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THE DYNAMICS OF DIAGNOSING: 

Virtuous and Vicious Cycles in the Operating Room 

 
 

 

 

Abstract  

We develop a system dynamics model of diagnostic problem solving drawing on 

observation of doctors handling a medical emergency.  The model links interpretation 

and choice, usually separated in the sensemaking and decision making literatures.  Three 

insights emerge: (1) diagnostic problem solving includes acting, interpreting, and 

cultivating diagnoses; (2) dynamic feedback among these processes opens and closes 

windows of adaptive problem solving; and (3) reinforcing feedback processes, usually 

considered dysfunctional, are essential for adaptive problem solving.  We discuss 

implications for improving theory and diagnostic problem solving in practice.
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INTRODUCTION 

An anesthesiologist is called to take over anesthesia in an operating room where a 29-

year-old woman urgently needs an appendectomy.  Soon the anesthesiologist notices the 

monitor is indicating that the patient’s blood oxygen levels are falling below desired 

levels.  The scenario presents a common but serious problem in anesthesia: difficulty 

with the process of ventilating, that is, breathing for the patient using a mechanical 

bellows.  A variety of diagnoses for the ventilation problem are plausible such as an 

asthma attack, a collapsed lung, or insufficient paralyzing agent, but contradictory 

evidence is present for each, except one:  the patient has exhaled some mucous into the 

tube, partially blocking it.  The problem is not uncommon.  Anesthesiologists have been 

acquainted with this problem in their training, but presentations of the problem can vary.  

Some air can get through the tube, but not enough for the patient to survive.  Treatments 

addressing diagnoses other than the mucous plug in the breathing tube will not result in 

any sustained improvement in the patient’s status.  With a slowly dwindling level of 

oxygen in her blood, the patient can have uneven heartbeat and even go into cardiac 

arrest if the problem is not rectified.  The cues the doctor has available include clinical 

signs and symptoms of the patient; new cues are generated by pursuing standard 

operating procedures for treating and diagnosing the patient.   

Rudolph conducted an in-depth observational study of 39 doctors who faced this 

operating room crisis in a high-fidelity simulated operating room and found that only 9 

correctly diagnosed the problem (Rudolph, 2003; Rudolph & Raemer, 2004).  The other 

doctors fell prey to one of three dynamically distinct failure modes.  The purpose of this 

paper is to examine the dynamics of how those 39 doctors handled the demands of 
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dynamic problem solving in this time-pressured scenario with a (simulated) patient’s life 

hanging in the balance.  We set out to develop a dynamic model of the elements and 

feedback processes that generate variation in diagnostic problem solving, and our 

modeling has led to insights with implications for the more general domain of dynamic 

problem solving 

The rest of the article is organized as follows:  We first present the empirical findings that 

motivated modeling (Rudolph, 2003; Rudolph & Raemer, 2004).  We then describe our 

iterative method of theory and model development, and review and synthesize the 

relevant research literatures in the exposition of our model.  This exposition explains the 

key theoretical constructs of acting, interpreting and cultivating new diagnoses and the 

dynamic interactions among these constructs.  Next, we discuss simulation results that 

provide insights on how adaptive and dysfunctional problem solving arises.  We end with 

a discussion of the simulation results, highlighting the mechanisms that produce variation 

in dynamic problem solving, and their implications for problem solving theory and 

practice.   

DYNAMIC PROBLEM SOLVING: AN EXAMPLE 

The starting point for our theorizing is Rudolph’s study 39 advanced anesthesia residents 

facing the simulated
1
 operating room crisis described above (Rudolph, 2003; Rudolph et 

al., 2004).  Rudolph observed problem solving by tracking doctors’ concurrent verbal 

statements regarding their diagnoses, treatments and diagnostic tests and through post-

hoc video review with participants.  Rudolph found that the doctors fell into four modes 

                                                 
1 We use the term “simulation” in two ways in this paper. The first use refers to the source data for Rudolph’s study of 

clinical problem solving.  These data were provided by a full-field, high-fidelity simulation (i.e. the research participant 

is in a fully equipped and staffed Operating Room (OR) with a computer controlled mannequin patient).  The second 

use of the term refers to the computer-based simulation we conducted to analyze the system dynamics model. 
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of problem solving:  stalled, fixated, vagabonding and adaptive (see Table 1 adapted from 

Rudolph, 2003).  The doctors labeled stalled problem solvers had difficulty generating 

any diagnoses around which to organize action (on average just 1.5) and pursued few or 

no treatments and tests (1 on average).  In contrast, those in the fixated mode quickly 

established a plausible, but erroneous, diagnosis to which they stuck despite 

countervailing cues (Table 1 shows that they considered their favorite diagnosis on 

average 10 times, double any other mode).  Rather than pursuing multiple steps of a 

treatment algorithm to rule out diagnoses, they repeated the same step or did not advance 

through the treatment algorithm action steps.  Although previous studies of fixation error 

(also known as premature closure or tunnel vision) generally conclude that broadening 

the range of alternatives considered is the needed antidote to fixation (Gaba, 1989; 

Johnson, Hassenbrock, Duran, & Moller, 1982), Rudolph’s findings indicated that 

broadening could also be a problem:  the data included a third mode labeled diagnostic 

vagabonding
2
 in which doctors generated a wide range of plausible diagnoses and 

jumped from one to another without utilizing multiple action steps of the treatment 

algorithms (1.5 on average) for addressing and ruling out these diagnoses.  Finally, the 

adaptive sensemaking mode, which looks very much like canonical models of effective 

clinical reasoning (Elstein et al., 1978), was characterized by generation of one or more 

plausible diagnoses and exploitation of multiple steps of known treatment algorithms.  

This process allowed those in the adaptive mode to rule out some diagnoses, take 

effective action and, unlike any other problem solving mode, resolve the breathing 

problem. 

                                                 
2 This follows work of Dietrich Dörner, who identified a similar phenomenon among public officials attempting to 

identify effective strategies for public policy (Dörner, D. 1997. The Logic of Failure: Recognizing and avoiding error 

in complex situations. New York: Perseus.. 
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Table 1:  Summary of Source Data 

 

Note -- means are given with standard deviation in parentheses. ** p < .01; *** p < .001  

 

METHODS:  SIMULATION FOR THEORY DEVELOPMENT 

We used an iterative, grounded theory approach to develop our model using both data 

and theory as inputs using methods now well-articulated in the system dynamics 

community (Black, Carlile, & Repenning, 2004; Perlow et al., 2002; Repenning & 

Sterman, 2002; Rudolph et al., 2002; Sastry, 1997).  Central constructs and relationships 

in our model emerged from constant comparison among our source data, related theories, 

and the emerging model as is characteristic of the grounded theory approach Strauss & 

Corbin, 1994; Glaser & Strauss 1967).  More recently Davis, Eisenhardt, and Bingham 

(2007) described a seven-step “roadmap,” for developing theoretical insights through 

simulation.  Our approach, summarized in Table 2, overlaps greatly but differs in a few 

elements that are distinctive to building grounded models. 

