
IT Project Management, Concept Modeling, and Blind Dates

Eliot Rich
University at Albany

State University of New
York

School of Business
1400 Washington Avenue

Albany, NY
rich@acm.org

Mark Nelson
Digital Content Strategist
National Association of

College Stores
500 East Lorain Street

Oberlin, OH 44074
mnelson@nacs.org

Andrew Whitmore
University at Albany

State University of New
York

College of Computing and
Informatics

1400 Washington Avenue
Albany, NY

ajw367@gmail.com

Abstract

This paper describes a recent activity where scholars from two disciplines met to
consider the reasons behind a three-decade long attempt to modernize a critical IT
application in the US government. From the system dynamics perspective, the problem
appears to be related to dynamic and repeating management failures with an embedded
project management model. We decided to use a simple project model to develop this
perspective. Our initial attempt shows some of the anticipated dynamics of project
escalation. More important, though, was the discussion of the problem itself that was
launched by the use of a formal model. We believe that this approach has provided
insight into how to approach a more focused and grounded analysis of the problem
domain.

Keywords: Project Management, Government Information Systems, Project
Commitment

Introduction

This paper describes a recent meeting where scholars from two disciplines met to
consider the phenomenon of IT software project escalation and de-escalation. We thought
of it as a “blind date,” as the authors agreed to get together to discuss the problem, not
being sure what was being brought to the table, and not knowing what would result.
From the system dynamics perspective, the problem appears to be related to a dynamic
and repeating decision and management process with an embedded project management
model. We decided to use a simple project model to develop this perspective. It has been
advocated that such simple models may be used as a mechanism to introduce the
concepts of stock and flow to unfamiliar audiences (Richardson & Andersen, 1995) and
establish grounds for future communications. Here we present our initial attempt to adapt
an existing model to this end.

IT Project Management, Concept Modeling, and Blind Dates

The problem environment, a very large and complex government software
development project, has borne several launches and crashes, each accompanied by
investigations, management inquiries, and little progress. The problem environment is
reminiscent of a well-behaved and simple concept model of projects (Richardson &
Pugh, 1981) with two new structures: The influence of “scope creep,” a pressure to add
functionality to the project, as well as a decision rule for project termination. As
anticipated, adding changes to the requirements set increases the resources needed during
the life of the project. This in turn triggered the decision rule that caused premature
termination.

 The use of a simple and illustrative concept model helped in the formulation of a
more thorough set of research objectives and establishes a basis for dialog between
scholars of organizational behavior and IT project management. It also identified critical
model conceptualization questions that might be addressed by a detailed examination of
the existing archival dataset. There is a downside, however, as the chosen concept model
captured only one important dynamic behavior, and will likely need significant revision
to address other important problems. Thus, the more that is expected of the concept
model, the harder it is to keep it simple and elegant.

The ultimate goal of this research stream is to integrate descriptive research of
escalating projects with the feedback based insights available from dynamic modeling.
This combination may provide understanding of the effects of firm capabilities, policy
changes, and scheduling conflicts on project success. Working with simple project
models is the first step towards an elaborated model, grounded through retrospective
analysis of project materials, to learn more about IT development in organizations under
stress.

Background

Our research examines a case of extended failure to complete a critical and
complex IT modernization effort in a US government organization. This modernization
project, still incomplete, has spanned three decades and has cost over $14 Billion in its
various incarnations (see, for example, Varon, 2005). The project has been revamped,
stopped and restarted several times, reflecting a continuing problem that until recently
appeared intractable (Holmes, 2006).

This cyclical escalation and de-escalation of the development effort is of great
interest to scholars of organizational behavior and decision-making. This may be
evidence of the development of organization rigidity in decision-making, causing a
commitment of resources well after the project’s goals are actually unachievable,
followed by a disengagement, restructuring and re-starting of a new attempt to achieve
the old or revised goals.

