
The Dynamics of Software Testing

Abstract

In the modern information based society, failure of software systems can have
significant consequences. It has been argued that increased attention to testing
activities during the software development process can mitigate the probabilities of
system failure after implementation. However, in order to justify investments in
improved testing, the economic impacts of improper testing should be identified. In
this paper, we propose a systematic approach to the evaluation of the economic
impacts of software testing. The main factors affecting software testing are identified,
and a computer simulation model is developed to investigate different testing
scenarios. Usefulness of the suggested approach is demonstrated through several
exploratory simulations. The results prove the utility of the System Dynamics
modelling approach in building better understanding of the impact of software
testing. Implications for software development practitioners, researchers, customers
of software products and software support organisations are also discussed.

Keywords: Software testing, economics of software testing, System Dynamics,
software development process.

Introduction

Information technology has become an integrated and ubiquitous element in all kinds
of human activity. The Internet grew in less than two decades to achieve the status of
the largest information repository in human history. Computers, interconnected by
complex and interdependent networks, are running software applications that control
air traffic, satellite positioning, banking transactions and hospital emergency rooms’
equipment. With this increased dependence on information systems, technology
failures might have disastrous effects. Such failures may result from both the
hardware and software elements of the system, but while hardware design and
manufacture has accumulated an admirable track record of reliability and
dependability, software reliability has attracted much less attention.

The literature is inundated with reports on large scale disasters attributed mainly to
software failures. In some of these cases, human lives were lost (Beynon-Davies,
1999), (McKenzie, 1994). Several authors argue that such disasters would have been
avoided if the information system involved was designed and developed in a more
careful manner (Parnas et al., 1990), (Herzlich, 2005).

Different approaches have been proposed to address the software quality issue. While
they differ significantly in the techniques they suggest, the overarching aims are very
similar: preventing software failure by detecting and removing faults as early as
possible in the software development lifecycle. Proposed solutions include: testing
tools and methodologies, software development techniques, project management
disciplines and training and development schemes. The field of software testing in
particular grew substantially in the last decade. Researchers and practitioners within

1

this field are developing innovative methods for ensuring the reliability, dependability
and trustworthiness of software.

Despite the continuous development in the area of software testing, some may argue
that the proposed methods and techniques were not adequately embraced by software
developers. This may be attributed to two issues: firstly, no concrete evidence exists
to prove the beneficial effects of IT expenditure on organisational productivity and
performance. For example, in the USA, a few companies can offer evidence to
demonstrate that IT is one of several factors involved in an increase in productivity,
but at an aggregate level, there is little, if any, evidence of a positive impact (Carr,
2003), (Rai and Patnayakuni, 1997). Secondly, testing is perceived by many as a
complex and expensive undertaking. This argument is likely to continue to grow as
software applications are becoming larger and more complex (Whittaker, 2000).

In order to make the case for software testing, concrete evidence should be provided
to convince software developers and their customers of the value of testing, and of the
magnitude of negative consequences that may arise as a result of poor quality
software. The Research Triangle Institute (RTI) conducted a study for the National
Institute of Standards and Technology (NIST) in 2002 to estimate the impact of
inadequate software testing on the United States economy (NIST, 2002). Its findings
were that these costs range from $22.2 to $59.5 billion, or 0.06% of the U.S. GDP.

While this study provides significant results, the methods it adopted have several
limitations. These methods depend on a variety of assumptions. One is that the
respondents can make quantitative judgements concerning alternative prior choices
(for example, what would we have saved by finding every error at the stage in which
it was made). This requires the formation of a quantitative opinion, not about
something the respondents have done, but about something that they have not done.

In addition, the RTI study examines only two segments of two industry sectors. The
first is automotive and aerospace manufacturing and the second is financial services.
The two sectors chosen and the particular technologies studied are well suited to
quantification. Other sectors and technologies would arguably be less so. The study
calculates the national impact of inadequate software testing by attributing the results
for automotive and aerospace manufacturing to U.S. manufacturing industries at large
and the results of financial services to the service sector as a whole. Then it
aggregates the two in proportion to their relative contribution to the U.S. GDP. It does
not suggest how the resulting figure might be disaggregated to identify the
contributions made by each individual industry.

