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We will explore how to value using modern financial techniques the development of new 
alternative energy technologies (AETs) given uncertainty.  Uncertainty in developing AETs 
derives from: (1) the reduction in installation cost of new generation capacity as experience 
with the technology is gained, i.e. the learning curve (2) oil and natural gas price cycles; and 
(3) other macroeconomic and geopolitical forces, particularly the behavior of national oil 
companies  (Aramco,  PDVSA,  PEMEX,  etc.).   Evaluating  a  new AET properly  requires 
representing these uncertainties as well as an investment valuation approach that works well 
under high uncertainty.  In particular, we propose to adapt the real options methodology to 
value the potential return from developing alternative energy technologies using stochastic 
system dynamics models  representing the  uncertainty in  both the  learning curve and the 
fossil fuel price cycles.  The proposed algorithm to accomplish this valuation leverages the 
prior work on real options valuation in the decision analysis literature.
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1. Introduction
According to the International Energy Agency in its 2006 World Energy Outlook, “The world 
is  facing twin energy-related threats:  that  of not having  adequate and  secure supplies  of 
energy at affordable prices and that of environmental harm caused by consuming too much 
of it.”  Oil prices began 2007 near record levels. In the long term, the situation will likely 
worsen.   World  oil  demand  is  projected  to  increase  by  50  percent  by  2030,  driven  by 
economic growth in China, India, and other non-OECD countries.    Meanwhile, geopolitical 
factors such as the Iraq war and the strike by PDVSA (Venezuela’s national oil company) as 
well  as  ultimately  finite  fossil  fuel  reserves  will  constrain  supply.  Overhanging  these 
economic issues is the specter of environmental harm, particularly the potential for global 
warming.   Global  carbon  dioxide  emissions  are  projected  to  increase  to  40  billion  tons 
annually by 2030, a 55% increase over today’s level. 

One natural suggestion to reduce the impact of these issues is to develop alternative energy 
technologies, such as, for example, wind power.  However, developing these technologies has 
proven problematic.   When new technologies  are  launched,  generally  they lack the  cost 
efficiency  their  conventional  counterparts  enjoy,  and  their  viability  depends  on  the 
performance  of  the  conventional  technology.  Alternative  energy  technologies  target  the 
electricity generation market whose price dynamics largely follow natural gas prices (Figure 
1). Furthermore, the major alternative energy technologies like wind and solar power are 
used  as  intermediate  load  plants,  for  which  the  dominant,  conventional  technology  is 
combined-cycle natural gas plants. Hence, natural gas price -or equivalently1 oil price- is one 
major determinant of how competitive and viable alternative energy technologies will be. 

Electricity Price vs Natural Gas Price
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Figure 1: Electricity Price vs. Natural Gas Price

1 Natural gas and crude oil are substitutes in consumption and complements in production.   Hence, economic 
theory suggests a strong relation between their prices. This relationship has been subject to extensive analysis. 
Oil prices are found to influence the long-run development of natural gas prices but are not influenced by them 
(Villar et al., 2006). 
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Yet,  these  prices  are  highly stochastic  and influenced by geopolitical  or  macroeconomic 
short-term factors as shown in Figure 2.2  For example, the current peak in oil prices appears 
due to a confluence of long-term economic growth in Asia as well as the PDVSA Strike and 
the Iraq war.  

Figure 2:  Real Oil Prices since 1947 including Macroeconomic/Geopolitical Shocks

One of the reasons for this underdevelopment is the difficulty in placing a value on the return 
from investing in projects employing them.  Not only are fossil fuel prices highly stochastic, 
but so is the cost of developing new technology. The bulk of most AETs’ cost structure lies in 
their  non-recurring costs.  These  costs  typically  experience—like  most  other  technologies 
(Argote 1999)—a steep reduction in  cost  with each doubling of  the cumulative capacity 
installed.  However, the steepness of this “learning curve” as well as its final “plateau” are 
generally uncertain  ex ante.   For example, consider the case of concentrated solar power 
(CSP), a highly promising renewable technology that uses parabolic mirrors to concentrate 
sunlight to heat fluids that can drive electricity-generating turbines (Figure 3).  A number of 
CSP initiatives were begun in the 1980s during a previous bubble in energy prices.  However, 
when this bubble collapsed, so did the economic viability of the projects and most of the 
firms and suppliers involved are no longer extant. Hence, new CSP projects may find they 
have to “reinvent the wheel” by redeveloping tacit technological knowledge lost since the 
last concentrated solar power installation was completed in 1992.  In contrast, wind power 
(Figure 5) managed to emerge from the 1980s sufficiently viable that it has continued to 
grow apace and can now (as of 2004) generate electricity more cheaply than fossil fuels.  
However, it too is experiencing similar uncertainties in its learning curve because windmill 
architecture is still in flux.

