
Visualising the Effects of Non-linearity by Creating

Dynamic Causal Diagrams

H. Willem Geert Phaff, Jill H. Slinger

March 26, 2007

Abstract

Even though non-linearity is said to drive the behaviour of system dynamics models, modellers do

not have access to techniques that show this happening. The tools at their disposal to present model

structure are powerful, but, by nature, static. Formal model analysis methods has made significant

progress in explaining how structure drives behaviour, but the connection to standard model con-

ceptualisation techniques have generally not yet been made. This paper presents work that links

the results of recent formal model analysis techniques to traditional conceptual diagramming tech-

niques. A prototype visualisation tool is used to create dynamic causal diagrams that display the

changing influences of the elements of model structure over a simulation run; it shows the waxing

and waning of the influence of different sets of loops.

1 Introduction

One of the strengths of System Dynamics models is their foundation in nonlinearity. This nonlinearity

enables the ’shifts in loop dominance’ seen in System Dynamics models and drives their behaviour

(Forrester, 1987; Richardson, 1984). It does, however, come at a price, as the behaviour of models be-

comes difficult to explain in all but the simplest examples. Formal methods that analyse the relation

between structure and behaviour are still the subject of study and development, and are seen as an

important topic of research (Sterman, 2000; Richardson, 1996).

The System Dynamics approachs also brings with it an impressive array of conceptual techniques

to represent model structure. For instance, causal diagrams, stock-flow diagrams and influence dia-

grams (Wolstenholme and Coyle, 1983) serve as tools for communication in traditional model devel-

opment and group model building.

Recent developments in formal model analysis make a link between tradional causal diagrams and

the results of formal model analysis techniques feasible. This is, however, not trivial, as most of the

methods in formal model analysis are difficult to apply and interpret. The exception to this seems to

be Digest (Mojtahedzadeh et al., 2004), which isolates and displays the dominant loops over different

time intervals in a simulation run. This has not been done yet for methods based on eigenvalue elas-

ticity. This paper will focus on these methods. Consequently, we will focus on eigenvalue elasticity

analysis.

1

2 1 INTRODUCTION

Attempts have been made at automating eigenvalue elasticity analyses, but, while some of these

are succesful (Kampmann and Oliva, 2006), not all of them are generally applicable (Güneralp, 2006).

Generalised and automated versions of the methods would be stimulus for the application of these

methods. Also, a large part of the infrastructure used for these methods is the same. For instance,

most methods make use of model linearisations, while selecting specific points in time at which to

analyse the model. A common framework would speed up the automation of individual methods,

faciliting development and application.

In addition to this, in spite of its power as an analytical tool (Kampmann and Oliva, 2006; For-

rester, 1982; Kampmann, 1996), eigenvalue elasticity analysis in particular is challenging to translate

into a system story understandable to the client. An intermediate step in generating these stories is

the visualisation of the results of the analysis, which usually is in the form of timeplots of the relative

influence of the elements of structure investigated (loops, edges, parameters). A method for display-

ing the relative influences in language close to the usual conceptual diagrams of System Dynamics

models would help the analyst in presenting and understanding the results of the formal analysis.

In this paper, several tools are presented to aid the modeller in formal model analysis, and to link the

results thereof back to causal diagrams. It roughly consists of three parts. The first part describes the

basis of the framework used to run models and perform analyses. The second part shows utilities to

present the structure of the model. The third part links the two together to visualize the results of the

analyses in a form related to causal diagrams. Finally, results are discussed and suggestions for further

research made.

3

2 Method

2.1 General Design of the AMBA framework

This section describes the framework designed to perform formal model analysis. The intention of the

framework is to be able to consistently perform different model analyses. The framework separates

analysis, model and numerical solver, while rigidly defining which information travels between the

different parts.

SD software packages currently do not support formal model analysis and it is not easy to au-

tomatically obtain the information about the model necessary to perform the analysis1. Doing the

analyses by hand is no longer feasible for even medium sized models.

