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Analytical methods for structural dominance analysis in system 
dynamics: An assessment of the current state of affairs. 

Abstract 

We provide a review of different approaches to linking model structure to observed behavior 
with a particular view towards using models for theory building.  We identify four such 
approaches, namely the “classical” approach, the “pathway participation” approach, the 
“eigenvalue elasticity” approach, and the “eigenvector” approach, respectively.  We outline our 
assessment of the strengths and weaknesses of each approach and point to some main challenges 
and tasks ahead.  We find that the eigenvalue and eigenvector approaches carry the largest 
potential but that a more solid theoretical foundation of the method is required.  Once such a 
foundation is developed, it will be important to develop intuitive analytical tools that can be of 
use to a wider system dynamics audience. Since a “grand unified theory” will never be possible, 
all tools will be based on approximations and it is only in their practical use that we can discover 
their real value. 

Introduction 

In recent years, there has been a growing interest among system dynamics researchers in 
developing methods for formal quantitative tools to help modelers understand the relationship 
between observed model behavior and the elements of the model structure influencing this 
behavior in large models.  This process is obviously of great importance to both practitioners and 
theorists.  For the former group, an understanding of the link between system structure and 
observed behavior is the key to finding leverage points for policy initiatives.  For the theorist, the 
system dynamics paradigm builds on the notion that structure causes behavior, i.e., a system 
dynamics theory of a particular phenomenon is an account of how certain feedback loops cause 
certain dynamic patterns of behavior to appear.  This qualitative understanding is often at least as 
important as the particular numerical predictions obtained, even in applied studies.  Yet the rigor 
of such an account depends directly on the rigor with which structure-behavior link can be made 
in a given model. 

The purpose of this paper is to give an overview of the different approaches taken to the 
structure-behavior problem, to outline the apparent strengths and weaknesses of each approach 
with a view towards using system dynamics for theory building, and to point to some main 
challenges and tasks ahead in order to make the methods useful for a wider audience of system 
dynamics practitioners and researchers. 

Understanding model behavior is closely related to the process of model testing and validation, 
for which there is a well established tradition and an extensive literature in the field (e.g., Barlas 
1989; Ford 1999; Forrester and Senge 1980; Morecroft 1985; Richardson 1984/1995; Richardson 
1986).  Indeed there is no sharp line between testing, validation, and analysis, and in practice, the 
analyst undertakes all these processes simultaneously (Forrester and Senge 1980).  The present 
paper is focused exclusively on the tools used to linking structure to behavior, specifically how 
certain behavior patterns can be attributed to certain feedback loops (or external driving forces), 
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and how the relative importance of different feedback loops may shift over time (shifting “loop 
dominance”).   

Traditionally, system dynamics analysts have relied on trial-and-error simulation to discover 
important system elements, by changing parameter values or switching individual links and 
feedback loops on and off.  The tradition is well developed and includes a set of principles for 
partial model formulation and testing based the organizational theory of bounded rationality 
(Homer 1983; Morecroft 1985).  The intuition guiding this effort relies on simple feedback 
systems with one or a few state variables, where the behavior is fully documented and 
understood. 

Part of the tradition involves the use of well-understood “generic structures” that seem to appear 
again and again in system dynamics models, such as “shifting the burden to the intervener”, 
“overshoot and carrying capacity collapse”, “inventory-workforce dynamics”, “drifting goal 
structure”, etc.  (See Sterman, 2000 for an account of these structures.)  Clearly such structures 
can be a useful aid to understanding if the model is sufficiently simple to allow such a simple 
structure to be identified.2  

In large-scale models with perhaps hundreds of state variables, however, the traditional approach 
shows significant limitations.  In practice, model building and analysis is often done using a 
“nested” partial model testing approach where one goes from the level of small pieces of 
structure to entire subsystems of the model, with frequent re-use of known formulations and 
partial models.  Although this approach does carry a long way, it can be very difficult to discover 
feedback mechanisms that transcend model substructures in ways not anticipated by the modeler 
in the original dynamic hypothesis.  Thus, there is a danger that observed behavior is falsely 
attributed to certain feedback mechanisms when in fact another set of feedbacks is driving the 
outcome.  Likewise, one may make false inferences about how a particular feedback mechanism 
modifies the behavior, e.g. whether it attenuates or amplifies a particular oscillation.3 

Modern software packages can run extensive tests for sensitivity and “reality checks” where a 
large number of parameters are varied simultaneously (Peterson and Eberlein 1994).  This is 
clearly a significant improvement over “manual” trial and error methods, particularly when these 
methods are combined with statistical inference methods such as Kalman Filtering or Monte 
Carlo maximum likelihood estimation (Eberlein 1986; Eberlein and Wang 1985; Oliva 2003; 
Peterson 1980; Radzicki 2004; Schweppe 1973).  A variant of this approach involves using 
statistical experimental design and correlation methods to screen for significant model structure 
(parameters), as suggested by Ford and Flynn (2005).  Indeed, the prospects of marrying such 
methods with modern search and optimization methods like classifier systems (Holland 1992) or 

                                                
2 A devil’s advocate may argue that there is also a tendency to build the models around such structure, making it less 
surprising that one “rediscovers” them when analyzing the model.   

