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Abstract 

Risk is an inherent part of healthcare, particularly in large referral centers, where some 

of the most complex cases are managed. While risk cannot be eliminated from the clinical 

activities, it is believed that some practices involving unnecessary risk can be mitigated 

without impacting overall performance. Our ability to identify these vulnerable practices, 

and develop durable preventative or mitigating strategies, however, is hampered by 

outdated models of risk and an inadequate approach to the analysis of risk. In an effort to 



develop more realistic models of risk in complex healthcare settings, we applied a system 

dynamics framework to model how features of the environment (e.g., time pressures, 

resource shortages, etc.) and human attributes (e.g., risk tolerance, confidence in existing 

safety policies, etc.) combine to influence safety. The models have enabled us to study, 

through simulation, the complex interactions between production pressures, historical 

experience with adverse outcomes, inherent risk tolerance/propensity, confidence in and 

compliance with safety controls. We present here the modeling strategy and the results of a 

series of simulation experiments studying these phenomena. 
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Introduction 

     Risk is an inherent part of healthcare, particularly in large referral centers, where some of the 

most complex cases are managed. While risk cannot be eliminated from the clinical activities, it 

is believed that some practices involving unnecessary risk can be mitigated without impacting 

overall performance. Our ability to identify these vulnerable practices, and develop durable 

preventative or mitigating strategies, however, is hampered by outdated models of risk and an 

inadequate approach to the analysis of risk. Current analytic approaches are based largely on the 

assumption that adverse events arise from a linear chain of failure events, or are due to a single 

component failure or human technical error. These analytic approaches do not adequately 

account for multiple indirect, non-linear, and feedback relationships, and do not explain system 

accidents, where a catastrophic outcome arises from the interaction among operating components, 

each functioning individually within a standard or acceptable performance range, or in the 

context of an appropriate objective. Current models of risk also do not adequately incorporate the 

organizational and social aspects of safety and safety culture, including the human decision-

making that is required to manage multiple conflicting or competitive goals (e.g., safety and 

production pressures) and the high degrees of uncertainty associated with such decisions. These 

limitations in both our models and our analytic approaches make it very difficult for both 

designers and clinicians to develop durable strategies to manage and mitigate risk before adverse 

events occur. 

     In an effort to develop more realistic models of risk in complex healthcare settings, we are 

using a system dynamics framework to model how features of the environment (e.g., time 

pressures, resource shortages, etc.) and human attributes (e.g., risk tolerance, confidence in 

existing safety policies, etc.) combine to influence safety. For this initial phase of work, we 

focused on modeling risk associated with ambulatory/outpatient (vs. inpatient) surgical care. In 

particular, we studied the complex interactions between production pressures, historical 

experience with adverse outcomes, inherent risk tolerance/propensity, confidence in and 

compliance with safety controls. We also studied how these interactive factors drive the system 

above acceptable thresholds of safety. We present here the modeling strategy and the results of a 

series of simulation experiments studying these phenomena. 

 

Background  

     For this modeling and analysis, we chose a specific clinical area – ambulatory/outpatient 

surgical care - for a number of reasons. Surgical care, in general, is a high-risk aspect of clinical 

medicine by virtue of the fact that the environment is technologically rich with significant 

human-machine interface issues, patient status is dynamically changing and outcomes depend 



heavily on the success with which the humans recognize and respond appropriately to such 

change. However, surgical care is increasingly being delivered in an ambulatory/outpatient (vs. 

inpatient) setting, a phenomenon driven largely by cost-containment pressures and a desire to 

deliver this care more efficiently. Safety concerns associated with this newer model of care are 

numerous. Ambulatory surgical units can be less-fully equipped for contingencies, and often are 

'remote' from inpatient crisis management teams. Pre-procedure patient preparation can be 

considerably less formal with this patient population, including little or no overt or pre-planned 

backup by specialists for management of complications. In contrast to impatient units, which are 

capable of processing patients continuously, 24-hours a day (round the clock), ambulatory units 

have fixed operational hours leading to ‘sundown' issues: shut-down of these units at a specific 

time, increasing potential for premature patient discharge or rushed execution of procedures 

towards the end of the day. Even when patients are discharged using appropriate ‘readiness’ 

criteria, there can be heavy reliance on patient and family to manage post-procedure recovery 

and an increased need to coordinate care across several transitions: Home -> Ambulatory 

Procedural Unit � Recovery Unit � Home � Primary provider office. Perhaps the most 

important concern, however, is that operational decisions and policies governing staffing, 

resource allocation, information exchange, space allocation and prompt access to specialists, can 

favor case productivity goals over safety. This tension between productivity, efficiency and 

safety is particularly strong. High demand for services has generated tremendous throughput 

pressure. Because services can be delivered more economically in an outpatient/ambulatory 

setting, the envelope is being pushed to perform increasingly complex cases in this manner.   