 

 Problem Solving Mode 

Variable 

Stalled Fixated  Vagabonds  Adaptive  Test of difference 

N 

2 11 17 9 – 

Subjects who resolved 

the airway problem 0 0 0 7 χ2 (3) = 28.4*** 

Different Treatment 

Steps for a Diagnosis 1.0 (0.0) 

 

  2.0 (1.1) 

 

1.5 (0.5) 

 

3.6 (0.7) 

 

F(3,35) = 17.0*** 

Considerations of 

Favorite Diagnosis 3.0 (0.0) 

 

10.0 (5.7) 

 

 5.4 (2.3) 

 

5.9 (2.2) 

 

F(3,35) = 5.0** 

Number of Different  

Diagnoses Considered 1.5 (0.7) 

 

 3.8 (1.7) 

 

 6.1 (1.3) 

 

 5.0 (1.4) 

 

F(3,35) = 9.1*** 
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Table 2:  Steps for Developing Grounded Theory Using Simulation Methods 

 

Step Activities 

Frame 

problem 

� Review source data 

� Specify key dynamic behavior patterns of interest 

� Determine a theoretically intriguing research question* 

� Identify theories that address research question but where data 

are hard to obtain* 

Conceptualize 

model 

� Choose a simulation approach suited to dynamic processes* 

� Choose model boundary 

� Identify key constructs and assumptions 

� Describe theoretical logic of causality 

� Iterate among emerging model, source data, and relevant 

theory 

� Draw causal loop diagram of feedback structure 

Translate into 

mathematical 

model 

� Operationalize theoretical constructs* 

� Specify assumptions* 

� Build system of equations that mirrors theoretical logic* (i.e., 

formulate and link equations for all variables) 

� Use standard system dynamics formulations wherever possible 

Simulate and 

analyze 

� Conduct full set of model robustness checks, including 

extreme conditions tests* 

� Replicate dynamic patterns in source data 

� Design and conduct simulation experiments 

Translate 

insights to 

written word 

� Select simulation output for exposition 

� Clearly explain how model structure causes observed behavior 

� Interpret simulation results for theory and practice 

 

 

* Items marked with an asterisk mirror steps or activities described in Davis, Eisenhardt, 

and Bingham’s “Roadmap for Developing Theory Using Simulation Methods” (2007: 

482). 

 

With Rudolph’s (2003, 2004) taxonomy of four diagnostic problem solving modes as a 

starting point, we followed the logic of grounded theory building (Strauss & Corbin, 

1994), starting by identifying the constructs and relationships found in narratives of the 

problem solving modes and translating then into the language of stocks, flows, and 
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feedback loops (e.g., Forrester, 1961; Sterman, 2000).  We experimented with various 

causal loop diagrams, eventually converging on a rough draft that included the processes 

of acting, interpreting, and cultivating new diagnoses that ended up in the final model.  In 

our second step, we compared the constructs and relationships in our diagrams with the 

sensemaking and decision making literatures.  Third, we revised and streamlined our 

causal loop diagram, converging on just three central processes.  Fourth, we translated the 

links and loops of this diagram into a formal mathematical model.  The model’s 

robustness and its ease of interpretation were enhanced by using standard system 

dynamics formulations (familiar fragments of model structure that occur frequently) 

wherever possible (Sterman, 2000).  Finally, we simulated and analyzed the behavior of 

the model and used these analyses to elaborate a theory explicitly mapping the role of 

both balancing and reinforcing processes in effective and ineffective problem solving.  

While grounded in previous work, the model also provides new insights. 

CONCEPTUAL MODEL 

 

Overview 

Our modeling process converged on the idea that dynamic problem solving involves three 

central tasks linked by feedback: 1) Problem solvers take actions and thus make 

information available for their interpretation, 2) They interpret the flow of information 

around them to continually reassess the plausibility of their diagnoses, and 3) They 

cultivate alternative diagnoses when current diagnoses are not satisfactory.  

In our motivating example, the doctor expects the patient to breathe normally but instead 

observes and seeks to address a serious problem with the patient’s ventilation.  To 

succeed, the problem solver (an executive, a fire commander, etc.) must construct an 
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organizing story about what is wrong (Weick et al., 2005).  In our clinical example, the 

doctor scans the clinical signs and symptoms, patient history, and timing of the problem, 

and a plausible story develops in her mind; this takes the form of a diagnosis (Elstein, 

2001; Elstein, Shulman, & Sprafka, 1978; Klein, Phillips, Rall, & Peluso, 2006; Rudolph 

et al., 2004).  We now present the key constructs in our model of problem solving -- 

acting, interpreting, and cultivating new diagnoses -- and show how they are linked.  

Dynamic problem solving requires taking action   

Catalyzed by a surprise, interruption, or deviation from expectations and guided by an 

initial organizing diagnosis, the problem solver launches into action.  In the domain of 

time-pressured acute medical care, conducting tests and providing treatments often 

involves following a standardized algorithm, a set of steps that combines therapeutic 

treatment with diagnostic tests (Cook & Woods, 1994; Elstein et al., 1978).  This is a 

rule-based behavior that requires executing a known procedure (Rasmussen, Pejtersen, & 

Goodstein, 1994).  Many other professional domains from nuclear power plant operations 

to computer chip manufacturing quality control have standard diagnostic or operating 

procedures to address problems (Carroll et al., 2002; Cyert & March, 1963; Edmondson, 

2002; Gersick & Hackman, 1990; Levitt & March, 1988; Repenning et al., 2002; Winter, 

1971).  By moving through the steps of an algorithm or standard operating procedure, 

problem solvers generate cues that become available for them to notice, bracket, filter, 

and interpret.  Having advanced the steps further, the problem solver has access to a 

larger pool of cues for making meaning in an ambiguous situation.   

Thus, one important feature of acting is that the consequences accumulate.  We model 

this progress as the stock Action Steps Completed that is increased by Taking Steps,  as 
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shown in Figure 1.  Accomplishing action steps takes time (delays), sets the problem 

solver on a particular course of action (inertia), and yields results that remain available 

for interpretation (memory).  The rate of Taking Steps depends on how many of the 

action steps remain to be executed and on the Time Needed to Take Steps, a parameter 

that represents the time needed for mental organizing to execute a step, physical 

rearranging to prepare for the step, executing the step, awaiting a response from the 

system, and noticing the results as cues in the stream of ongoing experience.     