Multiple studies have called for longitudinal investigation of escalating and de-
escalating commitment in a field-study context (Brockner, 1992; Staw, 1997; Staw &
Ross, 1987), however, few studies have taken a longitudinal perspective focused on the

IT Project Management, Concept Modeling, and Blind Dates

complex interaction processes involved. In experiments with individuals, Staw and Fox
(1977) found that once engaged, de-escalation processes should prevent further escalation
as investment continues. However, in long-term, large-scale IT projects where the
project goal or objectives persist, redirection may change commitment to the short-term
course of action, but not to the long-term course of action. When such projects that
involve high levels of investment are redirected, conditions exist that may produce
multiple cycles of escalation and de-escalation (Montealegre & Keil, 2000). Supporting
this notion, Drummond (1994) found that escalation of commitment is different in
situations where individuals inherit unsuccessful and long-running projects, and that such
situations experience a cyclical escalation effect. However, Drummond's study was not
conducted in an IT-project context. Newman and Sabherwal (1996) provide perhaps the
best evidence as to what happens to these projects over multiple decision points. In their
longitudinal analysis of a large-scale IT project that repeatedly failed they demonstrated
how determinants of commitment among individuals shift from escalation to withdrawal
of commitment and back over time. In doing so, they found the dynamics among
escalation determinants to be different from much of the prior research. These latter two
studies demonstrated that escalation and withdrawal of commitment share a more
complicated and dynamic relationship over time and provide support for conducting
additional longitudinal field studies of these processes.

These studies led us to consider a systems perspective, where the underlying

structures of project management under dynamic requirements contributes to both
escalation of commitment and de-escalation. Studies of project dynamics often focus on
unrecognized misconceptions of project progress and subsequent rework cycles as the
key to understanding budget and schedule overruns (Cooper, 1980; Reichelt & Lyneis,
1999). Application of this perspective to the specific issues of software has been
documented and extensively tested by Abdel-Hamid and Madnick (1990, 1991). Their
ideas have been disseminated widely in the software development literature, with several
hundred citations since its original publication two decades ago1. Their work is quite
well developed, but is challenging for those new to dynamic modeling. Therefore we
chose to begin this analysis with an illustrative approach using a simpler project model,
looking for a broad conceptual understanding.

The empirical grounding for this work comes from examination of IT

modernization efforts at the U.S. Internal Revenue Service (IRS) spanning a period over
thirty years. Using archival analysis techniques we examined documents from a variety
of sources both inside and outside the IRS to adhere to guidelines for gathering historical
evidence. Primary source material included over 750 historical documents, including
audits, reports, memos, project documentation, media documents, congressional
testimony, as well as previous academic studies. Photographs of early operations
provided contextual artifacts of the operational conditions within the agency. After
completion of the archival analysis, our findings were reviewed and refined through a
small number of confirmatory interviews with individuals familiar with the relevant IRS
projects and public sector IT project management.

1 A recent Google Scholar search found almost 400 references to the Abdel-Hamid and Madnick text.

IT Project Management, Concept Modeling, and Blind Dates

The IRS efforts at modernization provide a good context for studying large-scale
IT projects in the public sector for several reasons. First, the IRS is considered to be a
very well-managed agency by IT researchers (Bozeman, 2002) and if such a project were
to be successful anywhere, one might expect that to happen at the IRS. Second, the IRS
made four distinct major attempts to modernize since the late 1960s. The first three
attempts clearly failed and were abandoned at a combined cost over $4 billion (in
nominal value): the Tax Administration System Project from 1969 to 1977; the Service
Center Replacement System project from 1978 to 1986; and the Tax Systems
Modernization project from 1987 to 1997. Along the way, there were over 40 other
projects aimed at initiating or furthering agency modernization, most of which were also
abandoned as failures (ibid) The fourth attempt, the Business Systems Modernization
Project, began with the Blueprint Project around 1998 and is still underway with an
estimated cost in excess of $10 billion (Varon, 2004). While experiencing some success,
the current attempt is already significantly over budget and behind schedule (Johnston,
2003). Third, the various iterations of the IRS modernization effort received wide-scale
attention in the media, in oversight organizations, and within the agency itself. The ease
in acquiring longitudinal historical data on the project at a relatively low cost, and the
nature of the IT project itself, made this an ideal case to study to learn more about
abandonment processes in large-scale public-sector IT projects.

Problem Context

 The Internal Revenue Service received 228 million citizen and corporate tax
returns in 2006, somewhat larger than the 202 million received in 1995 (U.S. Department
of The Treasury, 1995, 2006). Taxes on personal incomes, including social insurance
programs, represent the bulk of resulting revenue. Along with population pressure, this
growth reflects the increasing complexity of the tax code, as tax brackets have been
modified and new programs implemented to capture income streams for governmental
operations.

The current information systems supporting the IRS date back to the late 1950’s,
and reflected the architecture and data processing methods available at that time. Much
of that architecture is still in place, relying on obsolete hardware and software of vertigo-
inducing complexity. Each modernization effort was pledged to untangle the code and
bring modern approaches and technology to bear.