3 For instance, in Sterman’s simple long wave model (Sterman 1985), the self-reinforcing  “hoarding mechanism” 
where  increased delivery delays lead to further orders, was thought to play a significant role in amplifying the 
oscillations.  However, using loop elasticity analysis, Kampmann (1996) showed how the effect of the hoarding 
mechanism was in fact negligible. 
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genetic algorithms (Goldberg 1989) seem very promising.  However, these methods are more 
addressing issues in estimation, validation and testing than inferences about structure causing 
behavior, cf. the discussion above.   

Clearly, a more rigorous theory for the link between feedback structure and behavior in general 
large-scale systems would be of great value.  By way of introduction, the following section of the 
paper discusses what constitutes an “explanation” of the link between structure and behavior and 
the fundamental analytical limits to this ideal, given that we are dealing nonlinear systems.  It is 
important to recognize that these limits exist, i.e., we that we cannot hope to completely 
“automate” the model analysis.  That isn’t necessarily a problem, though, given that the system 
dynamics modeling philosophy calls for a modeling process of critical inquiry and interaction 
with the model.  We then proceed to discuss four main approaches used in system dynamics to 
explain the link between structure and behavior, which we have termed the classic approach, the 
pathway participation approach, eigenvalue elasticity analysis, and eigenvector analysis, 
respectively.  The paper concludes with a discussion of the most important tasks ahead and 
speculates on the prospects for widespread use of analytical tools in the future. 

Overview and fundamental limits of analytical methods 

A system dynamics model can be represented mathematically as a set of ordinary differential 
equations 

 

! 

dx t( )
dt

" ˙ x t( ) = f x t( ),u t( )( ) , (1) 

where 

! 

x t( )  is a (column) vector of 

! 

n  state variables 
  

! 

x1 t( ),K, x
n
t( )( ) , 

! 

u t( )  is a column vector of 

! 

pexogenous variables or control variables 
  

! 

u1 t( ),K,up t( )( ) , 

! 

f( )  is a corresponding vector function, 
and 

! 

t  is simulated time.4  In general, f is a nonlinear function of its arguments, and we speak of a 
nonlinear system.  Conversely, if f is a linear function, we speak of a linear system. 

Given the structure of the model (1), knowledge of the initial conditions, and the path of the 
input variables u, the behavior of the model is completely determined.  In this sense, the model 
structure (1) constitutes a “theory” of the time behavior of the variables x.  Although this point of 
view has certain merits, not least the fact that it lifts the discussion from outcomes to causes of 
these outcomes and from events to underlying structure (Forrester 1961; Sterman 2000), we are 
concerned here with a more compact “explanation” of what is going on.  In fact, most system 
dynamics modeling projects report their results in terms of “simpler” explanations of the 
observed results, typically in terms of “dominant” feedback loops that produce the salient 
features of the behavior. 

                                                
4 In the paper, we restrict our attention to the state variables (levels) of the model for notational convenience, 
ignoring the auxiliary variables.  Mathematically, a model can always be brought to the reduced form (1), but in 
practice, the auxiliary variables give a more intuitive account of the analysis.  Likewise, we do not consider time-
varying systems (where time t enters as an explicit argument in the function f( ), though these can always be 
accommodated by an appropriate definition of the exogenous variables u. 
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Thus, one would be interested in methods that allows for a more compact explanation or 
inference about the results, short of having to simulate the entire model structure.  It turns out 
that in its ultimate form, this dream is beyond reach: Since the days of Henri Poincaré, 
mathematicians have known that it is impossible to find general analytical solutions to nonlinear 
systems.  On the contrary, the development of nonlinear dynamics and chaos theory has proven 
that such systems, even when they have very few state variables, can produce highly complex 
and intricate behavior that beyond general analytic methods (e.g., Ott 1993; Richardson 1988).  
Thus, we shall never find a final general theory where we can infer the behavior of the system 
directly from its structure and shall always have to rely on simulation to discover the dynamics 
implied by the structure.5  

The best we can hope for, therefore, is a set of tools that will guide intuition and help identify 
dominant structure in the model.  By dominant structure we mean particular feedback loops that 
are in some sense “important” in shaping the “behavior” of interest.  To the extent that we can 
identify such dominant structures, we may say that we have found a “theory” of the observed 
behavior. 

Although the term “behavior” may appear rather loose, experience and reflection tells us that 
there is a limited number, perhaps a dozen or so, of relevant behavior patterns that dynamical 
systems can exhibit.  Some of these behaviors, like exponential growth, exponential adjustment, 
and damped or expanding oscillations, are typical of linear systems.  Others, like limit cycles, 
quasi-periodic motion, mode-locking, and chaos, can only be exhibited by nonlinear systems. 