Figure 1 

Feedback structure of acting and interpreting 

  

Actions Steps
Completed

Accuracy of
Leading Diagnosis

 

 
Taking Action

Time Needed to
Take Steps

 

Cues
Available

 

 

Plausibility of
Leading

Diagnosis

 
 Updating

Plausibility from
New Cues

Weight on
Cues

 

 
 

Time Needed
to Update

 

 

 

Effect of Plausibility
on Cue Interpretation

 

 
R

Self-Fulfilling

Interpretation Loop

 
As Plausibility of Leading Diagnosis increases, the Weight on Cues decreases, so all else 

equal the Plausibility from New Cues continues to grow, leading to Updating that 

increases Plausibility of Leading Diagnosis still further.  The process forms a reinforcing 

feedback loop, labeled R, the Self-fulfilling Interpretation Loop.  

 

 

A second important feature of action is that taking action steps makes Cues Available 

(see Fig. 1) for interpretation.  For example, as the doctor accomplishes steps in a clinical 

treatment algorithm, she generates new diagnostic information that she can then consider 

in the context of her diagnosis.  Analogously, as an organization carries out a new 

strategic initiative, executives can observe changes in the competitive environment that 

become inputs to their assessment of the situation and the merits of their strategies. 
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To model the stream of action-generated cues, we assume the information made available 

for interpretation is either confirming or disconfirming depending on which leading 

diagnosis is under consideration.  We define a variable called Accuracy of the Leading 

Diagnosis, such that when the problem solver’s leading diagnosis is correct, action-

generated cues confirm the diagnosis and when it is incorrect, they are disconfirming.  

This feedback regarding environmental cues mimics the problem solving situation in a 

range of domains such as manufacturing defect elimination or computer debugging, while 

the simplifying assumption of correct or incorrect diagnosis allows us to place the 

mechanisms of interpretation in stark relief to clarify how they operate.   

Dynamic problem solving requires interpreting cues 

Facing a complex and ambiguous situation where quick action is needed, a problem 

solver has to create meaning in order to act.  Unlike decision making experiments in a 

laboratory where “meaning already exists and is waiting to be found,” in these settings 

meaning “awaits construction that might not happen or might go awry…” (Weick, 1995a: 

15).  Generating a plausible story or explanation about ambiguous cues helps organize 

and launch action (Neisser, 1976; Snook, 2000; Weick et al., 2005).  Studies of strategic 

action (Sutcliffe et al., 2003), enactment of organizational structures (Weick, 1995a; 

Weick et al., 2005), naturalistic medical problem solving  (Elstein, 2001; Elstein et al., 

1978; Johnson et al., 1982), tactical decision-making under real-world stress (Cannon-

Bowers & Salas, 1998), problem detection (Klein et al., 2005; Mandler, 1982), and 

problem solving in other naturalistic environments (Carroll, Rudolph, Hatakenaka, 

Wiederhold, & Boldrini, 2000; Klein, Orasanu, Calderwood, & Zsambok, 1993; 

Zsambok & Klein, 1997) all indicate that a plausible explanation, diagnosis or “story” is 

the engine of problem solving.   Problem solvers such as corporate executives, chess 
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players, or fire fighters, for example, use an initial diagnosis or assessment of the 

situation to develop a plan of action and decide what further information is needed 

(Dreyfus, 1997; Klein, 1998; Sutcliffe et al., 2003):   

It seems practically impossible to reason without hypotheses whenever the 

data base is as complex as it typically is in clinical problems.  People are 

invariably trying to make sense out of their experience as it unfolds and 

are always generating hypotheses to explain their observations (Elstein & 

Bordage, 1979, p. x). 

Once an initial diagnosis is established, how plausible people consider their own 

explanations or diagnoses waxes or wanes as they make sense of new or existing cues 

(Koehler, 1991; Smith & Blankenship, 1991).  It takes time for people to notice, bracket, 

and label new cues and then change their mental models (e.g., diagnoses) accordingly 

(Bandura, 1991; Bartunek, 1984; Kleinmuntz, 1985; Marcus & Nichols, 1999; Roberts, 

1990).   

To capture this process of perceived plausibility increasing or decreasing with the 

interpretation of cues, we define Plausibility of the Leading Diagnosis as a stock variable 

shown in Figure 1.  This stock depicts the problem solver’s current subjective assessment 

of plausibility.  By “leading” we mean the problem solver’s favorite, or current most 

plausible, explanation.  Updating is the process by which the current view of the 

Plausibility of Leading Diagnosis (the stock) is adjusted to equal the Plausibility from 

New Cues.  Updating is an ongoing process of incorporating interpretations based on new 

information with current beliefs.  Since changes in perceived plausibility require time, the 

rate of Updating is influenced by a parameter we call Time Needed to Update.  

Plausibility from New Cues describes interpretations of information generated by acting, 

which in turn depends in part on Cues Available 
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The links between cues and perceived plausibility 

Making meaning from a stream of Cues Available through noticing, bracketing, filtering 

and labeling occurs while the problem solver holds a belief in the leading diagnosis, 

which may influence these interpretive processes.  New assessments of plausibility 

(Plausibility from New Cues) depend not only on Cues Available but also on how open 

the problem solver is to external cues, which we label Weight on Cues.  Studies of 

confirmation bias find that once an explanation is set, people prefer supporting to 

disconfirming information and this effect is stronger when cues are presented serially, as 

in our model (Jonas, Schulz-Hardt, Frey, & Thelen, 2001).  Studies of fixation find that 

as the plausibility of the current diagnosis rises, openness to external cues, especially 

ones that defy the current view, decreases (De Keyser & Woods, 1990; Johnson, Moen, 

& Thompson, 1988; Staw, 1976; Xiao & MacKenzie, 1995).  In other words, Weight on 

Cues is a downward-sloping function of Plausibility of Leading Diagnosis.   

However, prior research is surprisingly silent regarding the exact form of the relationship 

between plausibility and weight given to external cues.  For bold problem solvers, a small 

increase in plausibility leads to a disproportionately large decrease in weight on cues.  

For cautious problem solvers, a small increase in plausibility will lead either to no or only 

a small decrease in the weight on external cues.  We use a parameter labeled Effect of 

Plausibility on Cue Interpretation to model the variation, from boldness to caution, in 

how plausibility influences the weight on cues.  Appendix 1 depicts our representations 

of this relationship for different values of Effect of Plausibility on Cue Interpretation.  

The recursive interactions between the interpreting and updating processes form a 

feedback loop.  If new cues arrive that increase the Plausibility of Leading Diagnosis, 
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then the Weight on Cues decreases slightly, leading to a small increase in the Plausibility 

from New Cues, which in turn causes Updating to further increase the Plausibility of 

Leading Diagnosis, and the cycle continues.  This interpretation process amplifies a 

change through a reinforcing feedback process, labeled with the “R” for Reinforcing and 

named the “Self-Fulfilling Interpretation Loop.”  In the absence of any offsetting 

influences, this loop pushes the plausibility of an early-generated diagnosis toward ever 

greater plausibility.  If the loop is driving toward greater plausibility of an erroneous 

diagnosis, it will generate the well-known self-confirming pattern of fixation, in which an 

initially plausible diagnosis and the filtering of external cues recursively influence each 

other so that the problem solver sticks to the diagnosis despite discrepant cues.  If the 

loop is driving toward greater plausibility of a correct diagnosis, this is salutary.  As we 

demonstrate later, the interplay between this interpretation process and the processes of 

acting and cultivating alternative diagnoses gives rise to the distinctive modes of dynamic 

problem solving observed among the anesthesiologists. 