The approach presented here has as a specific aim to be broadly applicable and is flexible enough

to easily adjust for the different forms of analysis. For instance, it should be possible to replace the

Kamp-mann (1996) algorithms with the Güneralp (2006) way of relating elasticities to specific vari-

ables. Or, to adjust the granularity of the analysis, or to focus on parameters instead of edges or loops.

2.2 Components

The main requirements for the framework are consistency and flexibility. Consistency in the way

of working with different models and analyses; one general approach to multiple forms of analysis.

Flexibility in being able to replace parts of the framework and change properties of one part without

affecting the other. Lastly, the individual parts are set up as generically as possible, making them

applicable to as broad a range of models as possible.

As stated above, the idea central to the framework is to separate the solver, the model and the analysis

as much as possible. They are seen as completely independent entities exchanging information (Fig-

ure 1), each with their own responsibilities. This enables us to replace and change one of the three

without affecting the others. Consequently:

• The integration method and its settings are independent from the model and analysis.

• The model interfaces with the tools for analysis and the integrator so that both can obtain and

feed back the information required to run or analyse the model.

• The analysis functions obtain the information necessary for performing their calculations and

work as generically as possible.

The structural analysis functions (Oliva, 2004) use a representation of the structure of the model;

an adjacency matrix. The output of these function also serves as input for loop based dominance

analysis. The dominance analysis functions use linearisations of the model in order to be able to cal-

culate, for instance, eigenvalues and related elasticities. Furthermore, they need references to model

parameters for the parameter based variants of analysis.

1For instance, Powersim is not able to provide linearisations of a model.

4 2 METHOD

Figure 1: Setup for the framework : Information exchanged between the different parts

2.3 The Model Representation

The purpose of the model representation is to provide the rest of the framework with the necessary

information. The model is an outer shell, hiding its internal workings from the rest of the framework.

The model provides the data required to run and analyse the model. This includes linearisations and

adjacency matrices and net rates of change of the states. Behind it lies the model structure, which

consists of a set of linked variables.

The internal structure the model does not matter to the rest of the framework, but we need some form

of structure that is able to generate the information required. In essence, the loop based variants

of model analysis use a graph perspective on System Dynamics models (Oliva, 2004; Kamp-mann,

1996). However, in general, the graph perspective is incorporated into the analysis only at the very

last point. The internal structure presented here uses that perspective from the ground up, ensuring

that a System Dynamics model can be perceived as a graph when necessary.

The essence of the presented concept is the hierarchy of the elements in a System Dynamics model.

All elements can be seen as vertices in a graph, where the system is the graph. The model elements

are divided into variables and and parameters (Figure 2).

A variable is a model element that is dependent on the value of other parts of the model or on

time. Each variable should be able to calculate the gains2 from its predecessors to itself. There are

two special forms of variables, namely the state (a.k.a stock or level) and the rate (a.k.a. flow).

This way of representing the model can provides a direct translation to the graph perspective since

every element is already defined as a vertex. Secondly, edge gains can be determined by having the

destination variable estimate the gains from each of the predecessor to itself. This allows us to lin-

earise the model automatically. Thirdly, rates of change can be determined for each timestep using

a recursive method call starting at the states of the model. And, finally, the separate definition of pa-

rameters allows us to request these for purposes of analysis. To summarise, this can provide us with

the information the rest of the framework needs in order to undertake model analysis.

The current implementation is in Java and is linked to the JUNG library. This implementation is

also being applied to hybrid models, interfacing with either DSOL (Jacobs, 2005) or Repast (North

2The edge gain is determined by taking the partial derivative of the dependent variable to the independent variable and
shows how strongly the dependent variable responds to a perturbation of the independent variable.

2.3 The Model Representation 5

Figure 2: Conceptual Hierarchy of the elements in a System Dynamics model. The arrows denote an
inheritance relation, the upper class is more general than the lower.

et al., 2006). The representation interfaces effortlessly with MatLab, opening up the possibility of

using MatLab as a scripting tool for analysis such as sensitivity analysis and active nonlinear testing

(Appendix A). In addition, a Perl script has been written which enables automatic translation from

Vensim files to this implementation.