Other difficulties in calculating the impact of software testing arise from the fact that
quantitative data about testing is not usually systematically kept by software
development companies. Such data would cost significant amount to collect, maintain
and apply. Most firms are also reluctant to disclose such information to researchers,
on grounds of company confidentiality.

Moreover, software testing is an integral part of the software development process.
Therefore, isolating the factors that might affect testing effectiveness might not be

2

practically possible. Different approaches to software development require different
testing methods and techniques. This limits the utility of any generic approach to
calculate the effectiveness and impact of software testing.

In this paper we suggest a system dynamics approach to address some of these issues
and to aid investigation into the expenditure of software testing, the costs of
inadequate testing and the productivity gains and savings that would be generated by
investments in testing. This approach would provide researchers and software
development and testing practitioners with better insights into the value of testing and
enable them to test different hypotheses about the most appropriate testing
methodologies within specific contexts. The developed model can be utilised to make
the case for software testing and to clarify any assumptions made about its impact.

Method and Approach

The growing interest in software testing led many researchers and practitioners to
invest significant effort in investigating the value of testing and how it contributes to
the organisation’s competitive advantage. However, these works have raised more
questions than answers. Questions such as the following remain to be answered:

• What are the economic costs of inadequate IT systems testing infrastructure?
• What is the realistic cost reduction from feasible improvements to IT systems

testing to the economy as a whole and to specific industry sectors?
• What costs do users of IT systems incur as a consequence of inadequate IT

systems testing?
• What costs are incurred by IT development and support as a consequence of

inadequate IT systems testing?
• Are there any significant differences in these costs between different industry

sectors?

The problem was approached on the basis of a systems viewpoint. Our understanding
of the nature of software development led us to believe that, in practice, the processes
involved are characterised by delays and feedback, based on a set of relationships
(structure) between the activities involved. This implied the need to adopt an approach
that would enable us to determine the structure of software development processes
and to identify the relationships between variables, and to use the understanding
provided by doing this to guide the investigation into the nature and values of these
relationships.

We suggest that System Dynamics would be the most appropriate methodology to
achieve these aims. Developing a System Dynamics model of software testing based
on a “stocks and flows” view, and supported by one of the available software
simulation packages, would enable the behaviour of the system to be simulated and,
crucially, to conduct true “what if?” experiments by altering the values of constituent
variables or “policies” and demonstrating how this affects other values within the
model. This functionality would, we maintain, provide invaluable insight into
answering the questions listed above, while maintaining a high level of flexibility to

3

adapt to different situations and contexts. The following section describes the model
development process.

Model Development

System Boundary

This paper is intended to investigate the impact of software testing. Therefore, the
main focus of the model will be confined to the software development phases,
because software errors and defects are usually introduced during development.
Testing is also an integral part of the software development activities.

These phases include software design, coding and testing. The majority of errors in
software development occur during these phases (Nelson, 1974). We do not address
the introduction of errors arising from a failure to correctly derive the requirements
catalogue. Requirements elicitation is excluded from the system we are considering,
as the people involved in software development usually do not have sufficient control
over the requirements elicitation phase. In addition, some software projects start
without clearly defined requirements. By excluding the requirements elicitation phase,
the developed model will be more generic and applicable to a wider range of software
development projects.

Another phase that is considered external to the system under consideration is the
maintenance and support phase. This was also due to the lack of control of the
software development team on activities performed in this phase.

Model Structure

Following the main focus of this research on software testing, the testing phase of the
software development lifecycle will be the central element of the developed model.
Software testing includes all the activities that are performed during software
development to detect the maximum amount of errors within the software at an early
stage in order to produce appropriate fixes with minimum cost.