To counter the increased complexity and risk a large number of safety controls have been 

introduced into this ‘system’ in an effort to safeguard patients. Examples include mandatory 

staffing ratios, pre-procedure ‘time outs,’ required engagement of specialists to assist with 

certain types of procedures and a large number of redundancy-based checklists and cross-

referencing protocols. However, because these safety controls have the potential to add to the 

overall cost and slow or delay the process of care (thus undermining the dominant economic 

objective for this particular delivery model) they often are ‘disengaged’ or waived by physicians 

and nurses in the interest of maximizing the productivity and efficiency outcome objectives [1], 

[2], [3], [4], [5]. This type of violation may, in many cases, reflect a sound decision using a local 

judgment criterion given the time, resource constraints, throughput pressures and short-term 

incentives that shape behavior [6].  

There are other reasons why safety controls are ‘disengaged’ or waived. Extensive research in 

non-healthcare domains has demonstrated that individual agent attributes, either operating alone 

or in combination, can strongly influence safety-related behavior. These attributes range from 

core risk tolerance/propensity (i.e., is the agent risk averse, or do they thrive on or seek high-risk 

situations?), perceived value or efficacy of a particular safety control, perceived accountability 

for negative outcomes, perceived control over exposure to the risk and perceived control over the 

negative outcome once risky behavior has been initiated [7], [8], [9], [10], [11], [12], [13], [14]. 

[15], [16].   

We believe that this waiving phenomenon is a function of complex interactions between these 

variables - production pressures, historical experience with adverse outcomes, inherent risk 

tolerance/propensity, confidence in and compliance with safety controls. We also believe that the 

phenomenon is subject to strong feedback influences. Specifically, because the removal or 

waiving of the safety control does not guarantee that an adverse event will occur. In fact, in 

many instances, clinical care proceeds without incident. In a similar vein, full implementation of 



the safety control also does not guarantee that an adverse event will not occur. This creates a 

strong reinforcing feedback influence, with both ‘successful’ waiving (i.e., disengaging or 

waiving the safety control without incurring an adverse event) and ‘unsuccessful’ 

implementation (i.e., implementing the safety control but still incurring an adverse event) both 

promoting future waiving.  

 

Description of the Specific Clinical Problem Modeled 

Through direct field observations, interviews with clinical experts working in this domain, 

and review of adverse event case histories, we identified several examples of this type of 

phenomenon in the ambulatory/outpatient procedural system of care. The most significant 

example related to the use of a specialist (Anesthesiologist) to assist with the case. The safety 

control can be described as follows:  

 

In situations where case complexity is perceived to be high, or where a patient 

co-morbidity is believed to put the patient at very high risk for a negative 

cardiac or respiratory outcome, a protocol (safety control) calls for the 

engagement of a specialist (Anesthesiologist) to assist the surgeon with 

management of the anesthetics and to conduct minute-to-minute physiological 

monitoring of the patient.  

 

In situations where case complexity is perceived to be low, or where there are 

no significant patient co-morbidities, the surgeon assumes responsibility for 

both the technical execution of the procedure, management of the anesthetics 

and minute-to-minute physiological monitoring of the patient.  

 

Because there are no validated, objective measures of case complexity or ‘need’ for specialist 

involvement in the case, this decision making becomes a subjective assessment by the physicians 

involved in the case.  Further, the Anesthesiologist specialist is a limited resource; when this 

service is used, there can be delays in case start times while awaiting release of this resource 

from another case.  As a result, use of the Anesthesiology specialist is frequently waived. Even 

when the surgeon waives the use of an Anesthesiologist, clinical care can proceed without 

incident. This reinforces the behavior, promoting future waiving even when use of the specialty 

services is indicated. Similarly, because of the uncertainties in clinical care, use of the 

Anesthesiology specialist also does not guarantee that an adverse event will not occur. This 

erodes confidence in the value or efficacy of the service, and promotes future waiving.   

The historical adverse event reviews and interview data also confirmed that the willingness or 

tendency to disengage or waive the use of the Anesthesiologist was influenced by: 

• Inherent risk tolerance among the clinicians 

• Perceptions about the risks associated with a specific case 

• Confidence in/perceived utility of the Anesthesiology services 

• Potential costs associated the use of the safety control (e.g., delays imposed, increased 

resource costs, longer procedural times, general erosion in productivity etc.) 