2 From the website of WTRG economics. http://www.wtrg.com/prices.htm  
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Concentrated Solar Power

 Enough electric power for the entire US economy 
can be generated by covering a 100 mile square of 
Nevada with parabolic trough systems 

 Preferred techological architecturestill in flux
 Learning curve approximately 30%
 No new installations since 1992.

Figure 3:  Concentrated Solar Power Summary Facts

Of course,  broadly speaking,  we are not interested in CSP or wind power  per se but  in 
determining whether any technology invested in during the onset of a fossil fuel price bubble 
can be expected to gain a sufficient “escape velocity” to survive a future, probable collapse in 
fossil  fuel prices.   The system dynamics methodology has demonstrated its  capability of 
generating models that can plausibly track both fossil fuel prices (Sterman 1981; Naill et al. 
1992; Morecroft et al. 1992, Davidsen et al. 1990, etc.; see Ford (1997) for a list of early SD 
work on electric power) and technology “learning curves” (Anderson and Parker 2002). 

However, even once an appropriate SD model is built (as described in Section 2), evaluating 
whether to proceed with an AET project still remains difficult because the rate at which a 
firm implements such a  project is an ongoing decision. Within certain constraints, such a 
project can be accelerated, decelerated, or abandoned at any time depending on the evolution 
of fossil fuel prices and the cost of the AET capacity.  The standard method for evaluating 
projects  with such managerial  flexibility is  the real  options approach (Dixit  and Pindyck 
1994). Standard real options models of the underlying project to be evaluated remain highly 
unrealistic, generally depending on black box models of price and cost evolution such as 
Brownian motion.   However, implementing real options evaluation approaches in system 
dynamics, while not unknown (Danner et al. 1999), remain problematic for reasons described 
in Section 3.  To circumvent these issues, we propose instead to transform an appropriate 
system dynamics model first into a decision tree using the methodology of decision analysis 
(Clemen 1997), in a manner similar to that discussed in Osgood (2005), prior to valuation. 
We then use the methods developed in the Decision Analysis (DA) literature (e.g. Brandao et 
al. 2005) to evaluate decision trees with the real options methodology (Brandao et al. 2005). 
Section 4 presents this approach, combining SD, DA, and real options methodologies, in 
detail, as well as some limitations to this approach.  Finally, Section 5 briefly concludes the 
paper. 
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2. Toward an Appropriate System Dynamics Model for AETs 
Below, a sector diagram of a proposed SD model for evaluating AETs is presented:
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Figure 4: Sector Diagram of the SD Model

Cash flow and investment decision sectors lie at the heart of the model. Revenues accrue 
based  on  the  electricity  price  and  generation;  whereas  costs  are  incurred  with  capacity 
acquisition and through operating and maintenance. State and/or federal regulations play a 
key  role  in  determining  the  profitability  of  an  investment  project.  For  example,  the 
production tax credit (PTC) and its expiration date have been major determinants of wind 
capacity investment. 

Implicitly, there is a supply-chain structure in the model: The supplier, which installs the 
equipment for the energy plant (e.g. windmills), and the generating firm, which evaluates the 
investment opportunity. The supplier enjoys a reduction in its installation costs as the firm 
acquires more capacity. Hence, the more the generating firm invests, the lower the costs it 
will  face  in  his  future  investments3.  The  supplier  also  takes  some  advantage  of  global 
technological  improvements,  which is  approximated as the impact of a “global”  capacity 
acquisition level. 