6 2 METHOD

2.4 The Overall Procedure

The main procedure executes model runs and analyses; linking the separate parts of the framework

together. The procedure runs the model until the moment for which we have defined the first analysis.

It stops running at that point, performs the analysis, stores the results and continues to run until the

next time for analysis. This continues until either the last time for analysis or the last timestep has

been reached. During intervals of rapidly changing loop gains, the times for analysis can be closer

together. So, both the integration timesteps and the times at which the analysis is performed are

completely up to the analyst. For an overview of the procedure see Figure 3.

2.5 The Analysis Functions

These are the functions that implement the formal model analysis by Forrester (1982), Kamp-mann

(1996) and Güneralp (2006) and the structural analysis by Oliva (2004)3. They have been generalised

as far as possible. For instance, the algorithm used by Güneralp and Gertner (2006) to determine an

eigenvalue’s contribution to the behaviour of a state variable has been translated to a generic method

applicable to an nth-order model. This fully automates the approach, although scalability issues still

are present. In the current setup, the necessary data can be obtained from the model and the func-

tions perform their calculations.

In line with the setup for the framework, only the required information and the results of the func-

tions are defined.

Table 1: Analysis functions currently present in the framework

Analysis Required Input Results
Loop Eigenvalue Elastic-
ity Analysis

Model Linearisations, Di-
rected Cycle Matrix

Loop elasticities in the
form requested

Parameter Eigenvalue
Elasticity Analysis

Model Linearisations,
Model Parameters

Parameter elasticities in
the form requested

Elasticity analysis related
to a specific variable

Model Linearisations,
Results of the elasticity
analysis

Overall elasticity of spe-
cific variable to a given
parameter or loop

3The algorithms from R. Oliva’s research page have been used

http://iops.tamu.edu/faculty/roliva/research/sd/

2.5 The Analysis Functions 7

Figure 3: Overview of the main procedure of model analysis

8 3 VISUALIZING STRUCTURE

3 Visualizing Structure

Given the complexity and interwovenness of System Dynamics models, the analyst nearly needs to

modify the presentation of structure to visualise the model. This paragraph will present ways of vi-

sualising only structure, before dynamic causal diagrams are presented. A completed model is visu-

alised, this is not part of the development process.

The visualisation uses the edge gains in the running model to display it as a causal diagram. An

edge is a direct link between two model variables, the soure is the independent variable, the desti-

nation the dependent variable. The edge gain is determined by taking the partial derivative of the

dependent variable to the independent variable and shows how strongly the dependent variable re-

sponds to a perturbation of the independent variable. The sign of the causal link is given by the sign

of the edge gain, relating this to link polarity (Richardson, 1995). The gain of an inflow is defined as

+1, an outflow −1. Given the link to formal model analysis the visualisation focuses on the loops

present in the model. The tools can manipulate the presentation of loops. As a side-effect, manipula-

tion of submodels and causal tracing is feasible as well. We will show examples of causal tracing and

displaying loops.

• Causal Tracing: With regards to causally tracing the variables, the tool allows for showing the

variables at a number of steps away from the object of interest. That is, the analyst can show, for

instance, the elements at two steps away from a selected loop, submodel or variable (Figure 4).

• Displaying Loops: Most methods of formal model analysis focus on the loops, visualizing these

will help in interpreting results. The visualisation accepts a Directed Cycle Matrix (DCM)(Kamp-

mann, 1996) of a set of loops. These loops can then be highlighted, or selected to be the only

ones displayed. This facilitates reading the usual plots that are the result of a loop based eigen-

value elasticity analysis. For illustrative purposes, we show a small part of the results of a loop

eigenvalue elasticity analysis of an unmodified version of the Market Growth model (Forrester,

1968; Morecroft, 1983) (Figure 5). The model is selected based on its size and how well known

it is. The Market Growth model is a classic 10th order model of an electronics manufacturer.