Common to the four approaches considered in this paper is that they are based on tools from 
linear systems theory, i.e., they approximate the nonlinear model (1) with a linearized version, 
using as a first-order Taylor expansion around some operating point 

00
,ux , i.e., 

 

! 

˙ x t( ) " f x0,u0( ) +
#f

#x
x $ x0( ) +

#f

#u
u$ u0( ) , (2) 

or, by an appropriate redefinition6 of the variables ux, , 

 

! 

˙ x t( ) " Ax t( ) + Bu t( ) , (3) 

where A is an 

! 

n " n  matrix of partial derivatives 

! 

"f i /"x j  and B is an 

! 

n " p matrix of partial 
derivatives 

! 

"f i /"u j . 

                                                
5 This is not to say that no general analytical results exist in nonlinear systems.  The field of chaos theory has 
uncovered a number of universal features, e.g., relating to the transition from periodic or quasi-periodic behavior to 
chaos, where the transitions show both qualitative and quantitative similarities that are independent of the specific 
forms of the model equations (see, e.g., Ott 1993).  However, these universal features relate to specific situations 
such as period-doubling or intermittency routes to chaos. 

6 x → x - x0 – f ( x0 , x0 ) ( t - t0 ) and u → u - u0. 
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For the linear system (3), there is a well-developed and extensive theory of the system behavior 
as a function of its structure, expressed in the matrices A and B.  One may broadly distinguish 
two parts of the theory, named classical control theory (e.g., Ogata 1990) and modern linear 
systems theory (e.g., Chen 1970; Luenberg 1979).   

In classical control theory, one is concerned with system output (one or more system variables) 
as a function of different inputs u, expressed as the transfer function G(s) of the system.  There is 
no space in the present paper for further details of the theory behind this method.  We return to 
its concrete application in system dynamics in the next section. 

Modern control theory or linear systems theory (LST) is concerned with the dynamical 
properties of the system as a direct function of the system matrices A and B.  A key element in 
this theory is the notion of the system eigenvalues, i.e., the eigenvalues of the matrix A.  If, for 
simplicity, we restrict ourselves to the endogenous dynamics of the system (set 0u = ), we can 
write the solution to (3) as 

 
  

! 

x
i
t( ) = c

i,1 exp "1t( ) + c
i,2 exp "2t( ) +L+ c

i,n exp "n t( ),i = 1,K,n , (4) 

where 
  

! 

"1,K,"
n
 are the n eigenvalues of the matrix A and 

! 

ci. j  are constants that depend upon the 
eigenvectors and the initial condition of the system.7  In other words, the resulting behavior is a 
weighted sum of distinct behavior modes, 

! 

exp "t( ) .  If an eigenvalue is real, the corresponding 
behavior mode is exponential growth (if 

! 

" > 0) or exponential adjustment (if 

! 

" < 0).  Complex-
valued eigenvalues come in complex conjugate pairs 

! 

" = # ± i$  which give rise to oscillations of 
frequency !  that are either expanding (if 

! 

" > 0) or damped (if 

! 

" < 0).  In this manner, the 
eigenvalues serve as a compact and rigorous characterization of the behavior (of linear systems).   

The concept of dominant structure, on the other hand, is less clear.  To even claim that certain 
parts of the model are more important than others is perhaps to go too far.  Indeed, one may 
characterize the different approaches recounted in this paper by the way in which they define the 
concept of dominant structure. 

Richardson (1986) provides a taxonomy of approaches to the notion of dominant structure, 
where he distinguishes along three dimensions, namely linear vs. nonlinear systems, model 
reduction vs. loop contribution, and the characterization of behavior in terms of time graphs, 
eigenvalues or frequency response, respectively. 

The model reduction approach seeks to replace the original model with a simplified version that 
is capable of reproducing the essential behavior of interest (expressed in the system eigenvalues).  
Eberlein (1984; 1989) represents the most extensive and systematic attempt at this.  He found, 
however, that this is a very difficult problem and that no simple procedures exist even in the case 
when the system is linear, particularly when one requires a simplified model to have variables 
that can be related directly to the variables in the original model.  It is fair to say, therefore, that 

                                                

7 The eigenvalues !  and associated (right) eigenvectors r of a matrix A are defined as the solutions to the equation 
rAr != . 
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this path of inquiry has largely been abandoned.  Extracting the “essence” of a model therefore 
remains a process based upon the intuition and skill of the modeler. 

The loop contribution or, more generally, the structure contribution approach, reflects the 
intuitive idea that if one removes the element under consideration, e.g. by breaking a link or 
switching off a feedback loop, and the behavior then “disappears”, one would say that the 
element in some sense “causes” the observed behavior.  This notion underlies the traditional 
trial-and-error approach.   