 As is often the case, the IRS modernization efforts are deeply enmeshed in a
changing context that is not in their control (Figure 1). Congressional and executive
branch policymakers introduce innovations that reflect their concerns about the current
and future state of the economy. Changes to tax laws and modification in enforcement
priorities engender alterations to the same software systems that are undergoing
modernization. The wrapping of new policy requirements with those needed to replicate
the processing already in place greatly increases the complexity of change. Even the
simplification of the tax code during 1980s did not result in compliance savings from the
taxpayer perspective (Slemrod, 1992) or the IRS, as the concurrent presence of old and
new tax laws in the same system was required.

IT Project Management, Concept Modeling, and Blind Dates

Framing the Hypothesis

 The recurrent nature of failure has led some critics to brand the IRS’s
modernization efforts as characteristic of a failing organization that fails to learn from its
experience. In this paper we raise an alternative perspective: To what extent does the
interaction among the various components of the IRS modernization context affect the
likelihood of project success? Does the complexity of the problem, in tandem with a
changing policy and oversight process, create a situation that is impossible to resolve?

 The changing policy and oversight processes to which the IRS modernization
efforts are subjected help produce one of the familiar banes of project management:
scope creep. Scope creep, or the altering or adding of requirements to an ongoing
project, has been shown to adversely affect the likelihood of a project finishing on time
and on budget (Wallace & Keil, 2004). Scope creep can arise through factors such as
poor requirements definition and is often addressed by a change control board that
establishes change policies and the approval process for those changes (Wiegers, 2003).
However, the IRS modernization efforts differ from private sector IT projects in terms of
the nature and source of the scope creep. While project managers employed by private
corporations perceive requirements and scope risks as highly controllable through good

IRS IT

Modernization

Project

Development

Policy

Environment

(Executive and

Legislative)

Policy Changes

Oversight

Environment

(Executive and

Legislative)

Financial and

Managerial Directives

Financial and

managerial metrics

Policy results

Taxpayers
Policy Changes

Tax Filings for

Processing

Figure 1 IRS IT Modernization Project and Context

IT Project Management, Concept Modeling, and Blind Dates

project management (Wallace & Keil, 2004), public organizations, like the IRS, often
have requirements changed or new requirements introduced exogenously from higher
level federal bodies or changing legislation. Under these conditions, project managers at
the IRS will perceive the scope creep problem as uncontrollable which will further
increase the project’s execution complexity and difficulty (Wallace & Keil, 2004) We
argue that the deleterious effects of repeated, uncontrollable scope creep combined with
an already complex project position the IRS for failure in its attempts to modernize.

 As a first step, we consider one of the areas of complexity that arose in the IRS
projects: The need to implement changes to tax policy in software while attempting to
replace existing applications. This can be phrased as a simple dynamic hypothesis the
effects of changing requirements on the characteristics of project success.

Hypothesis 1: Increasing the number of user requirements introduced during the

progress of an IT project will increase resource use and likelihood of project

termination.

This hypothesis combines the insights from project management models about project
outcomes (Abdel-Hamid & Madnick, 1990, 1991; Cooper, 1980) with the provision of
information about the future of the project. This provides a linkage to thinking about
project escalation and de-escalation.

 What defines success in a large-scale implementation project? It is not on time
and under budget completion. At the outset of a project, while managerial expectations
near absolute certainty of success based on experience, historical analysis says that
projects still have an a priori risk of failure from unforeseen causes. The Standish Group
reported in 1994 that only 16.2% of projects meet that exacting criterion, with a smaller
fraction in large projects (The Standish Group, 1994). 31.1% of projects are terminated
before they reach completion. It appears that the respondents to their survey measured
success pragmatically, with “complete” projects that have only 42% of the original
features, and most projects running 80% or more over budget. While this report is dated,
and there can be some concern about its current applicability, it presents a measuring
stick for evaluating project success through the eyes of IT managers.

IT Project Management, Concept Modeling, and Blind Dates

The construction of a metric for success or failure is a necessary linkage between

the project models and the oversight environment. We would expect to find that even
successful projects run into risky periods and persevere through to completion, while
unsuccessful projects find themselves in situations where risk compounds without
resolution (Figure 2). While efforts are being made to predict project complexity at its
beginning (Xia & Lee, 2004), the effects of complexity often emerge during the details of
software design and integration. Projects may well tip into a failure mode where insiders
recognize the inevitable, but the news has not reached their managerial or oversight
counterparts. In addition, even with timely reporting of problems, managers may
continue their escalatory behaviors in the face of psychological and social pressures as
well as structural issues among stakeholders .