Other elements of the system should be modelled to provide the required inputs into
the software quality assurance process. These will include the software development
activities were errors are actually generated. Generated errors are also greatly
influenced by the expertise and skill level of the software development team (Belford
et al., 1977), therefore the human resources aspect of the project should be taken into
consideration. The effort dedicated to software testing and quality assurance has a
substantial impact on the behaviour of the system (Lehman, 1980), and aspects of
planning and control of the development project should be modelled to count for that
impact.

The first integrated system dynamics model for software development projects was
developed by Abdel-Hamid and Madnick (1991). The model was intended to explain
the interacting factors involved in the software development process. It was the first
model to reflect the complexity of software development processes. However, Abdel-

4

Hamid’s model had several limitations and we have also identified certain issues that
we aim to address.

Firstly, Abdel-Hamid's model made significant assumptions that, though valid 15
years ago, should be reconsidered today to reflect the developments arising from
research into different areas of software development. For example, the model made
many assumptions about the Error Introduction Rate and the Error Detection Rate in
the Software Testing section. The estimations of these values reported in the literature
at the time when the model was developed varied substantially, and required major
compromises on the accuracy of the values used. However, the area of software
testing has witnessed considerable progress since then, and the recent results, if
properly incorporated, should yield better reflection of the reality in the model.

Secondly, the model reflects only one, then popular, software development lifecycle:
the waterfall model. Most of the fundamental assumptions for the model development
are based on this approach, which raises many questions about its applicability and
validity to other approaches to software development. It is not clear, for instance, how
the model copes with changing user requirements or system specification.

Thirdly, model validation is rather weak. Abdel-Hamid used only one case study to
test the validity of his model, and no major efforts were directed into validating the
model using data from different projects and within different organisational settings
and industrial contexts. Furthermore, the selected case study was a software
development project at NASA, which limits the ability to generalise the validation
findings due to the specific characteristics of the development environment at NASA.

We used Abdel-Hamid’s model as the conceptual framework for the development of
our software testing model as it fairly reflects a significant part of the software
development process. However, fundamental differences in our model compared to
Abdel-Hamid’s were the results of developing the model capabilities to reflect
software testing dynamics in particular and eliminating many of the assumptions
made in this context by integrating recent research findings in the area of software
testing and its economic impact. We also validated the resulting model using more
recent industry data, and incorporated error classifications and impact.

Software Testing Sector

Software errors are inevitably introduced during several stages of the development
process. Many classifications of errors exist: coding errors, integration errors,
software bugs, to name a few. Residual errors that remain in the software after
deployment are the major cause of system’s failure. Software testing includes the
activities directed towards the detection and removal of these errors as early as
possible in the process so that the number of residual errors is kept to a minimum.
Figure 1 shows the Testing Sector of our software testing model.

5

Corrected Errors

Per cent of
Job Worked

Error Correction
Rate

Desired Error
 Correction Rate

Error Density

Mult to Productiv ity
 Due to Motiv ation and Comm Losses

DSI Per
Task

Potentially Detectable
 Errors

Error Generation
RateErrors Per Task

Testing Manpower Needed
to Detect an Error

Error Escape
Rate

Cumulativ e Tasks
Tested

Cumulativ e Residual
Errors

Error Detection
Rate

Error Introduction Rate

Detected
 Errors

~

Nominal Testing MP
Needed per Error

Errors Per Task

~
Nominal Rework MP

 Needed per Error

Actual Rework MP
Needed per Error

Mult to Productiv ity
 Due to Motiv ation and Comm Losses

Av erage
 QA Delay

Testing MP
Needed per Task

Sof tware Dev elopment
Rate

Testing Rate

Daily MP
f or Testing

Sof tware Dev elopment
Rate

Tasks
 Worked

Dev elopment
Rate

Cumulativ e
Tasks QAed

QA Rate

~
Multiplier Due to

Error Density
Def ect Remov al

 Fraction

Testing

Figure 1: Testing Sector

In most software development projects that involve more than one developer, the
project is divided into tasks that are allocated to each developer or group of
developers. A widely used measure of tasks is the number of Delivered Lines of
Source Code (DSI) proposed by Boehm (1981). Each task will contain a number of
errors, which can be calculated by multiplying the number of Delivered Lines of
Source Code (DSI) in each task by the Error Introduction Rate. Chulani and Boehm
developed the COnstructive QUALity MOdel (COQUALMO) to estimate the rates of
software defect introduction and removal (1999) (Figure 2).