 

Using this as our foundation, we then proceeded to model the interactions between these 

variables and evaluate how they drive the system above acceptable thresholds of safety. While 



the following model describes the specific case of the Anesthesiology safety control, we feel that 

it is generalizable across other specific safety control issues in healthcare. 

 

Methods 

To optimally describe the behavior of the system components, we adopted a hybrid strategy 

involving:  

• A discrete event component to represent the ‘processing’ and global state changes of the 

patient as a function of time and of the specific decisions/actions of physicians.  

• A system dynamics component to represent the interactive influences (including 

feedback) of human decision variables and production pressures on actions  

We used AnyLogic 6 (XJ Technologies Company), a Java-based modeling and simulation 

software package. Data for quantitative modeling were derived from the administrative and 

clinical databases at the Beth Israel Deaconess Medical Center. The data set included process 

durations for surgical procedures, emergency case interruptions to the elective scheduled, delays 

in scheduled cases due to emergency issues, transition times between pre-procedure, procedure 

and recovery phases, delay times and reasons for delays in initiating emergency interventions for 

the procedural unit as a function of day of week and hour of day, length of stay in recovery units 

as a function of time of day or proximity to shift change. We used Stat:Fit software (Geer 

Mountain Software Corporation) to fit process durations from our clinical data set to standard 

distributions. This curve fitting algorithm uses a Kolmogorov-Smirnov Goodness of Fit Test. 

The parameterized distributions were then used as inputs to the simulation model. While the data 

were derived from data repositories at a single institution, we believe that the medical center’s 

operational features are representative of other large tertiary healthcare referral centers in the US.  

Model Description 

Dynamics Underlying Risk-Related Behavior 

Figure 1 depicts the major variables influencing the waiving phenomenon in the clinical system 

studied. There are 2 major loop structures. The first, a reinforcing loop, qualitatively describes 

how increasing risk tolerance or propensity increases the probability of waiving the 

Anesthesiology safety control, and how this behavior is reinforced each time an adverse event is 

avoided. The second loop, a balancing loop, qualitatively describes how high confidence in the 

value or efficacy of the Anesthesiology safety control decreases the probability of waiving (or, 

conversely, increases the probability of implementing the control). However, high failure rates 

with implementation decrease confidence in the value and efficacy of the control, thus further 

increasing the probability of waiving. Time pressures can increase with each instance of an 

adverse event, particularly if it occurs in conjunction with implementation. ‘Successful’ waiving 

– i.e., waiving without incurring an adverse event – reduces time pressure while ‘unsuccessful’ 

waiving – i.e., waiving with a subsequent adverse event – increases time pressure. The functional 

forms of these variables are discussed below. 

 

‘Processing’ and global state changes of the patient and system 

We used a discrete event model to represent the processing of patients and state changes to the 

patient in the surgical unit. We simplified our model by limiting the procedural care unit to a 

modified single-server queuing system consisting of a single room with batch arrival of the entire 

days’ patient load and serial processing of patients serially (see Figure 2). In the actual system, 



the unit has 4 procedural rooms, and up to 4 patients can be processed in parallel. As noted above, 

we used data from the administrative and clinical databases at a large academic medical center to  

 

 
 

Figure 1: Factors influencing the waiving behavior of surgeons 

 

establish representative processing times and operational time intervals for the unit. Patients are 

generated by the model at the beginning of this operational time interval and accumulate in an 

infinite capacity queue that represents the ‘pre-op holding area’ in the surgery unit. We used our 

clinical data to establish a lognormal distribution (min = 0.17 hr.; µ = 0.358 hr.; σ = 0.641 hr.) 

for overall procedural duration and a point estimate of number of cases processed per room per 

day (µ = 8). In contrast to impatient units, which are capable of, and processing patients 

continuously, 24-hours a day (round the clock), ambulatory units have fixed operational hours, 

typically 8-12 hours, depending on the specific organization. To reflect this schedule constraint, 

we established a 12 hour operational time interval for the model. Any patients remaining in the 

queue at the end of the 12-hour operational time interval remained unprocessed.  
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Key event nodes that prescribe change the system state 

After batch arrival of all of the patients for the day, each patient is processed individually. There 

are three key events that prescribe state changes for the patient/system. The first key event (see 

arrow ‘A’ in Figure 2) is a simulated decision by the physician to either: 1) implement the safety 

control – i.e., use anesthesiology specialist services during the case, or 2) waive the safety 

control – i.e., perform the case without the use of anesthesiology specialist services. The logic 

defining the transition at this event node is described below. The second key event (see arrows 

‘B’ and ‘C’ in Figure 2) is exposure of the patient to a hazard during the course of a procedure. 