The model shows the consequences of bounded rationality in the interplay of sales growth and

production capacitity in a recently opened product market.

9

(a) Elements at distance 1 (b) Elements at distance 2

Figure 4: Causal tracing in the Yeast model. Image (a) shows the the variables related to Cells and
their births and deaths in blue, with elements at one link away in different colors. Image (b) shows
the same submodel but now with elements at two or less edges away.

10 3 VISUALIZING STRUCTURE

(a) Elasticity Plot

(b) Loops with large negative elasticitity (c) Loop with large positive elasticity

Figure 5: Eigenvalue elasticities for a short part of the run of the Market Growth model (a). On the
selected eigenvalue, the loops associated with the delay in the market and the company recognizing
delivery delay (b) have the strongest dampening influence. The loop with the largest positive elasticity
is the unnamed high-order Loop 17.

11

4 Dynamic Causal Diagrams

As stated, one of the difficulties in using Loop Eigenvalue Elasticity like methods is the interpretation

of the results (Phaff, 2006; Kampmann and Oliva, 2006). Of the strategies suggested one of the most

prominent ones is to relate the way an edge is drawn in the model to the measure of its influence.

Kampmann and Oliva (2006), for instance, suggest controlling the glow of an edge to make it stand

out more when it has more influence.

As time progresses the influences and gains of edges change in any non-linear model. The time

at which the visualisation is displayed has to be changeable in the visualisation. It is this evolution

through time of the relative influence of a particular element of structure that aids in showing the

system story.

The danger in this approach, however, is that a complex method is oversimplified into an attractive

visualisation. Any tool that uses this must still make explicit that, for instance, when applying loop

eigenvalue elasticity, the analyst has to chose an eigenvalue and a particular type of elasticity. At every

moment in time, one diagram can be drawn for each eigenvalue. The tool presented here offers the

full choice of eigenvalues, types of elasticities and draws the model according to what the analyst

selects.

The visualisation is presented using the Yeast model (Saleh, 2002; Güneralp, 2005; Phaff, 2006). The

opacity of the links is determined by the relative size of the measure of influence. The color is depen-

dent on the sign of the influence, if the influence is less than zero, the edge is colored blue, if larger

than zero, the edge is colored red. We will display the visualisation for the edge gains in the model,

the real edge eigenvalue elasticities and the overall edge eigenvalue elasticity. For the visualisation of

gains, the opacity for edge i, ei is calculated as

γ(ei) = 0.1 + 0.9
|g(ei)|

max {|g(e)| | e ∈ E}
(1)

where E is the set of edges in the model, g(e), the gain of an edge. The minimum value for opacity is

included to prevent edges with low gains from disappearing completely from the analyst’s view. With

regard to eigenvalue elasticity (imaginary or real), a quantitative measure of the influence an element

of structure has on behaviour, of ei, to a particular eigenvalue λk, εk,i, the opacity is calculated as

γ(ei) = 0.1 + 0.9
|εk(ei)|

max {|εk(e)| | e ∈ E}
(2)

In effect, the visualisation shows a causal diagram, where edges (links) change in visibility as their

influence waxes and wanes, creating a dynamic causal diagram. This immediately shows how the

non-linearities in the model cause the shifts in driving structure. It maps the result of a complex,

mathematical method of analysis back to the visual language of the modeller.

The figures below (Figure 6, Figure 7, Figure 8) show how the loops driving the behaviour of the

Yeast model change over time. Figure 7 shows the initial relative strength of the loop governing the

growth of Cells (Figure 4), followed by the increasing influence of the loops constraining that growth

as time progresses and the alcohol concentration rises. At the end of the model run, behaviour is

mostly governed by the first order loop responsible for the exponential decline of Cells. In Figure

12 4 DYNAMIC CAUSAL DIAGRAMS

7 displays the direction of influence of the edges on the real part of the eigenvalues, while Figure 8

shows the absolute measure of influence without taking the sign of the influence into account. As

time progresses the visualisation displays the changes in driving structure.

