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Abstract 

Goodwin’s “A Growth Cycle” [1967] represents a milestone in the non-linear modeling of economic dynamics. In 

terms of the two variables “wage share” and “employment rate” and  on the basis of few simple assumptions, the 

Goodwin Model (GM) is formulated exactly as the well-known Lotka-Volterra system, with all the limits of such 

system, in particular the lacking of structural stability. A number of extensions have been proposed with the aim to 

make the model more robust. We propose a new extension that: a) removes the limiting hypothesis of “Harrod-neutral” 

technical progress: b) on the line of Lotka-Volterra models with adaptation, introduces the concept of “memory”, which 

certainly plays a relevant role in the dynamics of economic systems. As a consequence an additional equation appears, 

the validity of the model is substantially extended and a rich phenomenology is obtained, in particular transition to 

chaotic behavior via period-doubling bifurcations. 

 
1. Introduction: Goodwin’s Growth Cycle model 
Goodwin’s [1967] Growth Cycle model (GM) represents a milestone in non-linear economic dynamics, receiving for 

this reason many extensions and improvements.  

The economic system described in the GM is a one-sector non-monetary economy: there are only two social classes, 

capitalists and workers, which produce a homogeneous commodity, which may be consumed or invested and whose 

price may be normalized and put equal to 1. The following list presents all the variables, parameters and definitions 

which describe the economy: 

 

Y                Output 

K                Capital  

S                Savings 

KKI η+≡ &        Gross investment (where η㸠　⁩猠瑨攠搀数爀散楡瑩漀渀⁲慴攠漀昀⁴栀攠捡瀀楴慬††獴漀捫⤀ 

N                Labor supply (expressed in units) 

L                Employment (expressed in units)  

a = Y/L       Average labor productivity 

w                Real wage 

u = wL/Y = w/a, 0≤u≤1 Wage share (i.e., the share of income going to workers) 

v = L/N,  0≤v≤1 Employment rate 

 0



 

 

The main hypotheses which define the structure of the economy are the following: 

A1) Capitalists’ average propensity to save = 1, while workers’ = 0. Capitalists reinvest all their savings (= profits), that 

with no capital depreciation1 implies:  

wLYKIS −=≡= &    

while workers consume entirely their earnings. 

A2) Capital/output ratio constant: σ=
Y
K ; 

A3) Population, and then labor supply, grows at a constant rate n > 0: ;  nteNN 0=

A4) Labor productivity grows at a constant rate α > 0: tea
L
Ya α

0== ; 

Note that from hp. A4) and A2) it follows that the rate of growth of K/L equals the rate of growth of Y/L (this kind of 

technical progress is defined as “Harrod-neutral” technical progress). 

A5) Real wages change according to a linear “Phillips curve”, which represents the bargaining equation on the labor 

market: 

v
w
w ργ +−=
&

  γ, ρ > 0 

On the basis of the above assumptions and definitions, after simple manipulations, the dynamic behavior of the 

economic system may be described by the following non-linear differential system (GM):  

 [ uvu ]ραγ ++−= )(&                                                                                                                      (1.1) 

 vunv 



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α

σ
)(1

&                                                                                                                  (1.2) 

Equations (1.1) and (1.2) exhibit the same formal framework as the well known [LOTKA, 1925] and [VOLTERRA, 1926] 

predator-prey model (LV), sharing the main characteristics and limits of the latter. The system has two fixed points: the 

trivial one at the origin (a saddle point), and: 

ρ
γα
ασ

+
=

+−=

*

* )(1

v

nu

                          

                                                                                                 (1.3) 

In order to be economically meaningful, (1.3) has to satisfy the conditions: α+n < 1/σ and α+γ < ρ. The dynamical 

proprieties of LV model are well known: since the eigenvalues of the jacobian matrix of the system are purely 

imaginary, the fixed point (1.3) is a centre, neutrally stable, and the flow of the system around the point will be 

described by a family of closed orbits whose “amplitude” depends on initial conditions. Then, the initial values of u and 

v will determine which of the infinitely closed orbits describes the actual dynamic behavior of the system. 

                                                 
1 In this Sec., in line with the original Goodwin’s contribution, we assume that there is no capital depreciation, i.e., η = 
0. As will be clear, this assumption involves no qualitative modifications in the model. In the next Secs., however, we 
will consider the more realistic (and usual) assumption η > 0.  
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 The economic meaning of the model is straightforward: u acts as “predator” and v as “prey”. As can be seen from Fig 

.1, a low wage share (point A) – that is, a high profit share – leads to the increase in the employment rate; the latter, 

implying an increase in the workers bargaining power (according to hp. A5), pushes the wage share up: the growth rate 

of profit share begins to decrease and, consequently, also the employment rate decreases (portion BC). At C predators 

“have eaten too many preys”, and their number begins to decrease, allowing a new increase in the profit share. At D, the 

low u re-establishes the conditions for a new expansionary phase of the cycle. 

One of the main criticism to Goodwin’s model concerns its lacking of structural stability that is a characteristic of the 

LV model. A definition of structural stability, proposed by [HIRSH & SMALE, 1974] relies on the concept of topological 

equivalence between two (or more) systems under perturbations. For our purposes the point is that it is easy to find 

large classes of economically meaningful perturbations which, no matter how small, lead to qualitative changes in the 

dynamic behavior of GM2. A useful criterion is the one proposed by [GUCKENHEIMER & HOLMES, 1983], according to 

which a dynamical system is structurally unstable when the value of one parameter is at a bifurcation point.  