If instead one considers marginal (infinitesimal) changes in structure, e.g. in the strength of a 
particular link, it is possible to derive rigorous analytical results for the resulting change in 
behavior, expressed as the eigenvalues of the linearized model.  This is what underlies the 
eigenvalue elasticity (EEA) and eigenvector (EVA) approaches discussed later in the paper.  One 
would then say that if a change in a system element has a relatively large effect upon the 
behavior pattern of interest, this element is “significant” in “causing” the behavior.  The marginal 
and experimental approaches may supplement each other well, where a marginal analysis may 
identify elements that can then be tested experimentally for their significance. 

The classical approach likewise considers how structural elements modify the behavior of the 
system, viewed in terms of the frequency response method used in classical control engineering.  
Unlike the other approaches, however, the method works “backwards” by starting with simple 
feedback systems of single loops and then considers the marginal effect of adding links and 
loops. 

The pathway participation method (PPM) relates to the time path of particular system variables 
and is more concerned with the qualitative nature of the time path, expressed in terms of signs of 
the slope (whether growing or declining) and curvature (whether convex or concave).  It traces 
the causal links in the variables influencing the system variable in question and then identifies 
the most important chain of links. 

Table 1 summarizes the different approaches in terms of Richardson’s taxonomy.  With the 
exception of PPM, the methods rely on concepts from linear systems, yet as indicated in the 
table, they may nonetheless be useful in nonlinear systems as well as tools for analysis rather 
than as general theories, as will be discussed below. 

--- Insert Table 1 about here --- 

The classical approach 

The first set of methods, which we call the classical approach, has been part of our tradition for 
decades and is part of the standard curriculum in system dynamics teaching at the graduate level 
(see, e.g. Sterman 2000, Ch. 8).  It involves using the concepts from classical control theory 
(Ogata 1990) to very simple systems with only a few state variables.   

The starting point of the classical approach is the simple first- and second-order positive and 
negative feedback loops found in any introductory treatment of system dynamics.  The advantage 
of the approach is its simplicity.  Although it serves at a guide to intuition, however, the obvious 
shortage is that it applies rigorously only to simple systems. There have been some attempts to 
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treat higher-order systems by adding a few feedback loops (Graham 1977), but the step to large-
scale models is beyond this method given its inherent limitations.   

In a way, Graham’s objective was the opposite of what seems to be the ideal pursued by the 
other methods: he sought to derive a set of “principles” based on simple feedback structures, as 
an intuitive guide or metaphor for understanding behavior.  In his own words,  

“A large gap exists in the body of knowledge about the relationship of system 
structure and system behavior.  The gap exists between formal mathematical 
methods and the conceptual or experiential tools that interact to give a ‘gut feel’ for 
the behavior of a system.” (Graham 1977, p. 3) 

Thus, the goal is to create an intuitive understanding of the mathematical results of classical 
control theory rather than to develop a new formal theory that can explain behavior.   

Graham distills a number of principles that are based on the metaphor of a “disturbance” 
traveling along the chain of causal links in a feedback loop and getting amplified, damped, and 
possibly delayed in the process.  For major negative feedback loops, which are known to tend to 
produce oscillation, adding minor negative loops and cross-links, or shortening the delay times 
increases the damping.  Conversely, adding positive loops in to the oscillatory system tends to 
lengthen the period of oscillation whereas the effect on the damping depends upon the delays in 
the positive loop.  Using the metaphor of pushing a child on a swing, it becomes clear that the 
timing of the propagation of a disturbance has as much importance for its effect on the damping 
as its strength. 

For systems driven by a positive loop, Graham provides an intuitive account of its behavior using 
the open-loop steady-state gain (OLSSG), which determines whether the resulting behavior is 
exponential growth, adjustment, or collapse.  If a feedback loop consists of a chain of causal 
links, one may “break” the loop at any point in the chain, say after 

n
x , and the consider the 

change 

 
  

! 

OLSSG =
"x

n

*

"x
1

=
"x

n

*

"x
n#1

$
"x

n#1
*

"x
n#2

$L $
"x

2

*

"x
1

, (5) 

where the asterix (*) denotes the steady state change.  The loop may involve one or more delays 
and other state variables along the causal chain, hence the need to specify that the gain as the 
steady state value after all delays have adjusted.  If the OLSSG is greater than unity, the loop will 
produce exponential growth or collapse.  If the OLSSG is less than unity, e.g. in the classical 
“consumption multiplier” in macroeconomics, the resulting behavior will be exponential 
adjustment.  This can be intuitively understood by considering how the “additional disturbance 
gets smaller and smaller each time it goes around the loop”. 