It is these changes in driving structure that show the effects of nonlinearity in System Dynam-

ics models. In linear models the roles of the edges and loops in the system would be constant. As

Forrester (1987) and Richardson (1984) said, it is these changes in loop dominance that distinguish

nonlinear models from linear models.

13

(a) Gains at t = 0 (b) Gains at t = 37

(c) Gains at t = 80 (d) Gains at t = 90

Figure 6: Visualisation of the changing individual edge gains during a simulation. This gives an indi-
cation of when a loop is active and the relative strength of the edges therein. Note: in a linear model
this visualisation would be constant.

14 4 DYNAMIC CAUSAL DIAGRAMS

(a) Elasticities at t = 0, for λ1 (b) Elasticities at t = 37, for λ1

(c) Elasticities at t = 80, for λ1 (d) Elasticities at t = 90, for λ1

Figure 7: The development in time of real eigenvalue elasticities to a particular eigenvalue in a simple
model. The opacity and color of the links show the relative size and direction of influence at the
selected moment in time on the selected eigenvalue. Note the transitions of influence from the minor
loop between births and cells, to the major loops and finally to the minor loop between Cells and
deaths. These influences would be constant in a linear model.

15

(a) Overall elasticities at t = 0, for λ1 (b) Overall elasticities at t = 38, for λ1

(c) Overall elasticities at t = 80, for λ1 (d) Overall elasticities at t = 90, for λ1

Figure 8: The development in time of overall eigenvalue elasticities to a particular eigenvalue in a
simple model. The opacity of the links shows the relative size of influence at the selected moment in
time on the selected eigenvalue.

16 5 CONCLUSIONS

5 Conclusions

The designed framework has been used to analyse a relatively large range of models. From small ex-

ample models to medium sized classic models, such as the Market Growth (Morecroft, 1983; Forrester,

1968) model. In building the framework the algorithms of Güneralp (2006) have been generalised to

be applicable, without modification, to higher order models.

In addition, the results of the analysis can be translated back to a type of diagram that forms an

extension to causal diagrams. The visualisation relies on formal model analysis to highlight influential

elements of structure. A dynamic causal diagram, changing over time, shows how the non-linearities

in the model drive the waxing and waning of the influence of different sets of loops. This visualizes

how the structure of the system generates its behaviour, in terms familiar to modellers.

This represents a significant departure from only ascribing dominance to a particular loop. Instead

of just displaying the most influential loop(s) this also displays the elements of structure that work

against the most dominant elements. For instance, in the Yeast model, it not only shows those loops

directly responsible for growth during the first phase of the model, but also those loops that restrain

this growth.

It must be noted that the techniques used in generating these images are still a topic of research

themselves. Several remaining challenges can be identified:

• The further development of eigenvector based methods (Güneralp, 2006; Saleh et al., 2006). Re-

cent work has addressed some of the problems of eigenvalue based analysis by incorporating

eigenvectors into the methods, but issues still remain (Güneralp, 2006; Saleh et al., 2006).

• The link from the results of the formal analyses to the modelling process. How can formal model

analysis be of use in the different phases of the modelling process? For instance, designing al-

ternatives, simplifying the model, or evaluating system boundaries.

• The generation of system stories based on the outcome formal model analyses. The applica-

tion of the currently available analyses are still the domain of experts familiar with the methods.

However, if the methods are to be of any use, their outcome will have to be translated into lan-

guage understandable to the client.

REFERENCES 17

References

Forrester, J. W. (1968). Market growth as influenced by capital investment. Industrial Management

Review (MIT), 9(2). 8, 16

Forrester, J. W. (1987). Nonlinearity in high-order models of social systems. European Journal of

Operational Research, 30:104–109. 1, 12

Forrester, N. (1982). A Dynamic Synthesis of Basic Macroeconomic Theory: Implications for Stabiliza-

tion Policy Analysis. PhD dissertation, MIT, Cambridge, MA. 2, 6

Güneralp, B. (2005). Towards coherent loop dominance analysis: Progress in eigenvalue elasticity

analysis. In Proceedings of the 23rd International Conference of the System Dynamics Society, Boston.