The Error Generation Rate is calculated by multiplying the number of Errors per Task
by the Software Development Rate (which indicates the daily progress of the project,
measured by task/day). The Error Detection Rate is determined by the Defect
Removal Fraction calculated by the COQUALMO sector. Errors that escape detection
eventually become residual errors and add to the Cumulative Residual Errors stock.
These are the errors that cause the system to fail after implementation and thus
determine the economical impact of testing. Detected Errors can be corrected before
implementation. The Error Correction Rate is calculated according to the number of
detected errors and the timeframe within which these errors should be corrected.

In order to ensure the appropriate allocation of resources to undertake the required
testing and rework activities, man power requirements for the detection and correction
of errors should be determined. The man power needed to detect an error is affected

6

by several factors. First of all, error type has a significant role. The effort to detect an
error changes as the project progresses simply because errors change from design to
coding errors (Abdel-Hamid and Madnick, 1991). This behaviour is reflected in the
graphical function: Nominal Testing Man Power Needed per Error. Error density also
affects the required man power for error detection as the higher the error density in
particular software the less effort it requires to detect one. Similarly, the required man
power for error correction depends on the type of error being reworked (for example,
design errors are much more demanding to correct than coding errors). This is also
reflected in the model through the Nominal Correction Man Power Needed per Error
graphical function. In addition, Man power requirements for both error detection and
rework are affected by the communication overhead caused by the increase in the
number of team members. When the team becomes larger, the difficulty of
communications among team members increases, thus reducing the actual
productivity of the team.

COQUALMO Sector

This sector models the COQUALMO approach to the calculation of error introduction
and removal rates (Chulani and Boehm, 1999). The COQUALMO model identifies 21
defect introduction drivers that affect the Error Introduction Rate (Figure 2). These
drivers are grouped into four main categories: Platform, Product, Personnel and
Project. Chulani suggested numerical values for each of these drivers (Chulani, 1997).

These drivers are used to calculate the Quantity Adjustment Factor (QAF). The Error
Introduction Rate can be determined by multiplying the QAF by a Nominal Error
Introduction Rate (the number of errors without the impact of the quality adjustment
factor) (Chulani and Boehm, 1999).

COQUALMO estimates the number of detected errors through the Defect Removal
Fraction. This value is derived from three major profiles of testing activities, namely:
Automated Analysis, People Reviews and Execution Testing and Tools. Each of these
profiles has 6 levels, indicating the effectiveness of its contribution to defect removal.
Table 1 explains these profiles and the six levels associated with each:

Rating Automated Analysis People Reviews Execution Testing and Tools

Very
Low

Simple compiler syntax checking.

No people review.

No testing.

Low

Basic compiler capabilities for
static module-level code analysis,
syntax, type-checking.

Ad-hoc informal
walkthroughs.
Minimal preparation, no
follow-up.

Ad-hoc testing and debugging.
Basic text-based debugger

Nominal

Some compiler extensions for
static module and inter-module
level code analysis, syntax, type-
checking.
Basic requirements and design
consistency, traceability
checking.

Well-defined sequence of
preparation, review,
minimal follow-up.
Informal review roles and
procedures.

Basic unit test, integration
test, system test process.
Basic test data management,
problem tracking support.
Test criteria based on
checklists.

7

High

Intermediate-level module and
inter-module code syntax and
semantic analysis.
Simple requirements/design view
consistency checking.

Formal review roles and
procedures applied to all
products using basic
checklists, follow up.

