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Abstract 

This paper is a concept paper about a suggestion proposed by Nathan Forrester, in the last 
year conference to extend eigenvalue analysis to nonlinear models. His idea was to consider 
higher order terms of the Taylor series expansion when approximating nonlinear models. In 
this paper, we demonstrate the feasibility of Nathan's idea. The main contribution of this 
paper is to devise a pragmatic approach to solve the resulting equations of Taylor series 
expansion. This pragmatic approach is based on our novel concept of 'smoothed Jacobian' 
matrix, which is computed from both the ordinary Jacobian matrix and the set of Hessian 
matrices. Recall that the elements of the ordinary Jacobian matrix represent slopes of 
relationships, while the elements of the Hessian matrices represent curvatures of 
relationships. So by integrating the elements the ordinary Jacobian with the elements of the 
Hessian matrices, we are actually smoothing the slopes given the knowledge about 
curvatures.  Consequently we are smoothing the time trajectories of eigenvalues and 
eigenvectors in nonlinear models. 

Keywords: system dynamics, nonlinear model analysis, eigenvalue analysis, Taylor series 
expansion, behavior modes.  
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1. Mathematical Background 

Any nonlinear system dynamics model consists of a set of nonlinear functions between state 
variables and net rates. In approximating any single nonlinear function in the model: If we 
only use the first order term of Taylor series expansion – which is the current practice – we 
have to compute the gradient vector associated with this function. However, if we also used 
the second order term of Taylor series, we have to compute the Hessian matrix associated 
with this function.  In general, in a model with 'n' state variables, one has to compute 'n' 
Hessian matrices – in addition to computing the Jacobian matrix (where each row of the 
Jacobian is, in fact, a gradient vector). 

Note that in many nonlinear functions, the higher order terms (i.e. the third and higher) will 
equal zero. This assumption is based on the following two reasons: 

1. Many table functions can be approximated by a second order polynomial (so 
differentiating twice is enough).  

2. A major source of nonlinearity is the multiplication of two state variables in a rate 
equation (so also in this case differentiating twice is enough).  

So, based on the above assumption, one may conclude that in a certain category of nonlinear 
system dynamics models, all structural information of the model can be captured in the 
Jacobian and the 'n'  Hessian matrices.   

The following equation demonstrates Taylor series expansion associated with the ith  net rate. 
)()(5.0)(grad)i()i( i

TT
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where 

)i(x&  is the value of net rate 'i' at time t (t represents any point of time during the simulation) 

x is the state variables vector at time t. 

xo  is the state variables vector at a specified anchor point, in the n-dimensional space. 

)i(ox&  is the value of net rate 'i' computed at xo 

T
igrad  is the transpose of the gradient associated with net rate 'i'  computed at xo 

iH  is the Hessian matrix associated with net rate 'i'  computed at xo 

 

Note that in this paper, we denote matrices by bold and capital letters, vectors by bold and 
small letters, and scalar values by small letters. 
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In the above equation, taking xo as the equilibrium point, and denoting x-xo by vector y 
yields: 

 yHyyy i
TT

i 5.0grad)i( +=&
 

Note that net rates equal zero at the equilibrium point, and also note that )i()i( xy && =   

Basically, vector y represents the deviation vector from the equilibrium point. It is important 
here to stress that the above equation is valid at any point in the n-dimensional space – i.e. not 
only in the neighborhood of the equilibrium point. Moreover, it does not matter if the model 
actually reaches equilibrium, or never reaches it. 

The main contribution of the paper is to devise a pragmatic approach to solve the above 
equation. This is done via putting the above equation in the following compact form: 

yJy s=&
       (1) 

where 

y&  is the net rate vector at any point of time 

y is the deviation vector at any point of time 

Js is a nxn matrix. The ith row of this matrix, Js(i,:), is defined as follows 

Js(i,:) = i
TT

i 5.0grad Hy+  

The beauty of equation 1 is that it is not an approximation, but rather an exact equation at any 
point. Consequently, it is valid at any point in time. 

Each element of matrix Js is either a zero, or a constant, or a linear function of the state 
variables. In this paper, we call matrix Js the 'smoothed Jacobian'.  

Using a Symbolic Toolbox (e.g. Matlab Symbolic Toolbox) one can symbolically compute 
the smoothed eigenvalues1 and smoothed eigenvectors associated with matrix Js. Based on the 
eigenvalues and eigenvectors, one can solve the time trajectory of vector y, as demonstrated 
below: 

y = w1 exp(λ1t) + w2 exp(λ2t) +…+ wn exp(λnt) 

where:  

w1, w2, … wn are the weights vectors  

λ1, λ2, …., λn are the smoothed eigenvalues  

                                                 

1 The eigenvalues are called smoothed as they are derived from the smoothed Jacobian. 
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For more information about how to compute the weight vectors, the reader may refer to Saleh 
et al. 2006. 

Based on the above equation, the state variables vector trajectory can be expressed as: 

x = w1 exp(λ1t) + w2 exp(λ2t) +…+ wn exp(λnt) + xo   (2) 

 Recall that xo is the state variables vector at the equilibrium point. 

Equation 2 enables us to decompose the behavior of state variables into several modes of 
behavior.  By plotting the smoothed eigenvalues across time, it is possible to detect 
bifurcation points in behavior modes, and hence to chop the simulation time into distinct 
phases. This process will be demonstrated on a simple model in the next section. 

 

2. Case Study 

In this paper, we will apply the above concept on a simple epidemic model described in 
chapter 9, in Sterman 's book (Sterman, 2000).   The model is called the "SIR" model as it 
consists of the following three stocks: Susceptible Population (S), Infectious Population (I) 
and Recovered Population (R). The following figure shows the stock and flow diagram of the 
model, and the model itself is attached as a supplementary material.  