As several authors have shown, however, with further hypotheses GM can be modified in order to become structurally 

stable, exhibiting limit cycles persistent to parameter perturbations: in this light, all the extensions to GM can be seen as 

the introduction of perturbations which make the system dissipative. In other words, as already pointed out (see, for 

example [VENEZIANI, 2001]) GM can be considered as a particular case of an extended model, which looses structural 

stability since a parameter is at a bifurcation value. Among the various two-dimensional extensions to GM, we recall 

[DESAI,1973] who analyzes a monetary economy in the presence of an “augmented” Phillips curve, [WOLFSTETTER, 

1982] who adds government sector inquiring the effect of stabilization policies, [CHOI , 1995] and [MANFREDI & FANTI, 

2000] who introduce the efficiency-wage hypothesis3. Three-dimensional extensions can be found in [MANFREDI & 

FANTI, 1999] who besides efficiency-wage hypothesis introduce a gestation lag in investment plan and [BRODY & 

FARKAS, 1987] and [CHIARELLA, 1990] who consider a time-lag in the Phillips curve, assuming that wages growth rate 

is an increasing function of the weighted average of all past values of the employment rate.  

Another problematic feature intrinsic to GM is represented by the economic meaningfulness of its solutions. In fact, 

using estimates of actual parameter values – as those provided by [HARVIE, 2000] – it is easy to realize, once numerical 

simulations are performed, that u and v values are not constrained in the unit square [0, 1]×[0, 1] as required by their 

definitions. This is true also for most of the extensions to GM that we have recalled above4 (clearly, this fact gives no 

problems in the original LV model, which is formulated in absolute values).  

In the present paper we will proceed along this line of research, removing some of the most limiting hypotheses which 

characterize the original Goodwin’s contribution, but trying to preserve, at the same time, its main features and 

peculiarities. Particularly, the main modifications that we are going to carry out concern the assumptions about 

technical progress and economic agents’ behavior. With regard to the former we will remove Goodwin’s assumption of 

“Harrod-neutral” technical progress. With regard to the latter we will consider also the influence of past events on 

agents’ current behavior, that is, we will take into account the influence of their memory on the dynamics of the 

                                                 
2 For instance, if we let capitalists’ average propensity to save be a decreasing function of u, or if we let capital/labour 
ratio be an increasing function of real wages, the trace of the jacobian becomes negative (and then the fixed point 
asimptotically stable). 
3 Other extensions can be found in [Wolfstetter, 1977], [Flaschel, 1984; 2000]. For a survey of GM-types, see Veneziani 
[2001].  
4 In order to confine u and v solutions in the unit square, [Desai et al., 2004] have modified GM, making the following 

ad hoc assumptions: +∞→
w
w&  as  and −→ 1v −∞→

v
v&  as . −→ 1u
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economic system. These supplementary assumptions lead to a three-dimensional model which may exhibit, for some 

parameter values, a complicated behavior: the emergence of different limit cycles and even transitions to chaos with the 

appearance of aperiodic attractors. 

The rest of the paper is organized as follows. In Sec. 2 we present our model, and in Sec. 3 we investigate the main 

properties of its equilibrium points. In Sec. 4 we show how the non trivial equilibrium undergoes a Hopf bifurcation 

with the emergence of a limit cycle, continuing the analysis of the time-dependent behavior in Sec. 5, which is also 

devoted to the study of transitions to chaos. In both Secs. 4 and 5 the analysis will be carried out also through extensive 

numerical simulations. Finally, Sec. 6 sums up the main conclusions of this work.     

 

2. The Adaptive Goodwin’s Model with Capital/Labor Substitution 

As Goodwin himself recognized, the theoretical groundwork of his model was represented by Marx’s general law of 

capitalist accumulation. According to this “law”, presented in Ch. XXV of [Marx, 1990], real wages are a decreasing 

function of industrial reserve army (IRA)5 variation, the latter depending upon the various phases of the business cycle. 

During the expansionary phase of the cycle, IRA’s decrease leads to increasing strains on the labor market, since 

workers’ bargaining power is becoming stronger and stronger: as a consequence, real wages increase and (then) profit 

share decrease. Profit share reduction, however, leads to the automatic reduction in investments – since also in Marx’s 

description the hypothesis (A1) holds – which, implying a decrease in the employment rate, will reconstitute IRA and 

the conditions for a new expansionary phase. Therefore GM may be seen as an elegant and simple mathematical 

formulation of the dynamics depicted above, containing at the same time a further interesting feature: while in Marx’s 

exposition the oscillations concern wage absolute values, in GM real wage growth rates are concerned, so the latter 

model being more suitable for the description of both short run (cycle) and long run (growth) dynamics. 

Nevertheless, in the Marxian law of capitalist accumulation there is a fundamental element, with regard to capitalists’ 

behavior, which is not present in GM. According to Marx, capitalists, rather than adapt passively to the oscillations of 

real wages, may vary capital/labor ratio substituting workers with machinery as wages increase, moreover fostering the 

process of re-constitution of IRA6. It is worth noting that this explanation of K/L increase is quite independent from the 

other Marx’s explanation of increasing mechanization, which relies on the idea that the productivity of labor is an 

increasing function of capital/labor ratio. According to Marx, then, capitalists modify K/L for two main reasons: 

a) because Y/L is an increasing function of K/L (long-run effect of technical progress); 

b) against real wage increases in the expansionary phase of the cycle (short-run contingent reaction). 