Well-defined test sequence
tailored to organization
(acceptance / alpha / beta /
flight / etc.) test.
Basic test coverage tools, test
support
system.
Basic test process
management.

Very
High

More elaborate
requirements/design view
consistency checking.
Basic distributed-processing and
temporal analysis, model
checking, symbolic execution.

Formal review roles and
procedures
applied to all product
artifacts & changes (formal
change control boards).
Basic review checklists,
root cause analysis.
Use of historical data on
inspection rate, preparation
rate, fault density.

More advanced test tools, test
data preparation, basic test
oracle support, distributed
monitoring and analysis,
assertion checking.
Metrics-based test process
management.

Extra
High

Formalised specification and
verification.
Advanced distributed processing
and temporal analysis, model
checking, symbolic execution.
Consistency-checkable pre-
conditions and post-conditions,
but not mathematical theorems.

Formal review roles and
procedures for fixes, change
control.
Extensive review checklists,
root cause analysis.
Continuous review process
improvement.
User/Customer
involvement, Statistical
Process Control.

Highly advanced tools for test
oracles, distributed monitoring
and analysis, assertion
checking.
Integration of automated
analysis and test tools.
Model-based test process
management.

Table 1: Defect Removal Parameters (Chulani and Boehm,1999).

The COQUALMO model predicts the number of non trivial errors that are generated
and detected during the software development process. Chulani (1999) indicates the
importance of classifying errors in terms of their impact, which aligns with our aim of
estimating the economic impact of software failure. She identified three categories of
errors: critical (causing a system crash or unrecoverable data loss), high (causing
impairment of a critical system function with no workaround solution) and medium
(causing impairment of a critical system function but with a workaround solution).
Other researchers proposed similar approaches to software error classification
(Wagner & Seifert, 2005).

In our model, we follow COQUALMO’s suggestion to classify Residual Errors into
three categories: critical, high and medium. For each type of these errors, the
economic impact is determined based on the cost to the business of the consequence
of this error. This impact is industry-dependent and the model should allow enough
flexibility to enter values that match the industry in every specific scenario. After the
economic impact per error type is identified, the total value can be aggregated to give
an indication of the likely consequences of a certain level of testing during the
software development process.

8

Figure 2: The COQUALMO Sector

Model Validation

In order to establish a certain level of confidence in the developed model, its
behaviour must be validated against data collected from real projects. Unfortunately,
detailed quality information about software development projects is rarely reported.
However, few researchers have collected and reported such information in order to
support software quality research. Two aspects of our model required validation: the
software development process and the software testing elements. We used the same
dataset reported by Abdel-Hamid and Madnick (1999) to validate the software
development process as our model builds on their work. The data was collected form
the NASA DE-A project. Our model produced similar results based on the specific
project characteristics (Figures 3, 4). The slight differences can be attributed to the
updates made to the error introduction and error removal rates, which will certainly
result in slightly different distribution of the available workforce.

9

Figure 3: Scheduled Completion Date: Our Model (left) Abdel-hamid’s (Right)

Figure 4: Full Time Equivalent Task Force: Our Model (Left) Abdel-Hamid’s (Right)

The validation of the software testing elements of the model was conducted using
datasets from the NASA Planetary Rover Robot software project, which was used by
Boehm et al. (2004) to test the iDave quality model based on COQUALMO. This
project consists of 380,000 DSI and has all its error introduction drivers and testing
profiles identified. Our model produced very close results to those reported by Boehm
et al. (2004). Table 2 shows the project variables and testing profiles used and Table 3
presents the number of residual errors calculated by our model and the values
published by Boehm et al.