Dynamic problem solving requires cultivating new diagnoses 

Problem solvers not only assess the plausibility of their leading diagnosis but also 

consider alternative diagnoses that are identified through search (Gupta, Smith, & 

Shalley, 2006; March, 1991), conversations (Weick et al., 2005), explanations (Hirt & 

Markman, 1995), or imagination (Amabile, 1982).  This is a knowledge-based activity 

relying on expertise (Gonzales, Lerch, & Lebiere, 2003; Rasmussen et al., 1994).  The 

process of inferring the most likely explanation for the available information is known as 

abduction (Josephson & Josephson, 1994; Peirce, 1958) and is complementary to 

deduction, or forecasting data that would be the consequences of a presumed hypothesis, 
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and induction, or drawing conclusions from data.  Together, abduction, deduction, and 

induction form a problem solving cycle of learning- or sensemaking-through-action. 

The problem solving literature suggests a variety of ways for problem solvers to identify 

the most plausible hypothesis.  At one extreme, all possible hypotheses are held 

simultaneously and updated through Bayesian inference as each new piece of information 

is received (Fischhoff et al., 1983).  In well-structured clinical situations, for example, 

there are formal protocols that prioritize lists of diagnoses and clinical tests and 

treatments.  Such decision rules are particularly useful for atypical problems or less 

experienced problem solvers (Gonzalez et al., 2003). The other extreme is represented by 

Klein’s (1998) naturalistic decision making model that proposes that, for ill-structured 

problems representative of many real life situations, problem solvers consider only one 

hypothesis at a time, mentally simulate the implications of the hypothesis given the 

available information, and take action if the mental simulation confirms the plausibility 

of the hypothesis.  Only if the mental simulation fails to confirm the hypothesis is a new 

diagnosis imagined and checked for validity.  For ill-structured problems there are only 

bits and pieces of knowledge that may help a clever diagnostician find an obscure 

diagnosis or even invent a new diagnosis, and there may always be ambiguity about 

whether the diagnosis is correct.  In the middle, Behavioral Decision Theory recognizes 

the constructive processes at work in decision behavior (Payne et al., 1992).  And the 

problem-solving literatures include models of expmplar-based memory retrieval 

(Gonzalez et al. 2003, Logan, 1988) and the concept of a race between exemplars and 

general heuristics to produce a solution or response (Logan, 1988).  
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For our simulation model, we rejected both the extreme Bayesian rationality model and 

the serial diagnosis model.  The behavioral decision making literature strongly challenges 

the realism of Bayesian updating, arguing that limited cognitive capacity makes such 

omniscience humanly impossible, even for well-structured problems (Fischhoff et al., 

1983).  Klein’s model seems well-suited when the costs of information and the costs of 

erroneous diagnosis are very high, e.g., his fire commanders “test” their diagnosis by 

going into a building that may collapse around them.  Klein’s fire commanders are also 

highly expert and can “see” the answer using pattern matching with prior experience.  On 

the other hand, if tests are easily run and erroneous diagnoses are easily replaced, and 

decision makers are not sufficiently expert to see a pattern (Elstein & Schwarz, 2002; 

Gonzales et al., 2003), problem solvers may hold multiple diagnoses in mind and seek 

further evidence to distinguish among them.  Indeed, rather than training clinicians not to 

have hypotheses or to have all possible hypotheses, they are taught “differential 

diagnosis” in which they hold more than one (but not “all”) diagnoses in mind and 

perform diagnostic tests that distinguish among the active diagnoses (Barondess & 

Carpenter, 1994).  In Rudolph’s study, more than half of the subjects are comparing 

simultaneous diagnoses.  We therefore modeled a process that was psychologically 

reasonable and computationally simple, involving comparison of two potential diagnoses.   

We assume that at any one point in time the problem solver has a preferred or leading 

diagnosis in mind and is seeking to validate or discredit that diagnosis (Elstein et al., 

1978; Klein et al., 2006).  Drawing on this research and Rudolph’s data, we noted that 

doctors run tests (albeit with high variance in the quality) that will confirm a correct 

diagnosis or disconfirm an incorrect one.  This process of running tests is not Bayesian 
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updating in a mathematical sense, but rather some combination of logical rule-following 

(if I can put something down the breathing tube then it isn’t blocked) and intuitively 

totaling up the supportive and countervailing evidence (Elstein et al., 1978; March, 

1994).  We further assume that there is always at least one other diagnosis that they are 

imagining (or taking from a well-learned list of candidates) and that the next best 

alternative among these others is gathering plausibility as the presenting problem (e.g., 

deteriorating oxygen status) remains unresolved.  We label this process Cultivating and 

combine it with the processes of acting and interpreting in Figure 2.  The Plausibility of 

Alternative Diagnosis is a stock that is increased by Cultivating, the pace of which is 

determined by the parameter Time Needed to Cultivate.  We also show that the pace of 

Cultivating is reduced when the Plausibility of Leading Diagnosis is high by including a 

variable labeled Effect of Current Plausibility on Cultivating. 

Figure 2 

Core model structure showing the interaction of acting, interpreting, and cultivating 

alternatives 
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If the alternative diagnosis catches up to the leading diagnosis, we assume that the 

leading diagnosis is rejected.  Three things happen when the leading diagnosis is rejected:  

1) the alternative diagnosis becomes the new leading diagnosis, 2) the problem solver 

switches to action steps appropriate for the new leading diagnosis (so the Action Steps 

Completed starts over) and 3) yet another diagnosis becomes the second place alternative 

diagnosis (so Plausibility of Alternative Diagnosis starts over).  We use dotted lines in 

Figure 3 to signal these changes when the leading diagnosis changes. 

In summary, this model shows three problem solving processes:  acting, interpreting, and 

cultivating new diagnoses.  Together they bridge the gap between the sensemaking and 

decision making literatures by showing how meaning making and choice evolve and 

interact.  We also incorporate both balancing and reinforcing processes.    

Figure 3 

Changes to reset the model when the alternative diagnosis becomes the leading 

diagnosis 
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We translated the causal structure represented in Figure 3 into a formal mathematical 

model so we could use simulation to pursue our theory development process.  We drew 

upon the large body of standard formulations used to specify system dynamics models 

(Sterman, 2000) and filled in the gaps where necessary.  We initially set parameters to 

reasonable values in the context of our motivating clinical example and refined them as 

we compared simulation output to the patterns in the clinical example data.  We also 

conducted extensive sensitivity analysis to test for model robustness under extreme 

conditions and to explore the range of model behavior.  Complete documentation of the 

model equations appears in Appendix 2. 