Only the former point is present in GM, in the form of “Harrod-neutral” technical progress, while the latter is lacking. 

Following Marx’s suggestion – in line, moreover, with standard neo-classical growth theory – we will assume that 

capitalists may substitute labor for capital as the wage share increases. Such a modification to GM needs further 

specifications: i) we will assume that only K/L “long run” increase favorably affects productivity of labor, while K/L 

changes in response to real wages changes – given their contingent nature – have no effect on Y/L; ii) finally, if 

according to point b) we assume that K/L increases as u increases, we have also to consent that capitalists may act in the 

opposite manner as u decreases, that is, we will assume that K/L is an increasing function of u7. As a direct consequence 

                                                 
5 According to Marx [1990], IRA represents “a surplus labouring population … a mass of human material always ready 
for exploitation”.   
6 This view represents an interesting anticipation of neoclassical growth theory, as far as substitutability between capital 
and labour is concerned. 
7 See below for a precise definition of the relation between K/L and u. 
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of this, factor a) acts only in the direction of a continuous increase in K/L, while factor b), depending on u variations, 

will involve acceleration or deceleration of K/L increase; note, moreover, that assumption b) implies the removal of the 

assumption of Harrod-neutral technical progress, since now also capital/output ratio may vary.  

The other modification in our model concerns agents’ behavior. We maintain that both workers’ and capitalists’ current 

behavior should depend also on their past performances, i.e., what they actually do should be also related to what they 

have done in the past. Particularly, we will follow the adaptive hypothesis discussed in [Lacitignola & Tebaldi, 2003], 

according to which there is a time-dependent learning-by-doing process, affecting both “predators” and “preys”. In this 

way we want to emphasize the role of memory on the current performance of the economic system. 

We assume that the system has a non-trivial equilibrium at which u = u*, whose value will be computed in the next 

paragraph. Among the various variables which can be taken as indicators of the history of the system, we have chosen 

the weighted average of all past values of the difference u- u*, where u*, the equilibrium value, can be seen as the 

“natural” wage share8. u- u*  can therefore also be interpreted as the result of the bargaining. Specifically we assume the 

following formulation in terms of an exponentially distributed lag (weakly decaying kernel which implies fade-out 

memory hypothesis): 

( ξξ
ξ

duue
T

ty
t

T
t

*)(1)( −= ∫
∞−

−

)

]

                                                                                                        (2.1)                       

where T measures the time scale for adaptation (memory span) of the system9. 

As a consequence, both workers’ and capitalists’ current behavior should depend on y(t) (memory variable). As far as 

workers’ behavior is concerned, we assume that (see above, hp. A5): 

ρ(t) = ρ1+ρ2y(t),       ρ1,ρ2 > 0,                                                                                                      (2.2) 

which leads to the modified Phillips curve: 

[ wvtyw ))(( 21 ρργ ++−=&                                                                                                           (2.3) 

According to Eqs. (2.2) and (2.3), the growth rate of real wages is not only a function of current employment rate, but 

also of the weighted average of past values of u-u*. Eq. (2.3) means that the higher average wage share has been in the 

past, the higher workers’ bargaining power will be at present (adaptive hypothesis, which implies workers’ learning by 

doing). Moreover, Eq. (2.3) also implies that, if one consider two economic systems which have experienced the same 

“amount” of bargaining conflicts, workers’ bargaining power will be stronger in the system where these conflicts have 

been more recent (fade-out memory hypothesis). 

As regards capitalists’ behavior we assume that: 

[ teyK
L
K βζ )(0 += ]

                                                

   K0 > 0                                                                                                         (2.4) 

 
8 “Natural” in [FREIDMAN, 1975] sense, since u* corresponds to v*, which can be defined as the natural rate of 
employment. 
9 We point out that our fade-out memory hypothesis differs from the one proposed by [BRODY-FARKAS, 1987] and 
[CHIARELLA, 1990], since they substitute v in the Phillips equation (1.1) with the weighted average of its values given 

by 1( ) ( )
t t

Tx t e v
T

ξ

dξ ξ
−

−∞
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where β is the constant K/L growth rate, while ζ(y) is the capitalists’ reaction function, which specifies the relation 

between u and K/L. Once again, we have assumed the adaptive hypothesis, since also capital/labor substitution depends 

on the weighted average of u-u* past values (and then on the past reactions of capitalist to u increases). 

For the productivity of labor we put: 

teK
L
Ya βϕ 0== ,  φ > 0                                                                                               (2.5) 

according to which contingent K/L modifications, due to u variations, do not affect the productivity of labor, summing 

up what we have said about the relation between K/L and Y/L. 

The last matter to discuss concerns the exact specification of ζ(y), which may be defined as the reaction-substitution 

function between labor and capital. For the moment we pose only the (general) restrictions that:1) ζ(y) is a 

monotonically increasing function on (y [-u∈ *,1-u*]),  ζ(0 ) = 0, and convex for y > 0; 2) the derivative of ζ(y) is very 

small in the neighbourhood of the equilibrium point, increasing as |u-u*| increases. Assumption 1) is obvious, in the 

light of what we said above about the substitution function; assumption 2) implies that around the equilibrium there is a 

low incentive to substitute labor for capital, but that this incentive increases as the distance between u and u* increases. 