The model is built for a medium scale firm, which is a price-taker. As described in Section 2, 
electricity price dynamics largely follow the dynamics of natural gas price.  Gas price sector 
is kept exogenous to the model based on the fact that no alternative energy technology is 

3 Similar feedback relations in this context have been modeled in Ford (2006) and Vogstad (2004).
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likely to affect the gas price dynamics within the time horizon of the model (less than 10 
years). The essential feedback mechanisms that determine the gas price and learning curve 
dynamics are depicted in the causal loop diagram in Figure 5. 
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Figure 5: Causal Loop Diagram of the SD Model

Note that the particular SD model we have just described does not lie at the core of this 
paper.  Other models may very well describe the phenomenon of AET technology better. Our 
focus  is  rather  on  developing  the  methodology to  evaluate  an  AET capacity  investment 
project with both a reasonable gas price model (i.e. better than a mean-reverting Brownian 
motion  model,  which  is  standard)  and  an  endogenous  learning  curve  for  the  alternative 
energy technology. 

3.  System Dynamics, Real Options, and Decision Analysis

Problems with Real Options Valuation

Traditionally  in  many  real  life  projects,  investment  opportunities  are  evaluated  using 
discounted cash flow (DCF) analysis. However, the adequacy of this rule is challenged when 
a  project’s  expected  cash  flow  profile  is  facing  significant  uncertainties  and  when  the 
management has the flexibility to respond to these uncertainties. For example, a standard 
DCF approach would be unable to account for the managerial flexibility to accelerate, delay, 
or abandon a project.  Hence DCF analysis systematically undervalues the projects with high 
uncertainties  and accompanying managerial  flexibilities.  In  such projects,  the use  of  real 
options valuation approach is recommended. 
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A real option is the right but not the obligation to take a certain action in the future depending 
on  how  uncertainties  evolve.  Real  options valuation  approach  interprets  managerial 
flexibility as “options on real assets”,  which can be valued similarly to financial options 
(Dixit and Pindyck 1994). It allows strategy changes based on how some uncertainty has 
been resolved, which makes it an effective method of risk management. 

Despite its conceptual appeal, real options valuation is not widely used in practice. This is 
attributed  mostly  to  the  mathematical  complexity  of  the  traditional  valuation techniques, 
which make the solution process obscure (Triantis, 2005), and to the restrictive and typically 
unrealistic  assumptions  upon  the  interactions  and  distributions  of  the  system’s  random 
variables necessary to provide a tractable solution.  Some progress toward model “realism” 
has been made with the adaptation of the decision analysis (DA) methodology to real options 
problems (e.g. Brandao et al. 2005), which we shall return to later.

Real Options Valuation and System Dynamics

Real options valuation traditionally models the uncertainty by assuming an input distribution 
or a stochastic process. For example, generally, the price of electricity is assumed to follow a 
geometric Brownian motion and commodity prices (e.g. natural gas) are assumed to follow a 
mean reverting geometric Brownian motion process. Yet, as already discussed above, fossil 
fuel  prices  are  not  a  stationary stochastic  process,  even in terms of the long-term mean. 
Hence, conventional black-box stochastic processes are insufficient to capture the subtleties 
such complexity introduces.  Modeling the essential  structure that produces this complex 
price behavior via system dynamics methodology potentially improves the reliability of the 
ultimate valuation. One particular benefit  of  using system dynamics in this context is its 
ability to model path-dependence, which is critical to obtain the learning curve effect. 

