0:.5:90, @ode1, analysisData);

31

32 % Detect switches of atomic behaviour pattern.

33 % Timestep is constant, so calculate gradient, gradient of the gradient

34 % then multiply the signs of those to get the sign of the abp. Shift

35 % the abp timeseries one place to find where it switched sign. Uses

36 % these times as points of analysis.

37 dx = gradient(cellValues);



26 D MATLAB CODE

38 ddx = gradient(dx);

39 abp = sign(dx).*sign(ddx);

40 switches = abp(2:numel(abp)).*abp(1:numel(abp)-1);

41 tSwitches = refSnap(logical([0 switches<0]));

42

43 % Set the model to its original state again

44 model.setStateValues(inits);

45

46 % Set times at which to analyze, first one is of course t=0, the rest

47 % is from the pattern switches.

48 snapshots = [0 tSwitches];

49

50 % Run the analysis

51 % Results contains results, ad contains processed analysisdata (e.g.

52 % what loops were found, what was the deactivation matrix, etc.)

53 [results, ad] = formalAnalysis(model, timespan, snapshots,...

54 @ode1,analysisData);

55

56 % Plot the effects of eliminating all selected loops at the points

57 % of interest

58 % Make the graph pretty, colors, legends and a pink ribbon

59 % number of loops derived from deactivationMatrix

60 numLoops = size(ad.deactivationMatrix,2); % actually num deacts

61 cm = colormap(hsv(size(ad.deactivationMatrix,2)));

62 % Generate a legend for the graph

63 baseName = ’loop ’;

64 baseName = repmat(baseName, [numLoops, 1]);

65 specLegend = [baseName num2str((1:numLoops)’)];

66 specLegend = [specLegend; ’refrun’];

67

68 % Plot separate figures for different moments of analysis

69 for voiIdx = 1:numel(ad.vois)

70 for snapIdx = 1:numel(snapshots)

71 figure

72 hold on

73 for modIdx = 1 : size(ad.deactivationMatrix,2)

74 allResults = results(snapIdx).modifiedRuns{modIdx};

75 plot(results(snapIdx).reportVector, allResults(voiIdx,:)...

76 , ’color’, cm(modIdx,:),’linewidth’, 2);

77 grid

78 % make the plot pretty

79 set(gca, ’fontsize’, 18);
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80 xlabel(’t’); ylabel(’\epsilon’);

81 set(gca, ’fontsize’, 18);

82 set(gca, ’Layer’,’top’);

83 set(gca, ’LineWidth’, 2);

84 end

85 plot(0:.5:90, cellValues, ’k’, ’linewidth’, 2);

86 grid

87 legend(specLegend);

88 end

89 end

90 end

D.2 The Role of One Loop

1 function gldmOneLoop()

2 %GLDMONELOOP Investigates the role of one loop in a model using the

3 % gldm

4 import nl.tudelft.tbm.pa.sd.longwave.kampmann.*

5 import nl.tudelft.tbm.pa.sd.support.*

6 import java.util.Arrays

7

8 lwk = LongWaveKampmann();

9 model = SDModelBuilder.buildModel(lwk);

10 model.setTime(0);

11 model.initializeModel();

12

13 % preliminary settings

14 % The analysis only takes place in a short interval

15 startAnalysis = 130;

16 endAnalysis = 150;

17 inits = model.getStateValues();

18 timespan = 0:0.01:endAnalysis;

19

20 % Generating a reference run

21 % two variables of interest

22 refad.vois = [ selectVertex(model, ’backlog’),...

23 selectVertex(model, ’relative orders’)];

24 % same interval as rest of analysis, different granularity

25 refsnapshots = startAnalysis:.1:endAnalysis;

26 % run with euler

27 refBack = variableTracker(model, timespan,...

28 refsnapshots, @ode1, refad);

29 % reset model
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30 model.setStateValues(inits);

31

32 % SelectEdges for the Self Ordering Loop, same as in Ford, 1999

33 L14edge = selectEdge(...

34 model.getEdges.toArray, ’model.desired production’,...

35 ’model.desired cap’);

36

37 % define way of eliminating edge, only applicable to this edge

38 % uncomment the lines below to make the analysis set the value

39 % of the link to steady state.