More precise specifications of the reaction-substitution function, and the consequences of these different specifications 

on the dynamics of the system, will be taken into account in the following paragraphs.      

From Eqs. (2.1), (2.2), (2.3) and (2.4), after simple manipulations, we get the following three-dimensional system: 

[ ]uvyu )()( 21 ρρβγ +++−=&                                                                                                       (2.6) 
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3.Analysis of the Model 

The model has two equilibrium points: E0=(0,0,-u*), a saddle point, which corresponds to the trivial GM saddle point in 

(0,0), and E*: 

E*: 
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                                                                                                           (3.1)  

that corresponds to the interesting equilibrium of GM. It can be shown that the uniqueness of the non-trivial equilibrium 

is guaranteed by the monotonicity of ζ(y). The Jacobian matrix computed in E* is:
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The case of interest is  ζ’(0) = 0, as will be discussed in the following, and the characteristic equation becomes 

( >0): **
1 vuA ϕρ=

01
1
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3 =+
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T
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T ϕρ
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λλλ                                                                                                  (3.2) 

This additional hypothesis about the ζ function implies that in Eq. (3.2) the elements characterizing the capital-labor 

substitution disappear, i.e. the substitution mechanism is assumed to be ineffectual at the equilibrium E*. However, 

differently from the GM, in Eq. (3.2) there are ρ2 and T, which measure respectively the effect of the memory variable 

in the bargaining equation and the memory span of the system. Fade-out memory is then the mechanism which makes 

the linearization of our system different from that of the GM. 

It is easy to verify that, when ρ2 = 0, independently of the value of T, Eq. (3.2) has a pair of pure imaginary roots, and 

precisely: 

2/3 2( 0) i Aλ ρ = = ± . 

Furthermore, as the two eigenvalues tend to become purely imaginary, as for the GM non-trivial equilibrium. +∞→T
In the numerical study of the roots of Eq. (3.3) we have fixed the parameters using values which are consistent with 

Harvie’s article, that are: 

β = .04  (correspondent with α in the original GM) 

n = .03 

η = .05 

ρ1 = 22       (correspondent with ρ in the original GM) 

γ = 18 

ϕ = .33  (correspondent with 1/σ in the original GM) 

K0 = 2   

With this set of parameter values (which has been used for all the simulations) E* becomes: 

u*= .63 

v*= .82 

y*= 0 

From a numerical analysis we find that the absolute value of the real negative eigenvalue λ1 grows with ρ2 and decreases 

with T. Independently of T, the value of ρ2 characterizes the stability of E*: when ρ2 < 0 the equilibrium is stable; at ρ2 = 

0 the real part of the complex conjugate eigenvalues becomes zero, so we re-obtain a centre as in GM; a value ρ2 > 0 

destabilizes E* which turns into an unstable focus. 
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Moreover, at ρ2 = 0 0)0()Re(

2

3/2 >
ρ
λ

d
d

 
holds, and we are in the hypotheses of the Hopf Bifurcation Theorem: 

around E* either a stable limit cycle emerges when ρ2>0 (supercritical Hopf bifurcation) or an unstable cycle is present 

when ρ2<0 (subcritical Hopf bifurcation). According to the theorem the cycle arises with the period P = 2π/ A , i.e., 

for the parameter values chosen, P ≈ 3.20. 

Finally, about the dependence on the memory span, we can note that the real part of the complex eigenvalues becomes 

smaller as T increases. For larger values of ρ2 the complex conjugate eigenvalues become real and distinct, and the 

unstable focus turns into an unstable node. 

Before to proceed with numerical simulation, we have to choose an explicit form for the ζ function satisfying the 

assumptions posed above. We assume the form: 

ζ(y)=ζ0y3emy     ζ0  > 0, m ≥ 0                                                                                                                       (3.3) 

As is clear from Eq. (3.3), ζ0 and m characterize the substitution function. ζ0 is a proportionality constant in the ζ 

function, controlling the scale and the efficiency of the K-L substitution, while m affects the shape of the reaction 

function. When m = 0, ζ is an anti-symmetric function, while for m > 0, as m increases the function becomes steeper in 

the region where y>0 and flatter when u is below its natural value. From Eqs. (2.4), (2.5) it is easy to verify that 

capitalists’ reaction involves the variation of K/Y ratio: consequently, m = 0 indicates an equal possibility of increasing 

(when y > 0) or decreasing (when y < 0) K/Y, while m > 0 implies that it is easier to substitute capital for labor, through 

K/Y increase, than vice versa. In the following we will consider both cases, even if we think more consistent with our 

model the second case (m > 0), since it is less likelihood that K/Y may decrease as u falls below its natural value u*. 

 

4. Numerical Analysis of the Limit Cycle 

In order to study the time-dependent behavior induced by destabilization of E*, we have to rely on numerical 

simulations, performed using Matlab v. 6.5 and Ermentrout [2002] XPPAUT (Ver. 5.9) software package. 

Taking initial conditions close to the equilibrium, for ρ2 > 0 the solutions spiral away towards a limit cycle which arises 

at the bifurcation with period P = 2π/ A . The Hopf bifurcation therefore is found to be supercritical and structural 

stability is regained for ρ2 > 0. In comparison with the GM, we note that the set of different persistent oscillations is 

replaced, in our model, by a stable limit cycle obtained for any initial condition, but E*, chosen. 