SIMULATING THE DYNAMICS OF PROBLEM SOLVING 

We begin with a set of experiments
3
 that show how the interplay of acting, interpreting, 

and cultivating new diagnoses produces the four modes of diagnostic problem solving 

observed in Rudolph (2004).  For clarity of exposition, we chose a scenario that controls 

for the effects of random search by assuming that all problem solvers generate alternative 

diagnoses in the same sequence and is consistent with the modal sequence in Rudolph’s 

data.   The simulations we present here are all based on a scenario in which the first, 

second, and third diagnoses considered are incorrect, the fourth is correct, and the fifth 

and all others after that are incorrect.  Simulation analyses not shown here replicate the 

main results for scenarios in which the correct diagnosis enters earlier or later than fourth, 

                                                 
3 “Experiment” is commonly used in the modeling community to refer to manipulations of the model parameters 

Carley, K. 2001. Computational approaches to sociological theorizing. In J. Turner (Ed.), Handbook of Sociological 

Theory: 69-84. New York: Kluwer Academic/Plenum. 
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in which there are two correct diagnoses, and even in which the poor diagnoses have a 

modest degree of correctness.
4
  

Four modes of dynamic problem solving  

To highlight differences among the four problem solving modes we display in Figure 4 

the behavior over time of the Plausibility of the Leading Diagnosis.  The top panel is an 

illustration of the adaptive mode.  The problem solver’s sense of the plausibility of the 

first diagnosis begins at its initial value of 0.5 (out of 1.0), and three things begin to occur 

simultaneously.  First, the problem solver begins taking action steps associated with the 

first diagnosis, increasing the stock of Action Steps Completed, which results in more 

Cues Available.  Second, armed with some confidence in her diagnosis, the problem 

solver’s interpretations begin to increase plausibility, and the Weight on Cues begins to 

fall slowly as the Self-Fulfilling Interpretation Loop acts to reinforce the leading 

diagnosis.  In the first few moments, the diagnostic algorithm has not progressed much, 

so the limited cues have little effect on plausibility.  After a short time, the accumulated 

cues (which are “objectively” disconfirming information because the first diagnosis is 

incorrect) begin to show their effect on plausibility, and we see a slow decline in the 

Plausibility of the Leading Diagnosis.  Third, the plausibility of an alternative diagnosis 

builds as the cultivating process unfolds in the face of cues unfavorable to the leading 

diagnosis.  Eventually, plausibility of the alternative overtakes the Plausibility of the 

Leading Diagnosis.  At this moment the first diagnosis is rejected and the second 

diagnosis becomes the leading diagnosis.  The problem solver begins pursuing the 

algorithm associated with the new leading diagnosis.  The pattern repeats for the second 

                                                 
4 A summary of several hundred additional simulations demonstrating these results is available from the first author on 

request. 
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and third diagnosis: plausibility increases for a short while, disconfirming cues 

accumulate and begin to cause a reduction in plausibility, and an alternative diagnosis 

gains favor and eventually overtakes the leading diagnosis.  When the problem solver 

begins to consider diagnosis number four, the correct one, plausibility begins to grow as 

before.  However, the new Cues Available now offer confirmation and are interpreted to 

build even more Plausibility of Leading Diagnosis.  Moreover, the Self-Fulfilling 

Interpretation Loop reinforces the increases in plausibility, reducing the Weight on Cues 

thus boosting plausibility still further.  The diagnostician pursues the action steps to 

completion and converges on a steady state choice of the correct diagnosis. 

Figure 4:  Modes of Dynamic Problem Solving  
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From top to bottom:  the adaptive, fixated, and vagabonding modes of problem solving.  Simulation 

conditions are identical except for the strength of the self-fulfilling interpretation feedback loop, as 

determined by the relationship between Plausibility of the Leading Diagnosis and the Weight on Cues, 

shown in the inserts. 
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Plausibility increases at first because updating driven by the confirmation-biased 

interpretation process occurs quickly relative to the accumulation of available cues.  

Meanwhile, the problem solver continues to take action and generate more cues.  As the 

disconfirming evidence mounts, it eventually overcomes the effects of the self-fulfilling 

interpretation:  Plausibility reaches a peak and then begins to decline. 

The middle panel of Figure 4 shows simulation results that replicate the fixating mode.  

The difference between this experiment and the one in the top panel is only that the Effect 

of Plausibility on Cue Interpretation, depicted in the inset, is stronger.
5
  Plausibility starts 

to rise as before at first, but the lower Weight on Cues in this scenario allows the self-

fulfilling process to gain momentum.  The problem solver acts, interpreting cues and 

creating meaning that supports the current diagnosis, and the Weight on Cues falls even 

more.  The Self-Fulfilling Interpretation Loop reinforces the current diagnosis, and 

because the loop is so strong, the first diagnosis is always preferred.  The diagnostician 

does not move on to any other diagnosis.  The strong reinforcing effects result in a 

pattern of problem solving in which the problem solver is completely confident in the 

incorrect diagnosis.  Self-fulfilling interpretations discount some disconfirming evidence, 

so the current diagnosis locks in prematurely, squeezing out the cultivation of 

alternatives, and the problem solver never has a chance to find the correct diagnosis.   

The bottom panel in Figure 4 shows simulation results that replicate the vagabonding 

mode.  In this experiment, the Effect of Plausibility on Cue Interpretation is weaker
6
.  

The first three diagnoses are rejected, but more quickly than in the adaptive case, 

                                                 
5 Specifically, Effect of Plausibility on Cue Interpretation = 1 

6 Specifically, Effect of Plausibility on Cue Interpretation = 0.15 
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implying that the problem solver does not take as many action steps, consistent with field 

data showing that diagnostic vagabonds generated diagnoses but performed few or no 

steps of the treatment/test algorithm (1.5 steps on average).  When the fourth diagnosis, 

the correct one, enters as the leading diagnosis, plausibility increases, but not as rapidly 

as in the adaptive case.  The problem solver places a higher Weight on Cues (due to a 

weaker Effect of Plausibility on Cue Interpretation), but the cues to confirm the diagnosis 

accumulate somewhat slowly because they must be made available by advancing through 

action steps.  Meanwhile, an alternative diagnosis gains favor and eventually overtakes 

the correct diagnosis, and the problem solver also rejects the correct diagnosis number 

four.  Once this diagnosis is rejected, the problem solver continues identifying 

alternatives, choosing them as the leading diagnosis, and rejecting them in favor of the 

next emerging alternative. 