40 % fixL14edge = @(edge)edge.freeze(1.8);

41 % ad.eliminateEdgeFunction = fixL14edge;

42

43 ad.nominatedEdges = L14edge;

44 ad.analysisFunction = @analyzeFord;

45 ad.reportInterval = .1;

46 ad.deactivationMatrix = 1;

47 ad.vois = selectVertex(model, ’backlog’);

48 snapFix = startAnalysis:endAnalysis;

49 [resultsFix, lalala] = formalAnalysis(model, timespan, snapFix,...

50 @ode1,ad);

51 % Make a pretty plot. Define colormap so that later eliminations get

52 % a color higher in the hsv scale.

53 figure

54 hold on

55 cm = hsv(numel(snapFix));

56 for snapIndex = 1 : size(snapFix,2)

57 theRun = resultsFix(snapIndex).modifiedRuns{1};

58 plot(resultsFix(snapIndex).reportVector, theRun,...

59 ’color’, cm(snapIndex,:),...

60 ’linewidth’,1);

61 scatter(snapFix(snapIndex),theRun(1),30,cm(snapIndex,:),’filled’);

62 end

63 % plot voi and relative orders in same figure

64 set(gca, ’LineStyleOrder’, ’-|--’);

65 h = plot(refsnapshots, refBack, ’k’, ’linewidth’,2);

66

67 legend(h, ’backlog’,’relative orders’)

68 axis([130 150 0 8]);

69 grid

70 end
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D.3 Simplification

This code sets up both the eigenvalue elasticity analysis and the GLDM for the simplification

1 function gldmCompareEEAMG()

2 import nl.tudelft.tbm.pa.sd.marketgrowth.subs.*;

3 import nl.tudelft.tbm.pa.sd.support.*

4 import java.util.Arrays

5

6 % build the model

7 subs = MGSubBuilder();

8 model = SDModelBuilder.buildModel(subs);

9 model.setTime(0);

10 model.initializeModel();

11

12 %store initial values

13 inits = model.getStateValues();

14 timespan = 0:0.1:120;

15 snapshots = [0:1:120];

16

17 % First, do the guneralp-variant of eigenvalue elasticity analysis

18 % setup the analysis

19 ad.analysisFunction = @analyzeGuneralp;

20 % variables of interest

21 ad.vois =...

22 [selectVertex(model, ’model.sam.Salespeople’),...

23 selectVertex(model, ’model.prod.Production Capacity’),...

24 ];

25 % execute

26 [results, resad] = formalAnalysis(model, timespan, snapshots, @ode4, ad);

27

28 % Process the results to plottable matrices

29 salesPeopleIdx =...

30 find(cellfun(@(state)state==ad.vois(1),...

31 cell(model.getStates().toArray)));

32

33 prodCapIdx =...

34 find(cellfun(@(state)state==ad.vois(2),...

35 cell(model.getStates().toArray)));

36

37 resMatrix = zeros(numel(snapshots),10,18);

38 for idx = 1:numel(snapshots)

39 resMatrix(idx,:,:) = results(idx).overRes;
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40 absMaxPos(idx,:) = max(squeeze(resMatrix(idx,:,:)),[],2)’;

41 absMaxNeg(idx,:) = min(squeeze(resMatrix(idx,:,:)),[],2)’;

42 end

43

44 % reset the model

45 model.setStateValues(inits);

46 % select only t=0 as a moment of analysis

47 fsnapshots = [0];

48 % reportinterval to .1, normal ford with default selection

49 fad.reportInterval = .1;

50 fad.analysisFunction = @analyzeFord;

51 % variables of interest

52 fad.vois =...

53 [selectVertex(model, ’model.sam.Salespeople’), ...

54 selectVertex(model, ’model.prod.Production Capacity’)];

55

56 % Generate a reference run, tracking variables of interest

57 frefAd.vois = fad.vois;

58 [frefrun] = variableTracker(model, timespan, timespan, @ode4, frefAd);

59 model.setStateValues(inits);

60

61 % Run the formal analysis

62 [fresults, fresAd] = formalAnalysis(model, timespan, fsnapshots,...

63 @ode4,fad);

64

65 % Here be dragons. Uhm, plotting instructions...