Next step is the investigation of the limit cycle behavior with respect to variations of the parameter values 

characterizing the model: ρ2, T, ζ0 and m. We point out that the study of a system of ordinary differential equations 

dependent on four parameters – even three-dimensional – requires considerable computational efforts. Therefore our 

analysis aims to obtain a general, rather than an exhaustive, picture. We anticipate that, while variations of ρ2, T and m 

induce the main qualitative changes (bifurcations or subcycles), the role of ζ0 is crucial in keeping the limit cycles on 

the uv plane inside the unit square, preserving the economic relevance of the model. This fact appears to be very 

relevant by comparison with other extensions of the GM (see, for example, [CHIARELLA, 1990] and [MANFREDI & 

FANTI, 2000]). In those models although a continuously distributed lag for one of the variables is able to destabilize the 

equilibrium point through a Hopf bifurcation, no mechanism constrains the cycle inside the meaningful domain. 

In our model this mechanism is provided by capitalists’ reaction, described by the function ζ(y). In fact, as appears in 

Eq. (2.7), when the solution enters the subdomain u>u*, v>v*, the ζ’-depending term induces a decrease in v. In this part 

of the cycle the factor u-u*-y is positive: in fact, as the numerical study confirm, in this phase both u-u* and y are 
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growing (respectively from 0 and negative values), but y conserves memory of the past values of u-u*, and so remains 

smaller than u-u*. 

The reaction-substitution function ζ is therefore the tool able to limit too high increases (or decreases) of the wage share 

u, mitigating distributive conflicts. On the contrary, as we will show, an increase of T and/or ρ2 leads to wider 

oscillations of u. We now turn to a more detailed description of the role of the various parameters on the limit cycle. 

 

4.1. Effect of ρ2 

The equilibrium point, which is a stable focus for ρ2 < 0, destabilizes at ρ2 = 0, with the appearance of a limit cycle 

whose size grows as ρ2 increases, as predicted by the Hopf theorem. In agreement with the theorem, as the limit cycles 

approach E* the period tends to 2π/ A  ≈ 3.20, also increasing with ρ2. 

This behavior is also confirmed for relatively larger values of ρ2 (Fig. 2 m = 0 and Fig. 3 m = 15): the limit cycle looses 

its “elliptical” shape, as expects, the oscillation amplitude becomes larger and the rate of convergence of the solutions 

increases. The oscillations of the variables, approximately sinusoidal close to bifurcation, develop short and very fast 

growing (or diminishing) phases, alternated to longer ones characterized by much smaller values of the time derivatives. 

Absolute maxima (minima) of u and minima (maxima) of v tend to synchronize, becoming more and more peaked.  

As the maximum (minimum) of u and minimum (maximum) of v are reached, we can see the appearance of local 

phenomena – which can be interpreted as small-scale subcycles – related to local loss of monotonicity in time, as a 

consequence of some kind of “overshooting”. As ρ2 is increased, the overshooting strengthens: the number of subcycles 

increases, as the appearance of relative extreme points in the time plots shows (Figs. 2-3). This is an interesting result, 

since subcycles of the same kind were found in the analysis of actual time series in [HARVIE, 2000]. 

Economic interpretation of all this phenomenology will be discussed after the analysis of the role of ζ0 and m. However 

we notice the loss of symmetry of the limit cycle and the strong effects on the subcycles for the case m > 0.  

 

4.2. Effect of ζ0 and m 

ζ0 and m characterize the substitution function. Subcycles due to the mechanism of overshooting are a consequence of 

the interaction of the two key elements characterizing our model: adaptation (controlled by ρ2 and T), and capitalists’ 

response against wage claims (controlled by ζ(y)). When these mechanisms are strong enough, employment rate drops 

to such level that a new expansionary phase of the cycle, on a smaller scale, can take place. 

An increment of ζ0 reduces the size of the limit cycle, with no relevant effects on its shape (Fig. 4). For this reason the 

value of ζ0 is crucial to maintain phase trajectories inside the unit square, maintaining meaningful the relevant changes 

of the limit cycles when ρ2 is increased. 

If the substitution function is anti-symmetric (i.e. m = 0), overshooting phenomena occur both on the region of the cycle 

where u > u* and u < u*, even if they are more relevant in the former case, and other smaller-scale subcycles may 

appear. 

As m increases (Fig. 5), the overshooting effect for u < u* tends to disappear. Moreover the shape of the cycle for u > u* 

is substantially changed: capitalists’ reaction against wage increases leads to a dramatic reduction of the employment 

rate on a short time-scale, which in turn determines a new and fast expansionary phase of the small-scale cycle. As m 

increases further, both the number of subcycles and their size also increase. 

 

4.3.Effect of T 

 8



 

Finally we analyze how a variation of T affects the system, and particularly the limit cycle. We recall that T represents 

the time-scale related to the memory span of the system. Starting from T = 0 (no memory) we have considered values of 

T of the order up to 1/10 of the period of the cycle, which corresponds to the characteristic time-scale of subcycles. 