The stylized problem solver in the vagabonding experiment is quite capable of cultivating 

alternatives and attending to cues, but lacking more confident beliefs about the 

plausibility of a diagnosis, she does not hold onto it long enough to adequately advance 

forward with action steps.  The error in this mode is the premature rejection of the correct 

diagnosis number four.  The result is vagabonding, a pattern of diagnostic problem 

solving in which the problem solver jumps from one plausible diagnosis to the next 

without treating the patient.  The dynamic interplay among acting, interpreting, and 

cultivating alternatives is out of balance: the problem solver yearns for clarifying 

information (interpreting) but the pace of generating new cues associated with the leading 

diagnosis (acting) is too slow relative to the pace of cultivating alternatives.  The problem 

solver gets stuck in a mode of generating new alternatives but not discovering enough 
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about them to reach an effective conclusion.  This mode fails because the effect of 

plausibility on interpretation is so weak that even the correct diagnosis is rejected. 

The model can also generate a mode in which the problem solver is stalled, unable to 

move forward to take any action steps (for example, when both taking action steps and 

cultivating diagnoses are extremely slow processes).  Rudolph’s analysis classified only 2 

out of 39 doctors as stalled.  Both exhibited behaviors of advancing treatment steps little 

or not at all and establishing working diagnoses very slowly, consistent with this 

example.  However, with so few examples and so little action to learn from, we omit this 

mode from subsequent analysis. 

The interplay of acting, interpreting, and cultivating diagnoses: Sensitivity analysis 

To examine the critical dynamic interactions among acting, interpreting, and cultivating 

diagnoses more closely, we conducted experiments in which we varied the pace of these 

processes.  The first set of simulations holds all parameters the same as in the 

vagabonding case of Figure 4 except that we vary the pace of acting7.  We discovered 

that the eleven simulation runs we generated, shown in Figure 5, separate into two 

distinct patterns.  The set corresponding to faster acting is adaptive:  the plausibility of 

diagnosis number four climbs smoothly toward one.  The other set, based on slower 

acting, displays vagabonding:  diagnosis number four is rejected and new alternatives 

continue overtaking the lead.  This experiment points to two important results about the 

system’s dynamics.  First, different rates of taking action generate qualitatively different 

dynamics.  The problem solver converges on the correct diagnosis for fast rates of action, 

but rejects the correct diagnosis when the rate is too slow.  A bias for action (taking 

                                                 
7 By setting the Time Needed to Take Steps to values ranging from very fast (1 minute) to very slow (16 minutes) 
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action steps faster) offsets the effects of less self-fulfilling interpretation and protects the 

problem solver from being swept into vagabonding mode.  Second, small differences in 

the rate of acting can mean the difference between adaptive sensemaking and 

vagabonding. This result raises the question as to just what pace of taking action is 

needed to escape from the perils of vagabonding. 

 

Figure 5 

Sensitivity analysis showing system behavior for various rates of taking action steps  
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The results, displayed in Figure 6, show that for weaker Effects of Plausibility on Cue 

Interpretation, faster action taking is needed for adaptive sensemaking.  A weak 

interpretation effect describes a problem solver who wants more cues, so the pace of 

acting must be faster in order to lead to adaptive sensemaking.  When the appetite for 

cues is high (weak effect), slow action induces vagabonding.  Conversely, a modest 

degree of confidence in the leading diagnosis contributes to the robustness of the 

sensemaking process by thwarting the lurking threat of vagabonding. 

Figure 6 

 
 

 

To characterize the dynamic interplay among the processes of acting, interpreting, and 

cultivating alternatives fully, we repeated the analysis for several values of the Time 

Threshold Values for the Pace of Taking Action Steps 

0 

5 

10 

15 

20 

25 

30 

0.25 0.2 0.15 0.1 
Effect of Plausibility on Cue Interpretation 

T
im

e
 N

e
e

d
e

d
 t

o
 T

a
k
e

 S
te

p
s

 
(m

in
u

te
s

) 
 

Vagabonding 

Adaptive 
Sensemaking 



 28 

Needed to Cultivate.  The resulting family of curves (Figure 7) shows how the threshold 

pace of taking action depends on both the Effect of Plausibility on Cue Interpretation and 

the Time Needed to Cultivate.  As the strength of the interpretation effect increases, the 

threshold pace of acting needed for adaptive problem solving gets slower.  When the pace 

of cultivating alternatives is very fast, the risk of vagabonding is quite high and not 

mitigated much by stronger interpretation effects.  Very rapid action is still needed.  For a 

slower pace of cultivating alternatives, small increases in the strength of the interpretation 

effect yield larger improvements in the robustness of the problem solving process.  

Slower paces of action are still adequate to achieve adaptive problem solving.   

Figure 7 
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DISCUSSION 

Our simulation model generates the four modes of diagnostic problem solving identified 

in Rudolph’s study.  Stalling occurs when problem solvers are not confident enough in 

their diagnosis to launch action.  Fixation occurs when plausibility in the leading 

diagnosis builds too quickly and new information is interpreted as confirmation, 

preventing alternative diagnoses from being considered sufficiently.  Vagabonding occurs 

when the leading diagnosis does not gain plausibility rapidly enough and is rejected too 

quickly, even when correct.  Adaptive problem solving exhibits a balance between giving 

the leading diagnosis enough plausibility to sustain concerted action, but not too much to 

prevent alternatives from emerging.  In our various model tests and experiments, we did 

not observe additional modes of problem solving. 

Our modeling and grounded theory development process contributes three new insights 

to understanding diagnostic problem solving.  First, we clarify and delineate three 

processes linked by feedback that are central to dynamic problem solving: acting, 

interpreting, and cultivating diagnoses.  Second, while current theories of sensemaking 

and choice look separately at the above processes, our modeling shows how they are 

inextricably linked with tradeoffs and interactions between processes.  Third, we 

highlight the fact that reinforcing feedback, usually seen as the driver of maladaptive 

patterns such as fixation, can actually play a beneficial role in adaptive problem solving, 

depending on its intensity.  In this discussion, we also comment on our grounded theory 

approach to using simulation models for theory development and close the discussion 
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with thoughts on practical implications for professional problem solving and future 

research directions. 