System Dynamics Society, Albany, NY. 11

Güneralp, B. (2006). Towards coherent loop dominance analysis: progress in eigenvalue elasticity

analysis. System Dynamics Review, 22:263–289. 2, 3, 6, 16

Güneralp, B. and Gertner, G. (2006). Feedback loop dominance analysis of two tree mortality models:

Relationship between structure and behavior. Tree Physiology. In Review. 6

Jacobs, P. H. M. (2005). The DSOL Simulation Suite: Enabling Multi-formalism Simulation in a Dis-

tributed Context. PhD dissertation, Delft University of Technology. 4

Kamp-mann, C. E. (1996). Feedback loop gains and system behaviour. In Proceedings of the 1996

International System Dynamics Conference, Boston. System Dynamics Society, Albany, NY. 3, 4, 6, 8

Kampmann, C. E. (1996). Feedback loop gains and system behaviour. Unpublished. 2

Kampmann, C. E. and Oliva, R. (2006). Loop eigenvalue elasticity analysis: three case studies. System

Dynamics Review. 2, 11

Mojtahedzadeh, M. T., Andersen, D., and Richardson, G. P. (2004). Using digest to implement the

pathway participation method for detecting influential system structure. System Dynamics Review,

20(1):1–20. 1

Morecroft, J. D. W. (1983). System dynamics: Portraying bounded rationality. Omega, 11:131–142. 8,

16

North, M. J., Collier, N. T., and Vos, J. R. (2006). Experiences creating three implementations of the

repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation, 16. 4

Oliva, R. (2004). Model structure analysis through graph theory: partition heuristics and feedback

structure decomposition. System Dynamics Review, 20(4):313–336. 3, 4, 6

Phaff, H. W. G. (2006). Investigating model behavioural analysis: A critical examination of two meth-

ods. In Proceedings of the 2006 International System Dynamics Conference, Nijmegen. System Dy-

namics Society. 11

18 REFERENCES

Richardson, G. P. (1984). The Evolution of the Feedback Concept in American Social Science. PhD

dissertation, school = ”MIT, Cambridge, MA”,. 1, 12

Richardson, G. P. (1995). Loop polarity, loop dominance, and the concept of dominant polarity. System

Dynamics Review, 11(1):67–88. 8

Richardson, G. P. (1996). Problems for the future of system dynamics. System Dynamics Review,

12(2):141–157. 1

Saleh, M. (2002). The Characterization of Model Behavior and its Causal Foundation. PhD dissertation,

Department of Information Science, University of Bergen. 11

Saleh, M., Oliva, R., Kampmann, C. E., and Davidsen, P. (2006). Eigenvalue analysis of system dy-

namics models: Another perspective. In Proceedings of the 2006 International System Dynamics

Conference, Nijmegen. System Dynamics Society. 16

Sterman, J. D. (2000). Business Dynamics. Systems Thinking and Modeling for a Complex World. Irwin

McGraw-Hill, Boston, MA. 1

Wolstenholme, E. F. and Coyle, R. G. (1983). The development of system dynamics as a methodology

for system description and qualitative analysis. Journal of the Operational Research Society, 34:569–

581. 1

Appendices

19

A Sensitivity Analysis

The following snippet of code shows how to do a full sensitivity analysis on any model, with the tra-

jectories of the model with each parameter perturbed as output.

1 function t r a j e c t o r i e s = s e n s i t i v i t y D a t a (anyModel , i n t e g r a t o r , timespan , . . .

2 parameters , r e l P e r t u r b a t i o n)

3 % f o r e v e r y parameter in the s e l e c t e d parameterset , run s e n s i t i v i t y

4 % a n a l y s e s . Needs simpleinteg , a wrapper funct ion around the model .