When T increases to a value comparable with the characteristic time of a subcycle, the rate of change of the variables 

becomes smaller around their relative maxima and minima, i.e. the maximum and minimum peaks correspondent to the 

subcycles flatten (Fig. 6). For further increment of T, sub-cycles disappear. This behavior can be related to a lower 

weight given to very recent bargaining dynamics by both workers and capitalists, since a longer memory allows the 

system to avoid changes in its behavior due to contingent or relatively temporary factors. 

Further increment of T causes a period-doubling bifurcation followed, for even higher values, by a period halving which 

re-establishes a more regular dynamics, i.e. “sinusoidal” oscillations of u and v. 

For different parameter values the period-doubling bifurcation can be the first in an infinite sequence leading to chaos 

and this case will be discussed in detail in the next section. 

 

5. Bifurcations of the Limit Cycle and Transitions to Chaos 

The presence of a period doubling bifurcation for the limit cycle suggests to seek – through continuation analysis – for 

possible sequences of period doublings, which can lead to chaotic behavior  ([FRANCESCHINI & TEBALDI, 1979]) 

according to Feigenbaum scenario for one-dimensional maps ([FEIGENBAUM, 1978]) . Bifurcations for all values of the 

parameters ζ0 and m tested have been found, but it is remarkable that only when the ζ-function is sufficiently steep (i.e. 

the K-L substitution is strong enough) the doubled orbits do lie in the domain. We keep m=15, ζ0=100 as before, and we 

present the phenomenology of the system occurring varying T and ρ2: bifurcation analysis was performed with the 

software package XPPAUT which includes the bifurcation analysis tool AUTO. 

At first a sequence of bifurcations occurring for T=.4 when ρ2 is varied is analyzed (see Fig.7). At ρ2(1)≈3.386 the limit 

cycle looses stability and a stable closed orbit with period doubled appears (period..), first in the sequence, while at 

ρ2(1’)≈5.303 a period-halving bifurcation (with period at the bifurcation P≈3.876), last in the sequence (see Tab.1), 

restores an orbit with period . For higher values of ρ2 a complex phenomenology appears: particularly, there are also 

tangent bifurcations which give rise, as we will see, to multiple stable cycles in some regions of parameter space, 

leading to further flip bifurcations. We have restricted our analysis to the first sequence of period-doubling/period-

halving bifurcations, since a complete investigation of a bifurcation sequence like that depicted in Fig.7 requires a study 

by its own (and is under consideration). One-parameter continuation shows a sequence, likely to be infinite, of period-

doubling and period-halving bifurcations: the first 7 of them have been detected and in Tab.1 the critical values ρ2(i) are 

reported, together with the periods (Pi) at bifurcation: at ρ2= ρ2C ≈ 4.4174, an aperiodic attractor is found. We show in 

Fig. 8 the stable closed orbits for ρ2 = 2.91 (P = 3.28), ρ2 = 3.45 (P = 6.78), ρ2 = 4.16 (P = 15.43), and ρ2 = 4.40 (P = 

61.25) and in Fig. 9 an aperiodic attractor found at ρ2 = 4.5.  

The transition we are presenting occurs according to the universality prediction of  Feigenbaum Scenario for one-

dimensional maps ([FEIGENBAUM, 1978]), which in the case of a system of ordinary differential equations has been 

found for the first time in [FRANCESCHINI & TEBALDI, 1979]. 

In Tab. 1 we also show the computed values of 2 2
1

2 2

( ) ( 1)
( 1) ( )i
i i
i i

ρ ρδ
ρ ρ−

− −
=

+ −
 which at the limit  converges to the 

Feigenbaum constant δ 4.6692. It is remarkable that 7 successive bifurcations have been detected in a system of 

ordinary differential equations and that the value δ

i →∞

≈

5 is already very close to the universal asymptotical value.  
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As far as interpretation, when ρ2 – the parameter characterizing adaptation in the bargaining equation – is “large 

enough”, the increasing weight of past bargaining struggles leads the system to loose strict periodicity and therefore 

precise predictability. Different initial conditions, even very close to each other, lead to different time behavior of the 

system, which, however, is on the whole defined by the strange attractor. As ρ2 is further increased, clear evidence of 

the typical phenomenology of alternation between chaotic and periodic behavior is observed. An interesting aspect is 

represented by the tangent bifurcation at ρ2 ≈ 4.809 (see Fig.7) by which a new attracting orbit appears: as is evident 

comparing Fig.7 and Tab.1, this orbit is present together with chaotic regime. This latter phenomenology may be seen 

as the presence of bistability in the model: increases of ρ2 lead, as described, to a sequence of period-halving 

bifurcations ending at ρ2(1)≈5.303; starting from different initial conditions, however, the system may be attracted by an 

orbit of low period, and no period-doubling cascade starts, since for this orbit has only a period-doubling at ρ2 = 5.73.  

We point out that for greater T values continuation analysis reveals a even more complex phenomenology, since after 

the first sequence of period-doubling/period-halving points, tangent bifurcations may lead to new cascades of 

bifurcations: once more, however, attracting orbits of low period appear inside the chaotic region, implying the same 

phenomenon of bistability described above. In Figs.10 aspects of this rich and complex phenomenology, for T = .44 is 

shown. Particularly  the presence of tangent bifurcations lead to multiple cascades of period-doubling/period-halving 

bifurcations, even if  these cascades have tangent bifurcations taking place in between.       

The phenomenology described above seems to be representative also of a wide range of ζ0 and m. 