Simulation Models and Theory Development 

The theory development literature often emphasizes the field’s lack of clarity on how to 

generate theory, while emphasizing the importance of theory building (Lave & March, 

1993; Sutton & Staw, 1995; Weick, 1995).  The simulation theory development literature 

places heavy emphasis on the validity of models, but provides little guidance on the 

specific methods for developing grounded models from data, especially where feedback 

dynamics are involved (Davis, Eisenhardt, & Bingham, 2007; Sterman, 2000).  Our 

approach facilitates the elaboration and extension of previous theories in a highly 

transparent way, relying on inductive and iterative theory building and elaboration rather 

than deducing the model from general principles (Black et al., 2004; Davis et al., 2007; 

Rudolph et al., 2002).  Insights about the domain of dynamic problem solving emerged 

through a constant cycle of comparison and refinement that involved invention, 

explication of assumptions and relationships through model articulation, and 

experimentation guided and constrained by existing theory and data (see Table 3).  The 

model served as a “boundary object,” a shared space that allowed the authors to clarify 

and surface their emerging theoretical insights, translate these into diagrams and 

equations, and explore their implications through simulation (Carlile, 2002; Star et al., 

1989). 
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Table 3:  Insights from the Modeling Process 

 

Steps Insights 

Frame problem • Diagnostic problem solving is a dynamic process in which 

candidate diagnoses emerge and then gain or lose favor over 

the course of the problem solving time horizon.  

• Alternative diagnoses compete to become the problem 

solver’s focus of attention and action. 

• Action and cognition occur in parallel and interact. 

Conceptualize model • Dynamic problem solving comprises three interacting 

processes of acting, interpreting, and cultivating alternatives. 

• The feedback structure of dynamic problem solving includes 

both adaptive feedback processes, as balancing loops, and one 

potentially destabilizing process, as a reinforcing loop.  

• The fact that information can be gained only through action 

introduces delays which contribute to important dynamics. 

Translate into 

mathematical model 

• The self-fulfilling interpretation effect can vary in strength. 

• Plausibility both launches action and also fosters 

interpretations consistent with current beliefs. 

• The leading diagnosis is a special focus of action. 

Simulate and 

analyze 

• Weak effects of plausibility on interpretation can explain 

diagnostic vagabonding. 

• Acting, interpreting and cultivating alternatives are three 

levers problem solvers can use to compensate for weaknesses 

in the other processes and convert failure modes to adaptive 

problem solving. 

• Plausibility has a role in both launching and sustaining action. 

Translate insights to 

written word 

• A key boundary condition is the need to take action to 

discover information. 

• Our theory has practical implications, for example, in the 

training of doctors. 

• Our learning benefited from the dialogue and discourse of our 

group modeling process. 

 

This mode of theory development has certain characteristics which are becoming familiar 

in the simulation community.  First, the process helps identify implicit assumptions.  For 

example, this effort highlighted the fact that previous models of sensemaking and 

adaptive decision making assume balancing feedback and ignore the role of reinforcing 

processes.  Second, it highlights new implications of existing theory.  For example, we 
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found that the links among acting, interpreting, and cultivating new diagnoses can 

exacerbate dysfunction in each other or can compensate for each other.  Third, the 

constraints of mathematical modeling enforce a rigorous articulation of internally 

consistent theory, which paradoxically generates new substantive insights.  For example, 

our model demonstrated that there are windows of opportunity for adaptive problem 

solving that can open and close.  Finally, although formal mathematical models are 

criticized for losing the nuances of thick description, many narrative theories and 

associated analyses rely on relatively static, simple relationships and interactions.  Formal 

modeling pushed us to find functional forms that offer an enriched articulation of 

relationships.  For example, modeling the process of self-fulfilling interpretation or 

confirmation bias led to the discovery of a nuanced non-linear relationship between 

perceived plausibility and weight on cues. 

Improving Problem Solving in Practice   

Whereas researchers and practitioners have previously identified a range of strategies to 

reduce the risks of falling prey to fixation, our work suggests that vagabonding is another 

failure mode that should be avoided.  Success in training managers and clinicians to 

avoid fixation may even increase the tendency to vagabonding.  Situational factors most 

likely to lead to vagabonding include high urgency, high stakes, delays in gathering 

information, and many plausible alternatives.  When these factors are coupled with 

slower or less confident interpretation processes, as might be expected with novel 

problems or relatively inexperienced problem solvers, the risk of vagabonding will be 

greater.  Potential strategies to avoid vagabonding are to slow down the pace of 

cultivating alternatives, take action more confidently, and hold leading diagnoses more 
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confidently to allow more cues to surface.  These three strategies interact and support 

each other, so improvement in one dimension can compensate for a shortfall along 

another. 

Our simulation results point to the importance of constraints on the core processes of 

acting, interpreting, and cultivating alternatives.  The pace of action might be limited by 

resource constraints, technological factors, or physical factors that could be adjusted once 

they are understood.  Problem solvers may be more able to avoid self-fulfilling 

interpretation effects if trained how to be mindful of or “by stand” their own diagnostic 

frames rather than mistaking them for reality (Kegan, 1994; Langer, 1989; Torbert, 

1991).  The pace of generating alternatives could be strengthened by reducing competing 

demands for attention and providing knowledge and experience relevant to the problem at 

hand.  Just as a virtuoso musician will learn to play over a range of loudness, the versatile 

problem solver will develop the ability to adjust the pace of acting, interpreting, and 

cultivating alternatives to match the needs of the situation (e.g., Gonzalez et al., 2003).  

However, such expertise presumably develops over considerable time and exposure to a 

variety of situations. 

Limitations and Future Research 

Given the interacting constructs and relationships in the model, there is more than one 

way to generate the problem solving behaviors observed by Rudolph (2003).  For 

example, fixation can be produced by increasing the confirmation bias, but also by 

slowing down the generation of new hypotheses.  We experimented with some model 

variations, using as criteria the fit to the source data, the psychological realism in 
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comparison with the problem solving literature, and the parsimony of varying as few 

model elements as possible to reproduce all four modes.  Our argument is not that our 

model is an exact representation of dynamic problem solving, but rather that the 

variations in model behavior have been sufficiently realistic and informative to provide 

insights about theory. 

However, to continue the dialogue between modeling and empirical data, more of each is 

needed.  We could experiment with other versions of our model and continue to examine 

various bits and pieces of theory in order to simulate the source data in a behaviorally and 

psychologically realistic way, but there is fundamentally too little data and too many 

ways to model problem solving in this complex situation.  The modeling exercise does 

provide a direction for identifying data that would be most useful for sorting out 

possibilities.  We know from the model that speed and timing of the three major 

processes matter a great deal, and we also know from the literature that the level of 

knowledge of the doctors (residents are intermediate) is likely to shift how they process 

data (ability to do differential diagnosis or even “see” the correct diagnosis more readily).  

By articulating mechanisms in even a stylized way, we have identified areas for further 

research, for example, how plausibility changes with new data, how hypotheses are 

generated, how actions are chosen, and how stress (e.g., time pressure) has impact.  

Additional focused studies examining a variety of mediating variables (e.g., timing, 

hypothesis generation, plausibility, discounting) with appropriate methods (e.g., process 

tracing techniques) could be used to identify these processes more directly. 