 

 

 

 

 

 

 

Figure 1: Stock and flow diagram of the SIR model  

 

As shown, in the above figure, there are the following 3 loops in the model: 

1. The Balancing "Depletion" Loop 

2. The Balancing "Recovery" Loop 

3. The Reinforcing "Contagion" Loop. 

By removing auxiliary variables, the model can be put in the following condensed form (the 
reader may check attached model): 
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dS/dt = -0.00015*I*S; 

dI/dt  = (0.00015*I*S)-(0.5*I); 

dR/dt = 0.5*I;  

From the above equation, it is clear that the source of nonlinearity in rate equations is the 
multiplication of two state variables; hence as stated before, all structural information in the 
model can be captured by the Jacobian matrix and the '3' Hessian matrices, which are as 
follows: 

 

 

 

 

 

 

 

 

 

 

Note that all elements of the '3' Hessian matrices are either constants or zeros. This is another 
proof that higher order terms in Taylor series expansion (i.e. third order and above) are zeros. 

In our analysis, we selected the point S=0, I=0 and R =0 as our equilibrium point xo. Note 
that it does not matter that the model will never reach this equilibrium point. In fact, the 
model never approaches the neighborhood around the origin point; this is because the 
summation of the '3' stocks is always constant, and equals the total population. In general, 
one can select any other equilibrium point and carry out the same process.  

In this case vector x equals vector y; and equation 1 can take the following form: 

 
xJx s=&

   

To compute matrix Js one has to first compute matrix J at xo.  Recall that the gradient vectors 
correspond to rows in the J matrix computed at xo.  Matrix J computed at xo is as follows: 
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And hence matrix Js matrix is as follows (see equation 1): 

 

 

 

The first row of Js is computed from the following formula: gradS
T + 0.5 xT HS 

The second row of Js is computed from the following formula: gradI
T + 0.5 xT HI 

And the third row of Js is computed from the following formula: gradR
T + 0.5 xT HR 

 

Note that the "smoothed Jacobian" matrix Js is different than the "ordinary Jacobian" matrix 
J.   For example, the first element of the first row in matrix Js is equal  -0.000075*I; while the 
corresponding element in matrix J is equal  -0.00015*I. This is an important issue. Recall that 
the normal practice is to focus only on the ordinary matrix, and to ignore the 2nd order term of 
the Taylor series expansion. This can be considered an error term. And as the width of the 
analysis interval increases, this error term can be significant. For this reason, we postulate 
that in nonlinear models, it is preferred to use the smoothed Jacobian instead of the ordinary 
Jacobian. 

Now, there are '3' smoothed eigenvalues associated with matrix Js. By using the Matlab 
symbolic toolbox we derived the following formulas: 

λ1 = -1/4+3/80000*S-3/80000*I+1/80000*(4e+008-120000*S-120000*I+9*S^2-
18*I*S+9*I^2)^(1/2)  

λ2 = -1/4+3/80000*S-3/80000*I-1/80000*(4e+008-120000*S-120000*I+9*S^2-
18*I*S+9*I^2)^(1/2) 

λ3 = 0 

 

Matlab computations showed that the third smoothed eigenvalue is always zero.  Now, by 
substituting the values of S, I, and R at ay time instant (obtained via simulation) in the above 
formulas, we can obtain the corresponding values for the smoothed eigenvalues. . The figures 
below plot the real and imaginary parts of the first and second smoothed eigenvalues across 
time. 
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Figure 3: Real parts of the smoothed eigenvalues across time 

 

 

 

 

 

 

 

 

 

Figure 4: Imaginary parts of the smoothed eigenvalues across time 

The above figures show that there are two bifurcations points.  

• Time 6: 2 real positive modes  merge to one complex mode 

• Time 12.5:  1 complex mode split to 2 real negative modes  

So basically one can chop time into the following 3 phases: 

1. Exponential growth [0,6] 

2. Part of oscillation cycle [6,12.5] 

3.  Exponential decay [12.5, ∞ ] 
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3. Conclusion and Future Work 

In this paper, we adopted the idea of Nathan Forrester to consider the second order term of 
Taylor series expansion, when approximating nonlinear models. Moreover, we invented a 
new concept, which is the smoothed Jacobian matrix.  This matrix is valid in any point in the 
n-dimensional space -- in contrast to the ordinary Jacobian which is valid only in the 
neighborhood of the current operating point; as in dealing with the ordinary matrix, we ignore 
the 2nd order term of the Taylor series expansion. This can be considered an error term, and as 
the width of the analysis interval increases, this error term can be significant. In this paper we 
postulate that in nonlinear models, it is preferred to use the smoothed Jacobian instead of the 
ordinary Jacobian.  Recall that the elements of the smoothed matrix can be considered 
smoothed slopes of relationships. The smoothing process is actualized via incorporating the 
curvatures specified by the Hessian matrices. Finally, by tracking the values of this smoothed 
matrix across time; and symbolically computing the corresponding smoothed eigenvalues and 
eigenvectors, one can identify the modes of behavior at any time instant. 

In our future work, we will pursuit the following 4 directions: 

1. Apply the approach to larger and more complex models. 

2. Assess the impacts of changing the gains of loops on the smoothed eigenvalues. In 
this point, we will follow the procedure outlined by Kampmann & Oliva 2006. 

3. Assess the impacts of changing the values of parameters on the smoothed 
eigenvalues and weights. In this point, we will follow the procedure outlined by 
Saleh et al.  2006. 

4. Extend the analysis to include higher orders terms of Taylor expansion (third and 
above) which will be relevant in highly nonlinear models. 
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