One-parameter continuation shows an analogous phenomenology for variation of T. The first period-doubling, for ζ0= 

100, m = 15, ρ2 = 4.5, takes place at T ≈ .359, with P = 7.36 (followed at    T ≈0.63 by a period-halving bifurcation, with 

period at the bifurcation P≈6.56): from this point a sequence (likely to be infinite) of period-doubling/period-halving 

occurs, leading to an aperiodic attractor. Furthermore, the appearance of different orbits by tangent bifurcation lead to 

further period-doubling/period-halving sequence for higher values of T. Also in this case we have restricted our analysis 

to the first sequence of bifurcations up to an orbit of period P ≈ 244, and the results are reported in Tab. 2: once more 

the values of δi in the sequence rapidly approach the Feigenbaum constant governing the appearance of the aperiodic 

attractor. The analogy in the phenomenology observed for variations of T and ρ2 is not surprising since both parameters, 

even if with different roles, characterize the adaptation level of capitalists and workers. 

Investigations in order to have a more complete picture are still being performed. The task is  heavy, in particular for the 

number of parameters involved: AUTO succeeded in continuing the first period-doubling/period-halving , but failed in 

continuing points of higher period, probably because of the complexity of the phenomenology. 

  

Conclusions 

The first general conclusion which should be drawn from our study is that Lotka Volterra-type models remain a good 

basis for the study of dynamical phenomena exhibiting cyclic behavior. As we have shown, in fact, through two 

supplementary (simple) assumptions – the removal of Harrod-neutral technical progress in order to consent capital/labor 

substitution, and the introduction of adaptive hypothesis concerning agents’ behavior – the validity of GM is 

substantially extended, since trajectories lie into the meaningful domain, and structural stability is re-established, 

leading to a richer and more interesting phenomenology.  

As an example the “overshooting effect”, i.e., the emergence of small scale-cycles in the presence of a limit cycle, after 

destabilization of the Goodwin equilibrium point, can be considered interesting, since this phenomenology seems to be 

characteristic of actual time series of many industrialized countries [Harvie, 2000]. This effect can be considered a 

direct consequence of our hypothesis on capitalists’ response to wage share increases, described by the reaction-
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substitution function. Indeed, as we have shown, the relevance of overshooting increases as the ζ  function (controlled 

by ζ0 and m) becomes steeper. 

Furthermore the model can exhibit a dynamics that is by far more complex because of a number of transitions to chaos 

characterized, strictly speaking, by aperiodic behavior. However all the transitions observed occur according to 

Feigenbaum scenario, which preserves a basic “periodicity”, differently from other possible transition scenarios. A 

relevant result is that also this complex dynamics takes place in the meaningful domain of the model, with the presence 

there of strange attractors. The phenomenology, which seems to be (more) consistent with the actual time-series of 

economic variables under consideration ([Brody-Farkas, 1987]), can be ascribed to the joint effect of our two 

assumptions, in particular the adaptive one. In fact, as we have seen, fade-out memory affects the competitors skill in 

the bargaining conflict: for some combination of the parameters controlling the memory span (T) and its effect in the 

bargaining process (ρ2, ζ0 and m), the system shows sensitive dependence on initial conditions. 

Another relevant feature is represented by the presence of multiple stable/unstable orbits for some regions of the 

parameters space: particularly, as we have seen, a number of attracting orbits – 

entered in the system by tangent bifurcations – appear, which lie, in part, inside the chaotic region. This occurrence of 

bistability is very interesting, since it may imply the presence of hysteresis in the system. As we have shown in Figs. 7-

10, further increases of workers’ bargaining power (ρ2) lead to the sequence: period-doubling- aperiodic behaviour-

period-halving, eventually restoring a “regular” dynamics. If we then take the final point as starting condition, and come 

back decreasing (ρ2), the system may be attracted by an orbit of low period appeared by tangent bifurcation, and no 

period-doubling cascade starts (see Fig. 10). 

Furthermore, as we have seen, when the memory span of the system T is “large enough” a richer dynamics appears, 

given the presence of tangent bifurcations leading to multiple cascades of period-doubling/period-halving bifurcations.  

Even if the original GM is based on starkly simplified hypotheses, it was able to capture for the first time the cyclical 

nature of the distributive conflict. Our extension allows to describe further relevant mechanisms in the economic cycle 

such as subcycles,  hysteresis and sensitive dependence on initial conditions, consenting at the same time to forecast 

employment “boom” even in the presence of aperiodic behavior.  

On this line, further modifications of the basic Goodwin’s assumptions, kept in our model, could be implemented, for 

instance changing the hypotheses on capitalists’ saving behavior and/or specifying in monetary terms the main 

variables. Such modifications are likely to lead to more realistic results, and are under consideration by the authors. 
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Figures and Tables 
 
 

 
 
 

Figure 1  
Original Goodwin model cycles. Orbits exceeding the meaningful domain (whose contour is represented by the dotted 
lines) are also shown . In this and in the next Figs., v = employment rate, u = wage share (a cross denotes the fixed 
point). 
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Figure 2 
Changes of the limit cycles obtained for different values of ρ2 (T = .3,  ζ0 = 100) with an anti-symmetric substitution 
function (m=0): symmetry of ζ(y) induces symmetry of the closed orbits.  It can be observed that as ρ2  increases the 
”overshooting” strengthens, until sub-cycles appear.  
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Figure 3 
Changes of the limit cycles for variation of ρ2 with an asymmetric ζ-function (T = .3,  ζ0 = 100,  m = 15).In comparison 
with the case m = 0 the overshooting is strengthened (the same increases of ρ2 lead to more subcycles), even if it occurs 
only for low values of the employment rate. 
 