 



 35 

CONCLUSION 

This paper developed a theory about the role of plausibility in dynamic problem solving 

grounded in existing theory and empirical data.  Simulation of the system dynamics 

model of the theory showed how underlying structures and relationships produce the 

various problem solving modes:  stalling, fixating, vagabonding and adapting.   The 

formal modeling process helped extend existing problem solving theory in three ways: 1) 

It has clarified core dynamic elements of inertia and change in acting, interpreting, and 

generating new diagnoses.  2) It has taken theories of problem solving that assert 

interactions among acting, interpreting, and cultivating diagnoses and represented the 

interactions explicitly (e.g., how the pace of generating new cues influences assessments 

of plausibility and the need for cultivating alternate diagnoses), allowing examination of 

windows of opportunity for adaptive sensemaking.  3) Most importantly, it has generated 

new insights suggesting that problem solving theory must include both balancing and 

reinforcing processes.  Specifically, the formal modeling process has allowed us to 

demonstrate the benefits and nuances of self-fulfilling interpretation; some fixation-like 

activity is needed for adaptive diagnostic sensemaking (but too much can cause 

problems).  Through modeling we have also demonstrated that the specific form of the 

relationship between faith in the plausibility of the current diagnosis and openness to new 

cues is more complex than previous theories of sensemaking and fixation have 

appreciated.   

We are far from a complete and comprehensive theory of dynamic problem solving.  

However, the modeling process and grounded theory approach has identified areas in 

which additional data would help distinguish among alternative models.  These are the 

most likely growth points for exploring this fertile ground for future research. 
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APPENDIX 1 
 

Figure A-1 

Weight on Cues as function of Plausibility of Leading Diagnosis 

for Various Settings of Effect of Plausibility on Cue Interpretation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When Plausibility of Leading Diagnosis is at its extreme value of 0 (the problem solver perceives their 

leading diagnosis as completely implausible), the Weight on Cues is at its extreme value of 1 (the problem 

solver pays full attention to cues).  Conversely, when Plausibility equals 1, the Weight on Cues is equal to 

zero (except when the Effect of Plausibility on Cue Interpretation is equal to zero, in which case no matter 

how plausible or implausible the problem solver deems his current diagnosis, he always gives full weight to 

cues). 

When the Effect of Plausibility on Cue Interpretation is equal to .15, even large increases in the Plausibility 

of  Leading Diagnosis do not much diminish the weight the problem solver places on cues.  It is not until he 

is almost completely certain the diagnosis is plausible that his Weight on Cues diminishes.  When the Effect 

of Plausibility on Cue Interpretation is .5, decreases in Weight on Cues are greater for a given increase in 

Plausibility of Leading Diagnosis.; When the Effect is equal to 1, a decrease in plausibility brings about a 

proportional decrease in Weight on Cues.  

Or, formally, 

Weight on Cues (t) = (1 - Plausibility of Leading Diagnosis (t)) ^ Effect of Plausibility on 

Cue Interpretation  

where the exponent Effect of Plausibility on Cue Interpretation is a parameter chosen to 

represent possible individual and/or situational differences.
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APPENDIX 2 

Integral equations are written in this appendix using the following notation: 

Stock= INTEG (Inflow-Outflow, Initial Value of Stock), where the INTEG function 

means the integral from time 0 to time t (the current time) of the inflow less the outflow 

plus the initial value of the stock.  The model is simulated using Vensim DSS software, 

available from www.vensim.com. 

 

Equations for the Acting Subsection (Figure 1): 
Action Steps Completed= INTEG (Taking Action - Resetting Action Steps ,0) 

Units: Dimensionless 

 

Taking Action =(1- Action Steps Completed)/Time Needed to Take Steps 

Units: Dimensionless/Minute 

 

Time Needed to Take Steps =8 

Units: Minute 

 

Cues Available=(Starting Plausibility of Leading Diagnosis+ Action Steps Completed*(Accuracy of 

Leading Diagnosis- Starting Plausibility of Leading Diagnosis)) 

Units: Dimensionless 

 

Accuracy of Leading Diagnosis=IF THEN ELSE(Current Diagnosis=True Diagnosis, 1, 0) 

 Units: Dimensionless  

 

True Diagnosis=4 

Units: Dimensionless 

 

Equations for the Interpreting Subsection (Figures 2 and 3): 

 
Plausibility of Leading Diagnosis= INTEG (Updating +Carry Over to Leading -Resetting Leading, Initial 

Plausibility) 

Units: Dimensionless 

 

Updating=(Plausibility from New Cues-Plausibility of Leading Diagnosis)/Time Needed to Update 

Units: Dimensionless /Minute 

 

Plausibility from New Cues=Cues Available*Weight on Cues+(1-Weight on Cues) 

Units: Dimensionless 

 

Time to Needed Update=2 

Units: Minute 

 

Weight on Cues=(1-Plausibility of Leading Diagnosis)^Effect of Plausibility on Cue Interpretation 

Units: Dimensionless 

 

Effect of Plausibility on Cue Interpretation=0.5 

Units: Dimensionless 

 

Equations for the Cultivating Alternatives Subsection (Figure 4) 

 
Plausibility of Alternative Diagnosis= INTEG (Cultivating-Resetting Alternative,0) 

Units: Dimensionless 
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Cultivating=Effect of Current Plausibility on Cultivating*(1-Plausibility of Alternative Diagnosis)/Time 

Needed to Cultivate 

Units: Dimensionless/Minute 

 

Effect of Plausibility on Alternative=min(1,2-2*Plausibility of Leading Diagnosis) 

Units: Dimensionless 

 

Time Needed to Cultivate=4 

Units: Minute 

 

Equations for Switching Diagnoses (Figure 5): 
 

Change Trigger=IF THEN ELSE( Plausibility of Leading Diagnosis<Plausibility of Alternative Diagnosis, 

1, 0)/TIME STEP 

Units: Dimensionless/Minute 

 

Resetting Action Steps =Action Steps Completed*Change Trigger 

Units: Dimensionless/Minute 

 

Resetting Leading=Plausibility of Leading Diagnosis*Change Trigger 

Units: Dimensionless/Minute 

 

Carry Over to Leading=Resetting Alternative 

Units: Dimensionless/Minute 

 

Resetting Alternative=Plausibility of Alternative Diagnosis*Change Trigger 

Units: Dimensionless/Minute 

 

Starting Plausibility of Leading Diagnosis = INTEG (New Plausibility-Resetting Starting Plausibility, 

Initial Plausibility) 

Units: Dimensionless 

 

New Plausibility=Resetting Alternative 

Units: Dimensionless/Minute 

 

Resetting Starting Plausibility=Change Trigger* Starting Plausibility of Leading Diagnosis 

Units: Dimensionless/Minute 

 

Initial Plausibility=0.5 

Units: Dimensionless 

 

Current Diagnosis= INTEG (Diagnosis Counter,1) 

Units: Dimensionless 

 

Diagnosis Counter=Change Trigger 

Units: Dimensionless/Minute 

 

 

 