In the context of oscillation, the “classic” approach has also employed concepts closer to 
classical control theory by considering the phase and gain shifts that a particular structural 
element or subsystem (the so-called frequency response method).  The frequency response is 
determined from the transfer function of the system, ( )!jG , which is a complex-valued function 
that specifies how an input signal with frequency !  results in an output signal that may be phase 
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shifted (delayed), and either amplified or damped.  For linear systems, G can be calculated 
directly from the system matrices in (3).  For nonlinear systems, G may be found through 
simulation experiments.  Usually, G is represented by a “phase and gain” diagram.  For instance, 
Figure 1 shows a typical phase-and-gain diagram where the amplitude A the phase shift φ  of the 
output relative to the input varies with the frequency of the input.   

--- Insert Figure 1 about here --- 

Often, as is the case with the system in Figure 1 (a simple damped harmonic oscillator), the 
system will tend to amplify certain frequencies while attenuating other frequencies.  This may be 
used to explain or understand the role of particular structures in the model in generating 
oscillation at certain frequencies, even when there are no oscillations coming in from the outside 
world.  In this manner, the approach nicely demonstrates the “endogenous viewpoint” that 
behavior (oscillations) is generated internally by the system.  As an analytic tool for large scale 
systems, however, the method does not seem to produce any additional insights. 

Thus, we may conclude that the classical approaches serve mostly as intuitive metaphors to 
guide the analyst rather than as full analytical tools.  In particular, the validity, and indeed the 
usefulness, of these tools in the context of large-scale models is questionable.  With these tools, 
the effective analysis of large-scale models is still very much a function of the experience and 
skill of the analyst. 

Pathway participation metrics 

The second approach has been termed the pathway participation method (Mojtahedzadeh 1996; 
Mojtahedzadeh, Andersen, and Richardson 2004; Oliva and Mojtahedzadeh 2004).  The idea is a 
further development of an original suggestion by Richardson (1984/1995) to provide a rigorous 
definition of loop polarity and loop dominance.  Richardson motivated this with the common 
confusion associated with positive feedback loops, which may exhibit a wide range of 
behaviors8, as Barry Richmond noted with wonderful humor: 

“Positive loops are ... er, well, they give rise to exponential growth ... or collapse ... 
but only under certain conditions ... Under other conditions they behave like negative 
feedback loops ...” (Richmond 1980). 

Richardson proposed that the polarity of a loop be defined as the sign of the expression  

 

! 

"˙ x i

"xi

=
"f i x,u( )
"xi

, (5) 

in the model (1), with a positive sign indicating a positive loop and vice versa.  When several 
loops operate simultaneously, the sign of the expression indicates whether the positive or 
negative loops dominate.  Note, however, that the definition only applies to minor loops (i.e. 
loops involving a single level).  Put differently, it only considers the diagonal elements of the 

                                                
8 Even sustained oscillation (cf. Graham 1977, p.76). 
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matrix A in the linearized system (3).  Richardson (1984/1995) demonstrates how even with this 
limitation, analyzing the system with this metric can (sometimes) yield insights into behavior of 
higher-order systems. 

The expression (5) hints that it is relevant to consider the curvature, i.e., the second time 
derivative, x&& , of a variable when looking for dominant structure.  Although he does not say so 
explicitly, this is effectively the focus of Mojtahedzadeh’s pathway method.  Figure 2 shows how 
one may classify behavior by comparing the first and second time derivatives of a variable.  As 
seen in the figure, the sign of the expression xx &&& / , which Mojtahedzadeh denotes the total 
pathway participation metric or PPM, indicates whether the behavior appears dominated by 
positive or negative loops, much in line with Richardson’s definition of dominant polarity.  A 
zero curvature indicates a shift in loop dominance (cf. the middle column in the figure).  Note, 
however, that the interpretation of the middle row in the figure where the slope x&  is zero has no 
clear interpretation in terms of loop dominance.  Indeed this hints at one of the weaknesses of the 
approach that we will return to below. 

--- Insert Figure 2 about here --- 

Mojtahedzadeh’s method proceeds by decomposing the PPM in its constituent terms.  From (1) 
we have 

 

! 

PPM i =
˙ ̇ x i
˙ x i

=
"f i

"x j

˙ x j

˙ x ij=1

n

# , (6) 

where, for brevity, we have chosen to ignore the exogenous variables u.9 One might say that each 
of the terms in the sum in (6) represents the separate influence of each of the state variables in 
the system on the behavior 

! 

x
i
.  Mojtahedzadeh in fact uses a normalized measure for the terms,  

 

! 

"f i /"x j( ) ˙ x j

"f i /"xk( ) ˙ x k
k=1

n

#
, (7) 

which can vary between -1 and +1, to measure the relative importance of the pathway from 
variable j.  By explicitly considering auxiliary variables y in the model, one may further 
decompose each term ji xf !! /  into a sum of terms 

 
  

! 

"f i
k

"x j
=
"f i

"y
1

#
"y
1

"y
2

#L #
"ym$1

"ym
#
"ym

"x j
, (8) 

corresponding to a causal chain or pathway 
  

! 