Parameter Value Parameter Value
Platform

Required Software Reliability Very Low Data Base Size Low
Required Usability Neutral Documentation Match to Life-Cycle

Needs
High

Product Complexity Neutral
Product

Execution Time Constraint Very High Main Storage Constraint Very High
Platform Volatility Neutral

Personnel
Analyst Capability Very High Programmer Capability Very High
Applications Experience High Platform Experience High
Language and Tool Experience High Personnel Continuity High

10

Project
Use of Software Tools High Multisite Development Very High
Required Development Schedule Neutral Disciplined Methods Neutral
Precedentedness High Architecture/Risk Resolution Very High
Team Cohesion Very High Process Maturity High

Testing Parameters
Automated Analysis Very Low

People Reviews Very Low
Execution Testing and Tools Very Low
Table 2: Software Testing Environment for the NASA Planetary Rover Case Study

Table 3: Reported and Simulated Results of Residual Errors in NASA PR Case Study

Scenario Testing and Analysis

After an acceptable level of confidence in the model’s behaviour is established, it can
be utilised as a testing vehicle to experiment with different scenario options. Such
experimentation should aim to answer possible questions about the economic impact
of software testing. The results of this exercise can provide invaluable input into the
planning process of any software development project. Decisions to include or
exclude certain tools and practices can be better justified and taken with higher
confidence.

In the following exercise we will use a hypothetical project (SoftWeb) to test different
testing scenarios in order to gain some insight into the value of software testing. The
project variables fed into the model are summarised in Table 4 below.

Table 4: SoftWeb Project Variables

The project behaviour was simulated first to determine the impact of implementing
People Reviews in the testing activities. The following three scenarios were
simulated:

Scenario Level of People

Reviews
Description Value in

the Model
1 Low No people review 0
2 Nominal Well-defined sequence of preparation, review,

minimal follow-up.
Informal review roles and procedures.

2

3 Extra High Formal review roles and procedures for fixes, change
control.
Extensive review checklists, root cause analysis.
Continuous review process improvement.

5

Number of Residual Error
Reported 9,216
Simulated 9,155

Variable Value
Project Size 100,000 DSI
Time to Develop 400 Days
Hiring Delay 30 Days
DSI Per Task 60

11

User/Customer involvement.
Statistical Process Control.

Table 5: People Review Scenarios

Figure 5: Residual Errors (left) and Cumulative Rework Man Days (right)

Figure 5 shows the results for two variables: Residual Errors and Cumulative Rework
Man Days. When errors escape the testing process and become residual errors in the
software, they are usually referred to as “defects”. The impact of incorporating people
reviews in the testing process is clearly demonstrated by the significant reduction in
the number of residual errors (or defects). This number decreased from 2480 defects
when no people reviews were used, to 1380 using nominal levels of review and
informal procedures, and ultimately reached 554 defects at the highest level of people
reviews. The graph also exhibits an increase in the completion time of the project with
the incorporation of higher levels of people reviews. Such delay would result in
excessive costs and should be appropriately planned for from the outset.

Costs of additional reviewers and schedule slippages are not the only costs associated
with implementing software testing techniques. The primary aim of any increase in
testing levels is to discover as many errors as possible prior to software release.
However, when these errors are detected, resources should be allocated to correct
them. The Cumulative Rework Man Days graph in Figure 5 reflects this behaviour.
As the level of people reviews is increased, the number of man days allocated for
error rework grew from 0 when no reviews were conducted (as no errors were
detected) to 202 at the nominal level and to 362 at the highest level. Both graphs shot
upward towards the end of the project, which reflects the typical increase in testing
activities before the software release date.

In order to justify the investment in improved testing (by incorporating people
reviews in this scenario) and the subsequent costs of higher staffing levels and longer
development times, the savings associated with decreasing the number of software
defects should be calculated. These calculations require the attribution of a monetary
value to each class of software defects. Accurate identification of the economic
consequences of software failure due to each class of defect heavily depends on the
context in which the software is implemented. Our model provides enough flexibility
to adapt these values according to the specific industry in which the software product
will be deployed. For the purposes of our scenario, we assume the following
distribution of errors and the associated economic impact of the occurrence of each
(Table 6).

12

Classification Percentage Impact £

Medium 5 % 100.00
High 38 % 1,000.00

Critical 57 % 10,000.00
Table 6: Distribution and Economic Impact of Residual Errors

The same simulation was repeated with the scenarios described above for the level of
people reviews: 1: low, 2: nominal and 3: extra high. The aggregate economic impact
of software defects (or residual errors) of each scenario is reproduced in Table 7.