5

6 global model ;

7 model = anyModel ;

8 i n i t i a l s = anyModel . g e t S t a t e V a l u e s () ;

9

10 function runResult = s e n s i t i v i t y (parameter)

11 defValue = parameter . getValue ;

12 parameter . setValue (defValue + defValue∗perturbation) ;

13 [t , y] = i n t e g r a t o r (@simpleInteg , timespan , i n i t i a l s) ;

14 parameter . setValue (defValue) ;

15 runResult = {y } ;

16 end

17

18 % S e n s i t i v i t y maps parameters to t r a j e c t o r i e s

19 % Perturb p o s i t i v e l y

20 t r a j p o s = c e l l f u n (@ s e n s i t i v i t y , . . .

21 c e l l (parameters) , ’ UniformOutput ’ , f a l s e) ;

22

23 perturbation = −r e l P e r t u r b a t i o n ;

24 % Perturb the other way

25 t r a j n e g = c e l l f u n (@ s e n s i t i v i t y , . . .

26 c e l l (parameters) , ’ UniformOutput ’ , f a l s e) ;

27 t r a j e c t o r i e s = [t r a j p o s ; t r a j n e g] ;

28 end

The following snippet does the same for an active nonlinear test.

1 function opt = activeNonLinearTest ()

2 % Maximize the a b s o l u t e d i f f e r e n c e f o r the s e l e c t e d s t a t e

3 % A 10% d e v i a t i o n in parameter values i s allowed .

4

5 % s e t up the model

6 import nl . t u d e l f t . tpm . pa . sd . y e a s t . proxy .∗
7 y e as t = Yeast () ;

8 y e as t . constructModel ;

9 global model ;

10 model = y e a st ;

11 i n i t i a l s = y e a st . g e t S t a t e V a l u e s () ;

12

13 % g e t the r e f e r e n c e run

14 [t , refrun] = ode45 (@simpleInteg , 0 : 1 : 9 0 , i n i t i a l s) ;

15

16 p a r s J = y e a st . getParameters () ;

17 r e f P a r V a l u e s = c e l l f u n (@(par) par . getValue () , . . .

18 c e l l (p a r s J . toArray ())) ;

20 A SENSITIVITY ANALYSIS

19 numPars = s i z e (refParValues , 1) ;

20 lowerbound = 0.9∗ones (s i z e (r e f P a r V a l u e s)) ;

21 upperbound = 1.1∗ones (s i z e (r e f P a r V a l u e s)) ;

22

23 function metric = fitnessWrapper (parameterVector)

24 % For loop should not be in here

25 f o r idx = 0 : numPars−1

26 p a r s J . get (idx) . setValue (r e f P a r V a l u e s (idx + 1) . ∗ . . .

27 parameterVector (idx + 1)) ;

28 end

29 [t , mod run] = ode45 (@simpleInteg , 0 : 1 : 9 0 , i n i t i a l s) ;

30 % Take the a b s o l u t e l y l a r g e s t d i f f e r e n c e in number o f c e l l s

31 % during the run as a metric f o r d e v i a t i o n . Bad metric , but ok f o r

32 % demonstration purposes .

33 % Function s e e k s to minimize t h i s , so d i v i d e

34 metric = 1 / (max(abs (mod run (: , 1) − refrun (: , 1)))) ;

35 end

36

37 % Returns parameter s e t t i n g s f o r max d e v i a t i o n

38 x = ga (@fitnessWrapper , numPars , [] , [] , [] , [] , lowerbound , upperbound) ;

39 % S e t parameter values to found maximum, p l o t

40 f o r index = 0 : numPars−1

41 p a r s J . get (index) . setValue (r e f P a r V a l u e s (index + 1) .∗ x (index + 1)) ;

42 end

43 [t , maxdefrun] = ode45 (@simpleInteg , 0 : 1 : 9 0 , i n i t i a l s) ;

44 plot (t , refrun (: , 1) , t , maxdefrun (: , 1)) ;

45 opt = x ;

46 end

	Introduction
	Method
	General Design of the AMBA framework
	Components
	The Model Representation
	The Overall Procedure
	The Analysis Functions

	Visualizing Structure
	Dynamic Causal Diagrams
	Conclusions
	Appendices
	Sensitivity Analysis