 The definition of organizational tolerance for failure is not cut and dry, as it is
quite possible to imagine situations where organizations see the slim chance of project
success better than the consequence of stopping, or where the achievement of substantial
portions of the work is considered sufficient for its purpose. For this work we assume
that a project that reaches 80% of the established requirements within 150% of the initial
timetable or 150% of the initial resource estimate (in staff hours) is successful.

Probability of Project Success

0

0.2

0.4

0.6

0.8

1

Start Finish

Time

P
(s

u
c
c
e
s
s
)

Hypothetical Successful

Project 1

Hypothetical Failure Project

Figure 2: Project Risk Profiles

IT Project Management, Concept Modeling, and Blind Dates

Model Structure and Simulation

 The baseline model for this experimentation is the project model presented in
Richardson and Pugh (1981). The model is a simple and elegant illustration of feedback,
used throughout the text as a vehicle for introducing various concepts relating to the
development, testing, and documentation of a model. It consists of two major balancing
loops with some minor delay structures (Figure 3). The model starts out of equilibrium,
as there are fewer staff members than needed to complete the volume of tasks; as the
model runs staffing is adjusted to meet task demand, which in turn is affected not only by
the staff effort but by the growth of undiscovered rework. Its simplicity makes it a good
candidate for extension into a model of project failure.

Figure 3: Structure of Simple Project Model (Adapted from Richardson and Pugh, 1981)

Gross Productivity

Real Productivity

Perceived
Productivity

Effort perceived
remaining

Fraction
satisfactory

Undiscovered

rework

-

+

Workforce

Net hiring

-+

Time perceived
remaining

+

-

Indicated

workforce

+

Time remaining

+

Scheduled
completion

date

+

Indicated

completion date
+

Net additions to
schedule +

+

-

Initial Project

Definition

Tasks
perceived
remaining

+

+

Apparent
Progress Rate

+

Cumulative
Real

Progress

+

+

Cumulative
perceived progress

Fraction
perceived
complete

+

+

+

+

-

+

+

+

B1 -
"Adjust

Workforce"

+

B2 -
"Adjust
Project

Schedule"

New Requirements

Introduced
+

+

Real Progress
Rate

+

IT Project Management, Concept Modeling, and Blind Dates

The published model presents a small project of 1200 tasks to accomplish and a

“fraction satisfactory” of 0.7, representing the unforeseen errors that crop up during
development. To simulate the introduction of incremental requirements during the
project we add “New Requirements Introduced” to the original model, a structure that
pulses an additional 5% task load every six months. This is a rough attempt to consider
the generation of changes as driven by a policy or legislative cycle, rather than as a
purely random process. A second structure (Figure 4) represents when a project is
identified as a failure based on the decision rule presented earlier. Once the threshold for
project failure has been reached, resources are removed from the project. In this very
simple model the decision rule is treated as a discrete event, rather than as a more gradual
development of consensus.

Simulation runs present the effects of this initial change in requirements. The

Base run replicates the results of the published model, and the More Requirements run
adds the task load (Figure 5) to the project definition. The No Cancel run depicts the
same parameters as the More Requirements run, if the project decision rule was not
active. As one might anticipate, the increase in requirements changes the total resources
anticipated for the project. In this model, the endogenous adjustment to requirements
change increases staffing rather than adjust the project schedule, where staffing levels off
at 53 persons, up from the 43 needed with the original project requirement set.

Figure 4: Decision Rule for Project Cancellation

IT Project Management, Concept Modeling, and Blind Dates

Operative proj def

2,000

1,750

1,500

1,250

1,000

3 3 3 3 3 3 3 3 3 3 3 3 3 3 32 2
2 2

2 2
2

2 2
2 2

2 2
2

2

1 1
1 1

1 1
1 1

1
1

0 5 10 15 20 25 30 35 40 45 50

Time (Month)