" k = x j # ym #L y
2
# y

1
# ˙ x i{ } .  Mojtahedzadeh 

now considers each possible pathway (7) and defines the “dominant” pathway as the one with 

                                                
9 The treatment of exogenous variables in the method is straight-forward. 
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the largest numerical value and the same sign as
i

PPM .  Having selected this dominant pathway, 

  

! 

" ij
* = x j # ym #L y

2
# y

1
# ˙ x i{ } , which originates in the state variable j

x the procedure is 
repeated for that state variable 

! 

x j , and so forth, until one either reaches one of the already 
“visited” state variables (in which case a loop has been found) or an exogenous variable (in 
which case an external driving force has been found).  Thus, the procedure may result in three 
alternative forms of dominant structure illustrated in Figure 3, namely a “pure” minor or major 
feedback loop, a pathway from a feedback loop elsewhere in the system, or a pathway from an 
exogenous variable. 

--- Insert Figure 3 about here --- 

By dividing the observed model behavior into different phases according to the taxonomy in 
Figure 2 and then applying the method just described at different points in during these phases, 
one identifies how the dominant structure changes over time. 

The PPM method is still mostly used at an early explorative stage on rather simple models, 
where it does appear to aid insight into the dynamics (e.g., Oliva and Mojtahedzadeh 2004).  The 
method has been implemented in a software package, Digest, (Mojtahedzadeh et al. 2004), yet its 
use by practitioners still seems limited.  (Something that can be said of all the methods except the 
classical approach.) 

From the studies performed so far, it is clear that the main strength of this method is its relative 
computational simplicity (it does not require computing eigenvalues, which is a numerically 
demanding task), and the intuitive and direct connection it makes between the observed behavior 
and the influencing structural elements.  Unlike the other approaches which operate in the 
“frequency domain”, the method considers the time path of a specific variable directly. 

There are, however, some important outstanding issues that remain to be clarified.  First, the 
method is not suitable for oscillatory systems.  The problem is easy to recognize when one 
considers how the PPM measure will vary over the course of a sinusoidal outcome:  The sign of 
the PPM will shift twice during each cycle, indicating that the behavior is alternately dominated 
by positive and negative loops, even though the system structure, and hence the loop dominance, 
may remain unchanged all the time.  Richardson (1984/1995) already alluded to this problem by 
noting that the measure only considers the diagonal elements in the system matrix in (4).  This is 
a significant limitation, given the prevalence and importance of oscillation in system dynamics 
analysis.   

A second limitation of the current implementation of PPM is that it uses a depth-first search for 
the single most influential pathway for a variable. This strategy does not capture the situation 
where more than one structure may contribute significantly to the model behavior and, through 
the depth-first algorithm, may miss alternative paths that could prove to yield a larger total value 
of the metric.  This problem could likely be addressed by modifying the search algorithm and is 
most likely of minor importance. 

Another issue is how to treat the case when 

! 

˙ x = 0 since it appears in the denominator of the terms 
in (6).  However, it is not clear that it is necessary to do this division, given that it is easy to 
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identify the nine cases in the figure by simply examining its sign.  Thus, the issue is probably not 
of much significance. 

The fourth issue, on the other hand, is more significant, namely the emphasis on identifying a 
single “dominant” structure.  In reality, of course, the behavior of a variable is influenced by 
many loops and pathways at once.  Reducing the consideration to a single one of these may miss 
important features of the structure-behavior relationships.  For instance, a variable may be 
influenced by two negative loops and one positive, with the “sum” of the two negative loops 
dominating the influence of the positive loop, even though that loop by itself has the strongest 
influence on the behavior.  It is more appropriate to consider the relative importance of 
alternative pathways, yet the method does not address how one would partition the behavior 
among pathways (the three structures in Figure 3) – only among individual links. 

Thus, while the notion of pathways seems an interesting and useful idea, it may be that it will 
ultimately be more effective to use list, ranked in order of magnitude, of the pathways that 
influence a variable. 

Finally, the method shares a weakness with the traditional method in that it considers primarily 
partial system structures rather than global system properties.  In contrast, the two eigenvalue 
methods to which we now turn are based on a rigorous characterization of the entire system (at a 
given point in time). 

Eigenvalue elasticity analysis 

The third method may be termed eigenvalue elasticity analysis (or EEA for short) and builds 
upon the tools from “modern” linear systems theory (LST), applied to the linearized model (3).  
The method is concerned with the structural elements that significantly affect the system 
eigenvalues or behavior modes — the values 

! 

"  in (4). Specifically, it measures influence by the 
elasticity of an eigenvalue 

! 

"  with respect to some parameter g in the model, defined as 

! 

" = #$ /#g( )(g /$) , i.e. the fractional change in the eigenvalue relative to the fractional change in 
the parameter.  The advantage of this fractional measure is that it is dimensionless, i.e., 
independent upon the choice of units, include the time scale unit.  Sometimes, the influence 
measure is use in stead, defined as 

! 