Scenario 1 Scenario 2 Scenario 3
No of Errors Impact £ No of

Errors
Impact £ No of Errors Impact £

Medium 1,373.18 137,318.35 786.83 78,683.41 315.83 31,583.22
High 915.64 915,455.66 524.56 524,556.09 210.55 210,554.80
Critical 120.45 1,204,546.92 69.02 690,205.39 27.70 277,045.79
Total 2,409.09 2,257,320.95 1,380.41 1,293,444.90 554.09 519,183.82

Table 7: Economic Impact of Residual Errors in SoftWeb

The results reported in Table 7 clearly demonstrate the significant savings that could
be achieved by incorporating higher levels of people reviews within the software
development process. These savings can be weighed against the costs associated with
the addition of people reviews in order to make an informed decision about the most
appropriate level of testing.

One of the questions that may arise when deciding on software testing tools and
techniques is: what is the most effective method of software testing? Project managers
with tight budgets could utilise the model to compare the outcomes of several testing
options in order to maximise the return on investments from their budget. The
following simulation compares three scenarios. In the first scenario, the highest level
of automated analysis is utilised, with no people reviews and no execution testing and
tools. The second scenario demonstrates the use of the highest levels of people
reviews with automated analysis and execution testing and tools set at their very low
level. Lastly, in the third scenario, only execution testing and tools is implemented,
with no automated analysis or people reviews. The results of the simulation are
provided in Figure 6.

Figure 6: Comparison between different testing strategies

13

As evident from the graphs in Figure 6, people reviews proved to be the most
effective method in the SoftWeb project, detecting 1855 errors. Execution testing and
tools closely follows, yielding 1751 errors, while automated analysis proved to be
much less effective, and captured 1164 errors only.

Conclusions and Implications

This paper presented the importance of software system testing, and provided some
examples of large scale disasters caused mainly because of software failures. It has
been argued that such failures could have been avoided if appropriate testing
processes and mechanisms are integrated within the software development process.
However, there is not enough evidence in the literature to support an objective
justification for such claims. Testing is perceived as an expensive extension of the
development process, and any investments in testing require a convincing and
supported business case.

Many factors contribute to the difficulty of collecting and compiling compelling
evidence about the economic impact of software testing. These include the complexity
of the software development process itself, the large number of interacting factors
within this process and industry-dependence of the economic impact of software
failure, to name a few. Moreover, reliable data about defects in software projects is
very hard to collect. Such information may be considered damaging to the reputation
of the software development firm, or it may be protected for competitive reasons.

We proposed a System Dynamics approach to the problem of determining the
economic impact of software testing. System Dynamics provides a structured method
to examine the nature of the problematic situation from a systematic point of view. It
also supports computer based simulation tools that enable the testing of different
scenarios to support decision making.

The dynamic model presented in this paper incorporates the system testing activities
within the overall software development process, and accounts for the
interdependencies between the testing elements and other project factors. The model
behaviour was validated using two published datasets about software development
projects. Results produced by the model were similar to those reported in the
literature, which established an acceptable level of confidence in the model’s
behaviour.

The model utility was then demonstrated through a series of scenarios developed to
answer several questions related to the impact of software testing. The simulation
results of these scenarios revealed useful insights into the importance of testing.
Significant economic savings could be achieved by improving the testing methods and
techniques within the software development process and the implementation of new
approaches. The scenarios also uncovered several issues that should be taken into
consideration during the planning phase of the project. For example, in addition to the
costs of more staffing to conduct the testing activities, these activities will expose
higher numbers of software errors. Additional man power should be allocated to

14

rework the discovered errors, which will incur more costs to the project. Furthermore,
increased testing levels will lead to longer development times, as more effort should
be allocated to testing and rework activities.