Operative proj def : MoreRequirements tasks1 1 1 1 1 1

Operative proj def : NoCancel tasks2 2 2 2 2 2 2

Operative proj def : Base tasks3 3 3 3 3 3 3 3 3

Figure 5: Project Size

Total Projected Effort

4,000

3,250

2,500

1,750

1,000 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2
2 2

2 2
2

2 2
2 2

2 2
2

2

1 1 1 1
1 1

1 1
1

1

0 5 10 15 20 25 30 35 40 45 50

Time (Month)

Total Projected Effort : MoreRequirements person*months1 1 1

Total Projected Effort : NoCancel person*months2 2 2 2 2

Total Projected Effort : Base person*months3 3 3 3 3 3

Figure 6: Total Projected Effort

IT Project Management, Concept Modeling, and Blind Dates

The run-up in desired resources for the project is a harbinger of bad things,
however, in that once the project staffing increases the projection for future costs goes up
as well. Assuming that the new resources will remain on the project drives the total
projected effort to 1,835 person months, versus 1,500 for the base case (Figure 6). This
takes the More Requirements scenario beyond the decision threshold, and the run ends. If
the run was not cancelled, the resource gap would continue to widen, as new
requirements would continue to come into the project.

Observations and Next Steps

From a dynamic modeling perspective the results of this effort are not surprising,
and are in line with intuition. Nevertheless, couching the problem in terms of a formal
model is a useful starting point for examination of the repeated failures of the IRS project
by showing in a dramatic way the rationale for consideration of endogenous effects and
outcomes. Using an existing concept model gave substance to discussions about the
effects of unforeseen rework on project outcomes.

The model did not always behave in ways that reflected the IRS reality. For

example, these runs reflect a stiffness that emphasizes staff changes over schedule
changes. Rather than tweak the model, though, we decided to use it as a basis for
discussion of the underlying problem. This choice is illustrates the primary result of the
effort. The discussion exposed several questions about the escalation – de-escalation
phenomenon that the model does not address, regarding staffing, productivity, increasing
project complexity, and information delays. We also learned a bit about ways to organize
and examine the mass of documentary data that has already been collected. The list of
questions is growing faster than we anticipated.

There are some cautions as well needed here. We need to be sure that we identify

and address the problems seen in the IRS data, not just those that are present in the
concept model. There are other alternative published formulations (e.g., those developed
in Abdel-Hamid & Madnick, 1991) that might well serve as guideposts for modeling
repeated project failures. The choice of concept model can prematurely impose an
inappropriate conceptual lens on the problem. Like any good blind date, a successful
discussion leads to a promise of things to come. The next step in this work is to consider
how to proceed.

Appendix: Model Equations

Apparent progress rate=
 Workforce*Gross productivity
 ~ tasks/Month
 ~ |

Cumulative perceived progress=
 Cumulative Real Progress+Undiscovered Rework
 ~ tasks
 ~ |

Cumulative Real Progress= INTEG (
 Real Progress Rate,
 0)
 ~ tasks
 ~ |

Decision to continue project=
 IF THEN ELSE(((Fraction perceived completed<0.8):AND:(Scheduled completion
date>=60)\
 :OR: (Total Projected Effort>=1800)) :AND: (swCancelOverride = 0) ,
0, 1)
 ~ dmnl
 ~ |

Detection of undiscovered rework=
 Undiscovered Rework/Time to detect rework
 ~ tasks/Month
 ~ |

Effort perceived remaining=
 Tasks perceived remaining/Perceived Productivity
 ~ person*months
 ~ |

Fraction perceived completed=
 Cumulative perceived progress/Operative proj def
 ~ dmnl
 ~ |

Fraction satisfactory=
 0.7
 ~ dmnl
 ~ |

Generation of undiscovered rework=
 Apparent progress rate*(1-Fraction satisfactory)
 ~ tasks/Month
 ~ |

Gross productivity=
 1
 ~ tasks/person/Month
 ~ |

Indicated completion date=
 Time+Time perceived required
 ~ Month
 ~ |

Indicated productivity=
 Weight given real productivity*Real productivity+(1-Weight given real
productivity)*\
 Gross productivity
 ~ tasks/(Month*person)
 ~ |

Indicated Work Force=
 ZIDZ(Effort perceived remaining,Time remaining)
 ~ persons
 ~ |

Initial project definition=
 1200
 ~ tasks
 ~ |

Net additions to schedule=
 (Indicated completion date-Scheduled completion date)/Schedule Adjustment Time
 ~ dmnl
 ~ |

Net Hiring Rate=
 (Workforce sought-Workforce)/WorkForce adjustment Time
 ~ persons/Month
 ~ |