µ = ("# /"g)g .  This measure has dimension [1/time] and so 
depends upon the choice of is time unit, but it is generally easier to interpret for complex-valued 
eigenvalues and avoids numerical problems with very small or zero eigenvalues (see Kampmann 
1996; Saleh et al. 2007). 

The idea behind EEA was first introduced in system dynamics by Forrester (1982) in the context 
of economic stabilization policy.  For purposes of policy analysis in oscillating systems, one may 
define a number of criteria from engineering control theory, all of which relate to the eigenvalues 
of the system, as summarized in Table 2.  Figure 4 provides a graphical characterization of the 
eigenvalues and policy criteria in the complex plane.  Though these measures are not new, the 
EEA method is unique in its attempt to use them to gain qualitative intuitive understanding of the 
system.  A significant step in this direction was first suggested by Forrester (1983) with the 
notion that the elasticities of any links in the model (corresponding to elements of the matrix A 
in the linearized system (3)), can be interpreted as the sum of elasticities of all feedback loops 
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containing that link.  We have chosen to name this approach loop eigenvalue elasticity analysis 
(LEEA). 

--- Insert Table 2 about here --- 

--- Insert Figure 4 about here --- 

Kampmann (1996) provided a rigorous definition of LEEA and also pointed to the fact that 
feedback loops are not independent.  In other words, given the possibly very large number of 
loops in a given model, it only makes sense to speak of individual contributions of a limited set 
of independent loops.10  He proved that a fully connected system (where there is a feedback loop 
between any pair of variables – the typical case in system dynamics models) with N links and n 
variables has a total of N-n+1 independent loops and provided a procedure for constructing this 
set and calculating the loop elasticities.   

Kampmann’s analysis points to a fundamental issue relating to the notion of feedback loops as a 
way to explain behavior:  the significance assigned to a particular loop depends upon the context 
(the chosen independent loop set).  In other words, feedback loops are derived and relative 
concepts rather than fundamental independent building blocks of systems.11  Oliva (2004) further 
refined the definition of independent loop sets by introducing the Shortest independent loop set 
(SILS) along with a procedure for constructing the set.  Although a SILS is not generally unique, 
experience seems to suggest that it is easier to interpret (Oliva and Mojtahedzadeh 2004).  Yet 
the issue remains that feedback loops are relative concepts. 

The EEA/LEEA method has been applied in a number of contexts (e.g., Abdel-Gawad et al. 
2005; Gonçalves 2003; Gonçalves, Lerpattarapong, and Hines 2000; Güneralp 2006; Kampmann 
and Oliva 2006; Saleh and Davidsen 2001a, b; Saleh et al. 2007), but remains a tool employed 
by specialists and fundamental research, not least because it has not been incorporated into 
standard software packages.  Thus, the potential of the method for widespread practice remains 
unexplored. 

One might be skeptical that a method derived from linear systems theory may have any use for 
the nonlinear models found in system dynamics.  Kampmann and Oliva (2006) considered the 
question what types of models the method would be particularly suited for.  They defined three 
categories of models, based upon the behavior they are designed to exhibit: 1) linear and quasi-
linear models, 2) nonlinear single-transient models, and 3) nonlinear periodic models.  The first 
category encompasses models of oscillations, possibly combined with growth trends, with 
relatively stable equilibrium points, (e.g., the classical industrial dynamics models Forrester 

                                                
10 Kampmann demonstrated how the theoretical maximum number of loops grows combinatorically to with the 
number of variables, reaching astronomical values even for relatively small models. 

11 There is one way in which every possible feedback loop of the model may be assigned a unique elasticity, namely 
by using Mason’s rule on the characteristic polynomial of the system – see Kampmann (1996), Hines (2005).  Yet, 
as Kampmann (1996) points out, the measure is not analytically valid in that it is not possible to change the strength 
of one loop without affecting the others.  How this elasticity measure relates to the independent loop set elasticities 
is one of the tasks that remain to be solved. 
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1961).  Nonlinearities may modify behavior (particularly responses to extreme shocks) but the 
instabilities and growth trends can be analyzed in terms of linear relationships.  Kampmann and 
Oliva concluded that LEEA showed the most promise and potential for this class of models 
because the analytical foundations are solid and valid, and because the method has the ability to 
find high-elasticity loops even in large models very quickly without much intervention on the 
part of the analyst. 

The second class is typical of scenario models like the World model (Forrester 1971; Meadows 
et al. 1972), the urban dynamics model (Forrester 1969), the energy transition model (Sterman 
1981), to name a few, that show a single transient behavior pattern, like overshoot and collapse 
or a turbulent transition to a new equilibrium.  In these models, nonlinearities usually play an 
essential role in the dynamics.  Yet it is possible to divide the behavior into distinct phases where 
certain loops tend to dominate the behavior.  In this class of models LEEA also shows promise 
by measuring shifts in structural dominance by the change in elasticities.  Yet requires more 
input from the analyst (e.g. in defining the different phases of the transition) and it has no 
obvious advantage over other methods, like PPM. 