Exposure leads to a transition to one of two outcomes: 1) adverse event/harm, or 2) no adverse 

event/no harm. The transition is probabilistic, with different parameters depending on whether 

the safety control has been waived or implemented. We used clinical data from the most complex 

cases and established a point estimate Pr = 0.2 following waiving (see arrow ‘B’ in Figure 2) and 

Pr = 0.02 following implementation of the safety control (see ‘C’ in Figure 2). The third key 

event is the occurrence (arrow ‘D’ in Figure 2) or non-occurrence (arrow ‘E’ in Figure 2) of an 

adverse event during the post-procedural recovery phase. The probability of type D event versus 

type E event is a function of the underlying health status/co-morbidity of the patient, the 

complexity and duration of the procedure and whether the use of Anesthesiology services was 

waived despite indications. 

 

 
 

Figure 2: Simplified model of patient care and waiving behavior 

 

Functional forms of Variables 

Variables were created for the Risk Tolerance, Confidence in the Safety Control and the Time 

Pressure parameters discussed above. The instantaneous value of the variable is defined based on 

parameters in the discrete-event model.  Once these three variables are defined, they influence 

the Waiving Probability through specific table functions to be discussed later. We established a 

baseline value for the Risk Tolerance variable that increases incrementally to a maximum each 

time that the waiving results in a favorable outcome (waiving without incurring an adverse 

event). The variable resets to a minimum value of zero each time that the surgeon incurs an 

adverse event. A continuous first order delay (using a time delay of 12 hours) was implemented 

to account for the adjustment time in surgeon risk tolerance. This enabled us to model the quasi-

oscillatory nature of risk tolerance around adverse events that was described by the domain 

experts. We established a baseline value for the Confidence in Safety Controls variable that 

‘B’ 

‘C’ 

‘D’ 

‘E’ 

‘A’ 



decreases incrementally each time that the control is used and is ineffective in preventing an 

adverse event. Confidence slowly returns to the baseline as positive experience with the use of 

safety controls accumulates over time. The return-to-baseline function was implemented as a 

continuous third order delay with a time constant of 100 hours (see Figure 3).  

The Time Pressure variable was represented as a function of the remaining time before the 

unit closes and the approximate time required for all the patients in the queue to receive 

appropriate care.  The time required for each remaining patient was established by sampling 

randomly from the procedural duration distribution discussed above. A simple continuous first 

order delay with a time delay of one hour was implemented to account for the perception of time 

pressure by service providers. A Waiving Probability function was defined to represent the 

combined influence of the Risk Tolerance, Confidence and Time Pressure variables, and apply it 

to the discrete-event model.  Table functions are used to define the effect of Time Pressure, Risk 

Tolerance, and Confidence on Waiving Probability. Based on input from clinical experts, we set 

the Baseline Waiving Probability to 0.10.  As a first approximation, and using all available data, 

the functions used to define the effects are chosen to be linear and to indicate the relative 

importance of each influence on waiving behavior.  The linear table functions used in the model 

are shown in Figure 4. Additional data collection and interviews with domain experts are 

underway to further refine these functions. 

 

 
 

Figure 3: Loss of confidence in safety controls and return to baseline. The ‘Event 1’ arrow 

reflects the occurrence of an adverse event after implementation of the safety control, 

which results in an incremental decrease in confidence. With no further adverse events, the 

confidence slowly returns to baseline over a 30 d. timeline using a continuous 3
rd
 order 

delay function. The ‘Event 2’ arrow reflects the occurrence of a second adverse event after 

implementation of the safety control before confidence returns to baseline. 
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Event 2 



 
Figure 4: Table functions used to define variable influences 

 

Experimental Results 

We designed a series of experiments to study the complex interactions between production 

pressures, historical experience with adverse outcomes, inherent risk tolerance/propensity, 

confidence in and compliance with safety controls, and how these interactive factors drive the 

system above acceptable thresholds of safety.  