IT Project Management, Concept Modeling, and Blind Dates

New requirements introduced=
 (PULSE TRAIN(Update period,1,Update period,50))*Requirements generation
 ~ tasks/Month
 ~ |

Noise=
 0
 ~ dmnl
 ~ ~ :SUPPLEMENTARY
 |

Operative proj def= INTEG (
 New requirements introduced,
 Initial project definition)
 ~ tasks
 ~ |

Perceived Productivity= INTEG (
 (Indicated productivity-Perceived Productivity)/Time to perceive productivity,
 Indicated productivity)
 ~ tasks/person/Month
 ~ |

Real productivity=
 Fraction satisfactory*Gross productivity
 ~ tasks/person/ Month
 ~ |

Real Progress Rate=
 Apparent progress rate*Fraction satisfactory
 ~ tasks/Month
 ~ |

Reassigned Workforce= INTEG (
 Reassignment rate,
 0)
 ~ persons
 ~ ~ :SUPPLEMENTARY
 |

Reassignment rate=
 IF THEN ELSE(Decision to continue project=0 , Workforce/Reassignment time ,
0*Workforce\
 /Reassignment time)
 ~ persons/Month
 ~ |

Reassignment time=
 3
 ~ Month
 ~ |

Requirements generation=
 60
 ~ tasks/Month
 ~ RANDOM UNIFORM(100,600,Noise)
 |

Schedule Adjustment Time=
 6
 ~ Month
 ~ |

Scheduled completion date= INTEG (
 Net additions to schedule,
 40)
 ~ Month
 ~ |

sw New Requirements Introduced=
 0
 ~ dmnl [0,1,1]
 ~ |

swCancelOverride=
 0
 ~ dmnl
 ~ |

Tasks perceived remaining=
 Operative proj def-Cumulative perceived progress
 ~ tasks
 ~ |

Time perceived required=
 Effort perceived remaining/Workforce sought
 ~ months
 ~ |

Time remaining=
 Decision to continue project*MAX((Scheduled completion date-Time),0)
 ~ Month

IT Project Management, Concept Modeling, and Blind Dates

 ~ |

Time to detect rework=
 IF THEN ELSE(Decision to continue project=0 , 1e+009, TTDRWF(Fraction
perceived completed\
))
 ~ months
 ~ |

Time to perceive productivity=
 6
 ~ Month
 ~ |

Total Expended Effort= INTEG (
 Workforce contribution to total cost,
 0)
 ~ person*months
 ~ |

Total Projected Effort=
 Effort perceived remaining+Total Expended Effort
 ~ person*months
 ~ |

TTDRWF(
 [(0,0)-(1,20)],(0,12),(0.2,12),(0.4,12),(0.6,10),(0.8,5),(1,0.5))
 ~ months
 ~ |

Undiscovered Rework= INTEG (
 +Generation of undiscovered rework-Detection of undiscovered rework-Detection
of undiscovered rework\
 ,
 0)
 ~ tasks
 ~ |

Update period=
 IF THEN ELSE (sw New Requirements Introduced,6, 999999)
 ~ months
 ~ IF THEN ELSE (sw New Requirements Introduced,RANDOM \
 UNIFORM(5,15,Noise),999999)
 |

WCWFF(

 [(0,0)-(40,1),(0,0),(3,0),(6,0),(9,0.1),(12,0.3),(15,0.7),(18,0.9),(21,1),(40,1)],(0\
 ,0),(3,0),(6,0),(9,0.1),(12,0.3),(15,0.7),(18,0.9),(21,1),(40,1))
 ~ dmnl
 ~ |

Weight given real productivity=
 WGRPF(Fraction perceived completed)
 ~ dmnl
 ~ |

WGRPF(
 [(0,0)-(10,10)],(0,0),(0.2,0.1),(0.4,0.25),(0.6,0.5),(0.8,0.9),(1,1))
 ~ dmnl
 ~ |

Willingness to change WorkForce=
 WCWFF(Time remaining)
 ~ dmnl
 ~ |

Workforce= INTEG (
 Net Hiring Rate-Reassignment rate,
 2)
 ~ persons
 ~ |

WorkForce adjustment Time=
 3
 ~ Month
 ~ |

Workforce contribution to total cost=
 Workforce
 ~ persons
 ~ |

Workforce sought=
 Willingness to change WorkForce*Indicated Work Force+(1-Willingness to change
WorkForce\
)*Workforce
 ~ persons
 ~ Note: Never goes negative, so don't need the max function.
 |