Using system dynamics also makes it possible to add multiple sources of uncertainty without 
increasing the complexity of the problem significantly. Furthermore, the ability to describe 
the  distribution  of  uncertainty  around  SD  variables  is  straightforward  given  the  SD 
methodology’s  emphasis  upon the  use  of  concrete  variables  that  correspond tightly  with 
observable and “real”  phenomena (Sterman 2000),  such as modeling the revenue from a 
windmill installation as the product of the variable electricity cost (i.e. natural gas price), the 
amount of energy generated per windmill, and the number of windmills. In this example, one 
can represent the randomness from weather as a random distribution in wind speed, which 
then directly affects the energy per windmill.  Given that, in the context of our problem, it is 
the multiple—and possibly interacting—sources of uncertainty that make difficult to develop 
proper  project  valuations,  the concreteness and flexibility offered by system dynamics in 
defining  both  endogenous,  non-linear  systems  and  separate  stochastic  effects  is  a  clear 
advantage.  Finally, system dynamics provides clearer insights into the drivers of the option 
value and the effect of a certain strategic action (Johnson et al. 2006; Danner et al. 1998). In 
view of these potential benefits, one objective of this research is furthering system dynamics 
as a new tool in real options valuation, following the work of Johnson et al. (2006) and Ford 
et  al.  (2005).   However,  using  a  real  options  approach  to  track  sequential—let  alone 
continuous—decision processes is difficult using standard techniques. 
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What is difficult to capture in System Dynamics is optimizing a sequential decision process, 
e.g.  capturing a generating firm’s making a decision in 2008 upon whether to accelerate, 
maintain, or suspend a project, which presupposes knowing what will be best choice at the 
decision points in 2009, 2010, etc. given the conditions pertaining at those times.  The way to 
solve  these  problems  typically  involves  backwards  induction.   As  a  short  example  of 
backwards induction, consider a simple project with decision points in 2009 and 2010.  A 
firm would first  calculate  the best  decision possible  for  2010 given any potential  set  of 
economic and firm conditions.  The firm would then be able to map each set of conditions in 
2010 with a best decision under that set of conditions.  Once all the potential 2010 decisions 
are mapped, then for all sets of conditions that could exist in 2009, the firm would make its 
2009 decision.  This 2009 decision would be based both upon the set of 2009 conditions as 
well as upon the knowledge that the 2009 decision will lead to a probability distribution of a 
set of economic and firm conditions for 2010.  Importantly, however, the firm in 2009 knows 
ex ante how each of these potential 2010 conditions is already mapped to an appropriate 
decision  for  2010.   Because  this  is  the  very  managerial  flexibility  that  the  real  options 
approach seeks to capture, modeling such a decision process and the backwards induction 
necessary to “solve” it  is  crucial  to evaluating AET—and many other  sorts  of—projects. 
However,  the  forwards  integration  nature  of  system  dynamics  simulation  evaluation 
algorithms  is  incompatible  with  backwards  induction.   In  principle,  this  is  not 
insurmountable; backwards induction solutions to many system dynamics-like problems can 
be seen in any standard dynamic programming text, such as Bertsekas (2005).  But another 
approach may be simpler than directly mating backwards induction to system dynamics and 
yield some important ancillary benefits.

Decision Analysis
  
 In contrast to system dynamics, decision tree analysis (or simply decision analysis or DA) is 
an intuitive approach commonly used to model sequential decision processes (Clemen 1997) 
and is designed to be compatible with backwards induction. In view of these benefits, there 
have been studies working on ways to apply decision tree analysis to real option valuation 
problems (See Brandao et al. 2005 for a review). In particular, decision trees can be used to 
model a discrete approximation of project uncertainty and managerial flexibility with only a 
few adjustments to  the traditional  decision tree analysis  in  order to  make a  theoretically 
sound real option valuation. For example, using the replicating portfolio method makes it 
possible  to  obtain  the  correct  discount  rates  for  the  project  and  capture  the  market 
information about risk in valuing the project.  DA is also appealing because DA models are 
simple to explain to non-practitioners.  However, the stochastic distributions of cash flows 
resulting from DA typically are difficult to determine in practice because they result in part 
from non-linear mappings of mutually interacting stochastic, endogenous variables such as 
numbers of windmills, etc., which are what system dynamics is good at representing. 
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4. The Proposed Valuation Algorithm

Because  of  the  complementary advantages  of  system dynamics  and  decision  analysis  in 
representing  stochastic  models  and  decision  processes,  we  propose  the  following 
methodology  that  hinges  upon  first  formulating  a  system  dynamics  model  and  then 
transforming it into a corresponding decision analysis tree.  Backwards induction is then used 
upon the decision tree to obtain a real options valuation of the project.   To illustrate the 
details of this procedure, consider the extended example below, which is a simplified AET 
project.

We illustrate the proposed solution procedure with another simple example based on the one 
discussed  earlier  when  discussing  backwards  induction.  Suppose  that  we  have  built  a 
simplified  stochastic system  dynamics  model  that  captures  the  essentials  of  capacity 
investment, fossil fuel price and learning curve dynamics. Further suppose that the horizon of 
a  particular  investment  problem  is  two  years.  In  each  year—say  2009  and  2010—the 
manager has to decide how much to invest in new capacity.  For simplicity, she can only 
choose between three rates of capacity expansion: high, moderate, or none at all (“suspend”). 
Depending  on  the  firm’s  decisions  and  on  how  the  fossil  fuel  price  and  capacity  cost 
uncertainties evolve, the cash flow at the end of each of the two years may be high, nominal 
or  low.   (The  “low”  level  may  possibly  be  negative).  This  decision  problem  can  be 
represented with the decision tree in Figure 6. 