 15



 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

u

v

 

 
Figure 4 
Limit cycles for T = .3 ρ 2 = 10 m = 0 and different values of ζ0 = 30, 50, 100, 200, 300. As ζ0 increases stable orbits contract, without 
changing their shape. It also can be seen that the larger is the value of ζ0, the smaller is the contraction effect. 
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Figure 5 
Limit cycles for increasing m (T = .3, ρ2 = 4, ζ0 = 100). An increase in m affects the shape of the cycles, which loose 
their symmetry. As the efficiency of the K-L substitution is strengthened, subcycles increase both in size and in number.  
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Figure 6 
Effect on the limit cycles of increasing T (for ρ2  = 4, ζ0 = 100, m = 15). As is evident from the figures, as T increases 
sub-cycles disappear and further increments of T causes a period-doubling bifurcation followed by a period-halving 
bifurcation that re-establishes a more “regular” dynamics.     
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Figure 7 
One-parameter bifurcation diagram (on the left), and a magnification of the same diagram after having continued the 
first period-doubling point (on the right), T = .4, ζ0 = 100, m = 15. Filled circles represent stable orbits, empty circles 
unstable ones; PD, PH, LP, stand respectively for period-doubling, period-halving and limit points (i.e., tangent 
bifurcations). Note the tangent bifurcation at ρ2 = 4.809 (LP lab. 7) by which a stable orbit of low period appears (P = 
4.63 at the bifurcation and increases up to 5.729 at the PD lab. 8): as will be evident in the following, this orbit is 
present together with chaotic regime. Furthermore, continuation analysis shows that PD lab.8 leads only to a doubled 
stable orbit with no further doublings.  
 

 
 
 
 

 
 

Figure 8 
Sequence of period-doubling bifurcations as ρ2 increases (ρ2 = 2.91, 3.45, 4.16 , 4.4, with period respectively: P = 3.28, 
6.78, 15.43, 61.25);  T = .4, ζ0 = 100, m = 15. 
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Figure 9 
Aperiodic attractor found, after the period-doubling sequence depicted in Fig. 7, at ρ2 = 4.5 (T = .4, ζ0 = 100, m = 15). Orbits are 
colored according to velocity: the minimum velocity is blue, the maximum velocity is red. The computed maximal Lyapunov 
exponent is: L≈ .037.   

 

 

 
 

Figure 10 
Magnification of the bifurcation diagram for T = .44 (ζ0 = 100, m = 15) after having continued the first PD point (lab. 5, 
ρ2=3.478, whit period at the bifurcation P = 6.63). After the PD and PH point (ρ2=3.992, lab. 12, and ρ2=4.197, lab.13, 
with period at the bifurcation respectively: P = 14.51 and P = 7.671), the presence of two LP (lab. 14 and 15) leads to 
two other PD/PH points (ρ2=4.3, lab. 16, and ρ2=5.93, lab. 17, with respectively P = 16.51 and P = 8.11). Continuation 
analysis shows that from PD lab. 12 only a doubled stable orbit appears coalescing at PH lab. 13, while PD lab. 16  
leads to two further PD/PH points (ρ2=4.328, P = 32.84 and ρ2=4.367, P = 16.23) followed by two LP and then by two 
other PD/PH points (ρ2=4.393, P = 31.42 and ρ2=5.905, P = 16.18). From then on there is a sequence, likely to be 
infinite, of PD’-PH-LP-LP-PD-PH-PD’-PH-LP-LP….where PD’ represent bifurcations giving rise to no further 
doublings. Note the LP lab. 9 at ρ2=5.027, by which an attracting orbit of low period, which is present together with 
chaotic regime, appears (P = 4.8 at the bifurcation).  
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i ρ2(i) Pi δi-1 T(i) Pi δi-1 
1 3.386 6.68  0.3596 7.36  
2 4.156 15.31 4,245 0.38735 15.24 3.43 
3 4.337 30.06 2.960 0.39544 30.54 4.004 
4 4.398 61.26 4.066 0.39746 61.2 4.488 
5 4.413 122.50 4.504 0.39791 122.4 4.591 
6 4.416 243.00 4.642 0.398008 244.82  
7 4.417 490.00  … …  

… … … …    
7’ 4.827 492.6     

6’ 4.828 246.40 4.5    
5’ 4.830 123.22 4.497    
4’ 4.843 61.62 3.870 0.4531 63.2  
3’ 4.890 30,84 2.885 0.4567 30.54 4.555 
2’ 5.026 15.51 2.032 0.4731 17.4 9.579 
1’ 5.303 7.752  0.6302 6.5  
       

Table 1-2 
Bifurcation values ρ2(i) and the sequence of δi approaching the Feigenbaum constant  (T = .4, ζ0 = 100, m = 15) (left ) 
and sequence of bifurcation values of T (ρ2  = 4.5, ζ0 = 100, m = 15) (right). It was more difficult to find the sequence of period-

halving bifurcations, given the presence of tangent bifurcation points right after the period-halving points.  
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