**
 .Control

IT Project Management, Concept Modeling, and Blind Dates

**~
 Simulation Control Parameters
 |

FINAL TIME=
 IF THEN ELSE (Decision to continue project = 0, Time, 50)
 ~ Month
 ~ The final time for the simulation.
 |

INITIAL TIME = 0
 ~ Month

 ~ The initial time for the simulation.
 |

SAVEPER = 0.25
 ~ Month [0,?]
 ~ The frequency with which output is stored.
 |

TIME STEP = 0.25
 ~ Month [0,?]
 ~ The time step for the simulation.

 |

References

Abdel-Hamid, T. K., & Madnick, S. (1990). The elusive silver lining: How we fail to

learn from software development failures. Sloan Management Review(Fall).
Abdel-Hamid, T. K., & Madnick, S. (1991). Software Project Dynamics: An Integrated

Approach. Upper Saddle River, NJ: Prentice-Hall.
Bozeman, B. (2002). Government Management of Information Mega-Technology:

Lessons from the Internal Revenue Service’s Tax Systems Modernization.
Arlington VA: The PricewaterhouseCoopers Endowment for The Business of
Governmento. Document Number)

Brockner, J. (1992). The Escalation of Commitment to a Failing Course of Action:
Toward Theoretical Progress. Academy of Management Review, 17(1), 39-61.

Cooper, K. G. (1980). Naval Ship Production: A Claim Settled and a Framework Built.
Interfaces, 10(6), 20-36.

Drummond, H. (1994). Too little too late: A case study of escalation in decision making.
Organization Studies, 15(4), 591-607.

Holmes, A. (2006, April 1). Baby Steps for IRS Upgrades. CIO Magazine, 19.
Johnston, D. C. (2003, Dec. 11). At I.R.S., a Systems Update Gone Awry. New York

Times, p. C1,
Montealegre, R., & Keil, M. (2000). De-escalating Information Technology Projects:

Lessons from the Denver International Airport. MIS Quarterly, 24(3), 417-447.
Newman, M., & Sabherwal, R. (1996). Determinants of Commitment to Information

Systems Development: A Longitudinal Investigation. MIS Quarterly, 20(1), 23-
54.

Reichelt, K. S., & Lyneis, J. M. (1999). The Dynamics of Project Performance :
Benchmarking the Drivers of Cost and Schedule Overrun. European Management

Journal, 17(2), 135-150.
Richardson, G., & Andersen, D. F. (1995). Teamwork in group model building. System

Dynamics Review, 11(2), 113-138.
Richardson, G., & Pugh, A. (1981). Introduction to system dynamics modeling with

DYNAMO. Cambridge, MA: MIT Press.
Slemrod, J. (1992). Did the Tax Reform Act of 1986 Simplify Tax Matters? Journal of

Economic Perspectives, 6(1), 45-57.
Staw, B. M. (1997). The escalation of commitment. In Z. Shapira (Ed.), Organizational

Decision Making (pp. 191-215). Cambridge, UK: Cambridge University Press.
Staw, B. M., & Fox, F. V. (1977). Escalation: The Determinants of Commitment to a

Previously Chosen Course of Action. Human Relations, 30, 431-450.
Staw, B. M., & Ross, J. (1987). Behavior in Escalation Situations: Antecedents,

Prototypes, and Solutions. Research in Organization Behavior, 9, 39-78.
The Standish Group. (1994). The Chaos Report o. Document Number)
U.S. Department of The Treasury. (1995). Internal Revenue Service Annual Data Book.

Retrieved. from.
U.S. Department of The Treasury. (2006). Internal Revenue Service Data Book.

Retrieved. from.
Varon, E. (2004, April 1). For the IRS There’s No EZ Fix. CIO Magazine, 17.
Varon, E. (2005, May 1). The IRS Makes Progress. CIO Magazine, 18.

IT Project Management, Concept Modeling, and Blind Dates

Wallace, L., & Keil, M. (2004). Software project risks and their effect on outcomes
Communications of the ACM, 47(4), 68-73.

Wiegers, K. E. (2003). Software Requirements. Redmond, WA: Microsoft Press.
Xia, W., & Lee, G. (2004). Grasping the Complexity of IS Development Projects.

Communications of the ACM, 47(5), 68-74.