Basic components of a decision tree are as follows: Square nodes are the  decision nodes, 
which represent the decisions to be made at a particular time, like “invest high or suspend”. 
Circular nodes are the chance nodes, which represent the uncertainties underlying the project. 
Triangular nodes are the terminal nodes that depict the final outcome of a particular scenario 
after all  decisions have been made, all  uncertainty has been resolved and all  payoffs  are 
received.  Branches  leaving a  decision  node  represent  the  decision  alternatives.  Branches 
leaving a chance node represent possible outcomes of uncertain events4. Time flows from left 
to right. 

4 For visual clarity, a limited number of terminal nodes and branches are shown in Figure 9. 
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Figure 6:  Decision Tree and Outcome Distributions

In traditional decision analysis models, probabilities are assigned to each branch leaving a 
chance node. These exogenously assigned probabilities are generally either the (subjective) 
beliefs about the likelihood of a specific “event” represented by the chance node or the risk 
neutral-measures derived from these (subjective) beliefs.  However, since we endogenously 
account for the uncertainties within an SD model, we will use a different approach in this 
study: Chance nodes will represent the distribution of the cash-flows at time t (either 2009 or 
2010), which will be from the stochastic SD model for each combination of decisions in 2009 
and 2010.  Each possible sequence of decisions is referred as a decision rule. A decision rule 
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is a function that specifies the sequence of actions given any possible history of events. In 
this example, the horizon of the investment problem,  T,  is 2 and the number of decision 
alternatives at any decision node, n, is 3. At each time period, the manager can choose any of 
the 3 alternatives:  invest high (H),  invest moderately (M), suspend (S).  This results  in 9 
decision rules as can be seen from the table below. Note that it is straightforward to impose 
these rules in the SD model with a few additional if-else type equations.

Rule ID
Decision in 
2009

Decision in 
2010

1 H H
2 H M
3 H S
4 M H
5 M M
6 M S
7 S H
8 S M
9 S S

Table 1: Decision Rules for the Example Problem

In order to value the project, first we need to run Monte Carlo simulations of the SD model 
for each decision rule in Table 1. Each Monte Carlo run gives a cash flow distribution for the 
associated terminal node. We determine the value of the probability distribution of cash flows 
for each terminal node by finding the value of an appropriate security or a portfolio with the 
same risk-return profile5. The value of the twin security or replicating portfolio can then be 
substituted for the value of the terminal node.  This implies that the associated probabilities 
will also be endogenously determined. Such an approach is particularly useful here because 
we are path-dependent with respect to the cumulative investment up to time t.   

After obtaining the market adjusted value for each terminal node, we begin with evaluating 
the decisions at the final period 2010 and move backwards using backwards induction as 
described earlier (Bertsekas 2005).  At each decision node, the better of the two decisions can 
be chosen based on that valuation and the worse “pruned off” so that the value of the better 
decision can be substituted for the “cash-flow” at time 2010. We can then begin to evaluate 
the impact of decisions made at period 2009 using the valuations for each of the period 2010 
random outcomes as described above.  We could then, in principle, continue in this manner 
for additional previous periods, determining the random distribution of cash-flows for the 
potential decisions made, valuing those cash flows, “pruning” the inferior decision branches, 
and then proceeding to the next previous period.  This will continue until the first period of 
the project.  At that point, we will obtain a final valuation for the project as a whole. This 
valuation will  incorporate  not  only management  flexibility but  also the  market  or  “true” 
valuation of the risk involved in the project. 

5 In this context, an appropriate place to look for such securities could be natural gas futures market.
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In summary, consider the generalization in Figure 7 of the example just described.  Using this 
method, we can gain all the advantages of a system dynamics model while still obtaining an 
appropriate real options valuation.

Figure 7: Steps of the Proposed Algorithm

Step 1-Create the SD Model:  Build a  deterministic  SD model of AET capacity investment,  fossil  fuel 
prices, and learning curve dynamics. 