Our contribution has several implications to software development practitioners and
researchers, customers of software products and software support organisations.
Software development practitioners can utilise the model to explore different
scenarios related to their particular project and make appropriate decisions
accordingly. Such decisions may include determining the required level of particular
testing technique, selecting the most effective testing mechanism, justifying
investments in testing based on the economic consequences of lower software quality,
planning the appropriate level of staffing during different stages of the project
lifecycle and estimating project costs.

Researchers could use the model to investigate the effects of different testing tools
and techniques on the overall software development process. This analysis can guide
the development of new or improved tools and methods and the prioritisation of
software testing research agenda. The computer simulation model offers an invaluable
tool to experiment with different settings and options in a very short period of time.
Something that can not be achieved otherwise without observing lengthy software
development projects, which may cause serious delays to the research project.
Moreover, the model can be used to safely test “destructive” scenarios which may
lead to disastrous results if implemented in a real project.

The model also provides customers and support organisations with a useful tool to
evaluate and compare several software products or development firms when making
any purchase decisions. Software users with rigid requirements for reliability may
mandate the use of certain levels of testing or particular tools and techniques in their
requirement documents and software development contracts. More informed and
justified decisions can be made with regard to the software expenditure when the costs
and consequences can be more accurately estimated and accounted for.

References

Abdel-Hamid, T. K. & Madnick, S. E. 1991. Software Project Dynamics. Englewood
Cliffs, New Jersey, USA: Prentice Hall.

Belford, P. C., Donahoo, J. D. & Heard, W. J. 1977. An Evaluation of The
Effectiveness of Software Engineering Techniques. COMPCON '77, Vol., Iss., 6-9 Sep
1977.

Beynon-Davies, P. 1999. Human Error and Information Systems Failure: The Case of
the London Ambulance Service Computer-aided Despatch System Project. Interacting
with Computers 11 6.

Boehm, B. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall Inc.

15

Boehm, B., Huang, L., Jain, A. & Madachy, R. 2004. The ROI of Software
Dependability: The iDAVE Model. IEEE Software, 21(3).

Carr, N. 2003. IT Doesn't Matter. Harvard Business Review.

Chulani, S. & Boehm, B. 1999. Modeling Software Defect Introduction Removal:
COQUALMO (Constructive QUALity Model). The Center for Software Engineering,
University of Southern California, Los Angeles, CA.

Chulani, S. 1997. Results of Delphi for the Defect Introduction Model – Sub-Model of
the Cost/Quality Model Extension to COCOMO II. Technical Report, USC-CSE-97-
504, Computer Science Department, University of Southern California, Centre for
Software Engineering.

Herzlich, P. 2005. The Need for Software Testing. Ovum Research: London, UK.

Lehman, M. M.. 1980. Programs, Life Cycles, and Laws of Software Evolution
Proceedings of the IEEE, Vol.68, Iss.9.

McKenzie, D. 1994. Computer-Related Accidental Death: an Empirical Exploration.
Science and Public Policy 21 4, pp. 233–248.

Nelson, E. A.. 1974. Software Reliability, Verification and Validation. Proceedings of
the TRW Symposium on Reliable, Cost-Effective, Secure Software. Redondo Beach,
CA: TRW, Inc.

NIST. 2002. The Economic Impacts of Inadequate Infrastructure for Software Testing.

Parnas, D. L., van Schouwen, A. J. & Kwan, S. P. 1990. Evaluation of Safety-Critical
Software. Communications of the ACM, vol. 33, pp. 636-648.

Rai, A. R. & Patnayakuni, N. 1997. Technology Investment and Business Performance.
Communications of the ACM (40 :7).

Wagner, S. & Seifert, T. 2005. Software Quality Economics for Defect Detection
Techniques Using Failure Prediction. In Proceedings of the 3rd Workshop on Software
Quality (3-WoSQ). ACM Press.

Whittaker, J. A. 2000. What is Software Testing? And Why is it so hard? IEEE
Software, v.17 No.1, pp.70-79.

16