 

Experiment 1: Assessing the Impact of Time Pressure on Waiving Behavior: 

Operating on the assumption that individual physician attributes (e.g., risk 

tolerance/propensity are more difficult to manipulate in a real-world setting than system 

properties (e.g., time pressures induced by resource constraints), we conducted an experiment to 

assess the impact of time pressure on overall waiving behavior. We conducted a series of 100 

simulation runs, each simulating 500 consecutive operating hours for the clinical unit. Using 

average daily patient load and procedural durations derived from historical data sources, and the 

parameters described above, we generated data on waiving probabilities. We then eliminated the 

time pressure variable from the model and repeated the experiments, generating a data set 

representing waiving probabilities solely due to the human factors (risk tolerance/propensity and 

confidence in the safety controls). Figures 5a and 5b illustrate a typical comparative run with and 

without time pressures, using a fixed seed for the simulation runs to enable comparative analysis 

following manipulation of the time pressure variable. Statistical analysis of the two data sets 



demonstrated a significant (p < 0.005) reduction in waiving probability with removal of all time 

pressure using a Student’s t test.    

 

 
 

 
Figure 5a (upper) and 5b (lower) depicting the impact of daily time/production pressures 

on waiving probabilities.  

 

Experiment 2: Tracking Proportion of Time that Unit Operates Above Safety Thresholds 

Traditionally, ‘safety’ in a healthcare domain has been measured in terms of outcomes, rather 

than processes. This means that clinical units that experience infrequent adverse events are 

assumed to be safe, even when the process of care is, in fact, highly vulnerable. The objective 

behind this experiment was to measure the percentage of time that waiving probability exceeds 

baseline rates, and how this rates change as a function of unit capacity and case volume. We 

conducted a series of 100 simulation runs, each simulating 500 consecutive operating hours for 

the clinical unit. Using average daily patient load and procedural durations derived from 

historical data sources, and the parameters described above, simulation experiments 

demonstrated waiving of safety controls exceeded baseline rates 62% (+/- 18%) of the 

operational time. Detailed examination of traces reveal that over longer operational intervals, 

exceedance is disproportionately related to core risk tolerance/propensity attributes and feedback 

reinforcement of this behavior, but daily production/time pressures  produce episodic high 



waiving probabilities. We then systematically reduced the workload, repeating the experimental 

runs, and determined that in order to reduce probability of exceedence to < 25% of the 

operational time for the unit, it is necessary to reduce patient volume from 8 to 5 patients. At this 

patient volume, time pressures are sufficiently relaxed to reduce the episodically high rates of 

waiving. 

  

Discussion 

In this work, our goal was to develop a more realistic model of healthcare risk, one that captured 

the complex interactions between production pressures, historical experience with adverse 

outcomes, inherent risk tolerance/propensity, confidence in and compliance with safety controls. 

The models developed have enabled us to study the dynamic changes in risk and develop some 

understanding of how often the human attributes and organizational pressures combine to push 

the system into an unacceptably hazardous state of operation. This represents a unique approach 

to modeling and analyzing risk in healthcare. As noted earlier, ‘safety’ and risk in a healthcare 

domain has been measured in terms of outcomes, rather than processes. This means that clinical 

units that experience infrequent adverse events are assumed to be safe, even when the process of 

care is, in fact, highly vulnerable. While we believe that the system dynamics modeling approach 

that we have introduced here begins to address many of the deficiencies of current or traditional 

models of healthcare risk. However, it does have some limitations. System dynamics modeling 

typically works only with aggregates, meaning that the individuals within a 'stock' (e.g., the 

patient 'stock' or the provider 'stock') are indistinguishable. This makes it difficult to explore the 

general problem of multiple agency, i.e., the behavior of individuals in the face of imperfect 

incentives. We overcame this limitation by restricting the current model to a single provider unit. 

We believe that an agent-based model (ABM) is a computational strategy that will enable us to 

more realistically capture the actions and interactions of multiple autonomous individuals in a 

clinical network, with a view to assessing their effects on the system as a whole. This extended 

strategy may be particularly effective in providing a systematic way to explore structure-agency  

Relationships that extend beyond the risk tolerance/propensity and confidence constructs 

described in the current work. In particular, we hope to extend the work to model the impact of 

cooperativeness, communication efficacy, trust, rule-consciousness, decisiveness, vigilance, 

deference to hierarchy, interest in maximizing profit, indifference to safety goals, etc. Patient-

specific attributes, exclusive of standard co-morbidities, might include compliance, trust, 

communication efficacy (e.g., language proficiency), assertiveness could also be represented in 

the extended model. The specific effects of these combinations can be formally evaluated using 

the agent-based modeling and simulation. 
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