Step 2-Specify Random Processes and Distributions: Model the underlying uncertainty of the project within 
the SD model.  In  this  case,  there are multiple  sources of  uncertainty:  those determining the gas  price 
realization and those determining the learning curve effect realization. 

Step 3-Determine the Decision Variables: Determine the decision alternatives of the project manager, which 
are invest high, invest moderately, or suspend in the simple example6. 

Step 4- Translate the Valuation Problem to a Decision Tree: The next step is constructing the decision tree 
based on the decision alternatives determined in the previous step. Identify the decision rules and modify 
the SD model (if necessary) so that different decision rules can be imposed by the analyst in each run.  The 
most difficult portion of this step is to create a reasonable number of “bins” for each chance node and each 
decision node to discretize the continuous ranges of each variable.  If  too few are chosen, the decision 
rule’s approximation to optimality will be low and the real options valuation, inaccurate.  If too many are 
chosen, the computations involved will become prohibitive.  

Step 5-Solve the Tree with Backwards Induction:

5.1-Run a Monte Carlo simulation of the SD model for each decision rule and obtain the cash flow 
distribution of each terminal node in the tree.

5.2-For each terminal node, find a twin security or a replicating portfolio from the market that has the 
same risk-return profile. Use the market value of that security as the value of that terminal node.

5.3-Determine the best decision at the last period T. Given the best node at T, proceed backwards to 
obtain the best node at T-1 (backwards induction). Repeat this step recursively until evaluating the first 
decision node.

Step 6-Determine the Best Policy and Value the Project: Determine the highest payoff policy. The expected 
value of the project is obtained from this decision rule.  

Note that it  is  possible to  value a specific  option associated with each decision node by 
rebuilding  the  tree  without  that  option,  reiterating  Step  5  and  obtaining  the  value.  An 

6 Suspend decision in the first period corresponds to a deferral option. Invest high or low in the second period 
corresponds to an expansion option at the decision nodes that follows invest high or invest low in the first 
period. 
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estimation of the expected value of that option is the difference between the value of the 
project with the option and without the option. 

One  limitation  of  this  solution  procedure  is  the  seemingly  unavoidable  “curse  of 
dimensionality” should T or the number of decisions alternatives at each node (n) or both 
boost.  For {T=2, n=3}, one must evaluate 9 decision rules. For {T=10, n=3}, this number 
would  be  310=59049.   As  the  number  of  nodes  and  periods  increases,  the  number  of 
computations will quickly become prohibitive.  However, reducing the number of nodes and 
periods will make the algorithm less accurate.  Thus, a difficult trade-off presents itself to the 
modeler.  Fortunately, when more fidelity is required, decision analysis literature does offer 
some  approaches  to  fight  against  the  dimensionality  problem.  One  possible  approach  is 
adapting  the  Least  Square  Monte-Carlo  (LSM)  approach  developed  by  Longstaff  and 
Schwartz (2001) to solve the tree. It has been numerically shown that the size of the problem 
with LSM approach grows much more slowly than in the backwards integration algorithm 
just described. 

5. Conclusion 
There  is  a  clear  need  for  the  development  of  alternative  energy technologies,  given  the 
energy threat the world is facing.  However, even the most promising of these technologies 
remain underdeveloped.  One of the reasons for this underdevelopment is the difficulty in 
placing a value on the return from investing in projects  employing them.  The valuation 
procedure proposed in this paper aims addressing this problem. The viability of an alternative 
energy  technology  is  largely  determined  by  fossil  fuel  prices  and  alternative  energy 
development costs, both of which are highly stochastic. The system dynamics methodology 
has proven capable of modeling fossil fuel prices and technology learning curves. Similarly, 
the real options valuation approach has proven to be the appropriate valuation scheme for 
capital  investments  that  are  subject  to  high  uncertainties.  Hence,  adapting  real  options 
approach to value the potential return from developing these technologies and representing 
the uncertainties by stochastic system dynamics models is one potential way to value more 
accurately  the  development  of  new  alternative  energy  technologies.   In  particular,  the 
algorithm proposed in this paper offers a structured way to do this by taking advantage of the 
intuitiveness of decision tree methods. 
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