66 % This constitutes more than half the code, but the generates the

67 % exact plots in the paper.

68 % Plot the effects of eliminating all selected loops

69

70 for associatLoop = 1:numel(fresAd.associatedLoops)

71 loopnames{associatLoop} = [’Loop ’,...

72 num2str(fresAd.associatedLoops{associatLoop})];

73 end

74

75 for voiIdx = 1:numel(fad.vois)

76 for snapIdx = 1:numel(fsnapshots)

77 figure(’name’,...

78 char(fad.vois(voiIdx).getLocalName().toCharArray()’));

79 set(gca, ’NextPlot’, ’replacechildren’);

80 set(gca,’LineStyleOrder’,{’-’,’--’,’-.’});

81 hold on
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82 allResults = zeros(numel(fresults(snapIdx).reportVector),...

83 size(fresAd.deactivationMatrix,2));

84 for modIdx = 1 : size(fresAd.deactivationMatrix,2)

85 allVois = fresults(snapIdx).modifiedRuns{modIdx};

86 allResults(:,modIdx) = allVois(voiIdx,:);

87 end

88 plot(fresults(snapIdx).reportVector,...

89 allResults, ’LineWidth’,2);

90 legend(loopnames,’Location’,’EastOutSide’);

91 plot(timespan, frefrun(voiIdx,:), ’k’, ’linewidth’, 2);

92 set(gca, ’XLim’, [0 120]);

93 set(gca, ’YLim’, [0 max(frefrun(voiIdx,:))*1.1]);

94 grid

95 set(gca,’LineWidth’,2);

96 set(gca,’FontSize’,20);

97 end

98 end

99

100

101 % make two plots of the EEA for each voi. First the raw data, then the

102 % non-interesting loops shaded

103

104 for loopIdx = 1:size(resad.dcm, 2)

105 loopnames{loopIdx} = [’Loop ’,...

106 num2str(loopIdx)];

107 end

108

109 figure

110 set(gca, ’NextPlot’, ’replacechildren’);

111 set(gca,’LineStyleOrder’,{’-’,’--’,’-.’});

112 ph = plot(snapshots,...

113 squeeze(resMatrix(:,salesPeopleIdx,:)), ’LineWidth’,2);

114 legend(ph, loopnames, ’Location’,’EastOutside’);

115 set(gca, ’linewidth’,2);

116 set(gca, ’FontSize’,20);

117 grid

118

119 figure

120 hold on

121 set(gca, ’linewidth’,2);

122 set(gca, ’FontSize’,20);

123 grid
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124 arh = area(snapshots, absMaxPos(:,salesPeopleIdx));

125 arh2 = area(snapshots, absMaxNeg(:,salesPeopleIdx));

126 set(arh, ’FaceColor’, [.7 .7 .7]);

127 set(arh2, ’FaceColor’, [.7 .7 .7]);

128 h= plot(snapshots,...

129 squeeze(resMatrix(:,salesPeopleIdx,[10,11,15,17])));

130 legend(h, [’Loop 10’;’Loop 11’;’Loop 15’;’Loop 17’]);

131

132 figure

133 set(gca, ’NextPlot’, ’replacechildren’);

134 set(gca,’LineStyleOrder’,{’-’,’--’,’-.’});

135 ph2 = plot(snapshots,...

136 squeeze(resMatrix(:,prodCapIdx,:)), ’LineWidth’,2);

137 legend(ph2, loopnames, ’Location’, ’EastOutSide’);

138 set(gca, ’linewidth’,2);

139 set(gca, ’FontSize’,20);

140 grid

141

142 figure

143 hold on

144 set(gca, ’linewidth’,2);

145 set(gca, ’FontSize’,20);

146 grid

147 arh = area(snapshots, absMaxPos(:,prodCapIdx));

148 arh2 = area(snapshots, absMaxNeg(:,prodCapIdx));

149 set(arh, ’FaceColor’, [.7 .7 .7]);

150 set(arh2, ’FaceColor’, [.7 .7 .7]);

151 h= plot(snapshots, squeeze(resMatrix(:,prodCapIdx,[10,11,15,17])));

152 legend(h, [’Loop 10’;’Loop 11’;’Loop 15’;’Loop 17’]);

153 end
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