The third class, nonlinear periodic models, are those that exhibit fluctuating behavior in which 
nonlinearities play an essential role, such as like limit cycles, quasiperiodic behavior, or chaos, 
(see, e.g., Richardson 1988).  Here the utility of the method is much less clear and depends upon 
the specifics of the model in question.  For example, the classic Lorenz model that exhibits limit 
cycles, period doubling and deterministic chaos does not lend itself to any insight using LEEA 
(Kampmann and Oliva 2006).12  In other cases, the method of breaking the behavior into phases 
with different dominant structures may yield significant from LEEA.  For instance, Sterman’s 
simple long wave model (Sterman 1985) lends itself well to this approach (e.g., Güneralp 2006; 
Kampmann 1996). 

In the present paper, we add a fourth category of models or behavior for which the method has 
not been explored yet.  We name this category nonlinear multi-modal models.  These encompass 
the cases where one behavior mode interacts with and, therefore, modifies another behavior 
mode – something that can only happen in nonlinear systems.  The most common example is 
mode-locking or entrainment, in which oscillations become synchronized (e.g., Haxhold et al. 
1995).  Another example is mode modification, where one behavior mode (growth or oscillation) 
affects the character of another (typically oscillation).  An example of this is the interaction of 
the business cycle with the economic long wave, where the former tends to get more severe 
during long wave downturns (Forrester 1993).  Whether LEEA can contribute to this class of 
models remains to be seen. 

Compared to the former two methods, the EEA/LEEA is mathematically more general and 
rigorous, though many of the mathematical issues in the method remain to be addressed, as we 
summarize below.  This rigor is also the main strength of the method, since it provides an 

                                                
12 This is particularly the case in systems with “strong” nonlinearities such as min and max functions.  In these 
systems, the behavior may change abruptly (eigenvalues suddenly shift) in what is called “border-collision 
bifurcations” (Mosekilde and Laugesen 2006; Zhusubaliyev and Mosekilde 2003). 
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unambiguous and complete measure of the influence of the entire feedback structure on all 
behavior modes.   

A weakness or challenge that is starting to show up is the computational intensity in calculating 
eigenvalues and elasticities.  This is not so much an issue of computer time and memory space as 
of the stability of numerical methods.  Kampmann and Oliva (2006) found that the numerical 
method used sometimes proved unstable, yielding meaningless results.  Clearly, there is a need 
to explore this issue further, possibly building upon the developments in control engineering. 

A more serious weakness is the difficulty in interpreting the results: Eigenvalues do not directly 
relate to the observed behavior of a particular variable.  The concepts of eigenvalues and 
elasticities are rather abstract and unintuitive (Ford 1999).  There is a need for tools and methods 
that can translate them into visible, visceral, and salient measures.  Here, the measures in Table 2 
may provide a guide.  In particular, it is possible to use (linear) filtering in the frequency domain 
to define a behavior of interest.  For example, an analyst may be concerned with structures 
causing a typical business cycle (3-4-year oscillation) and, by specifying a filter that “picks out” 
that range of fluctuation, could obtain measures for structures that have elasticities in that range.  
Because filters are linear operators, all the analytical machinery of the LEEA method will also 
apply in this case – a significant advantage. 

Using filters will also solve an issue that appears in large-scale models, namely the presence of 
several identical or nearly identical behavior modes.  Saleh et al. (2007) do consider the 
analytical problems associated with repeated eigenvalues, where it becomes necessary to use 
generalized eigenvectors, and where other behavior modes appear involving power functions of 
time.  A filter essentially constitutes a weighted average of behavior modes and in this fashion 
avoids the “identity problem” of non-distinct eigenvalues.  

The most serious theoretical issue, in our view, is how the results are interpreted using the 
feedback loop concept.  As mentioned, the concept is relative (to a choice of an independent loop 
set).  Moreover, practice reveals that the number of loops to consider is rather large and that the 
loops elasticities often do not have an easy or intuitive explanation.  A lot of care must be taken 
when interpreting the results.  For instance, Kampmann and Oliva (2006) found that “phantom 
loops” – loops that cancel each other by logical necessity and are essentially artifacts of the 
equation formulations used in the model – could nonetheless have large elasticities and thus 
seriously distort the interpretation of the results.  The problems may not be intractable, but their 
resolution will require careful mathematical analysis. 

Finally, a problem with EEA and LEEA is that it only considers changes to behavior modes, not 
the degree to which these modes are expressed in a system variable of interest.  This issue is 
addressed by also considering the eigenvectors of the system, which is the foundation for the 
analysis in the next section.   

Eigenvector analysis 

The last set of methods, which are still in early development, we have termed the eigenvector-
based approach (EVA).  EVA attempts to improve the EEA/LEEA method by considering how 
much an eigenvalue or behavior mode is expressed in a particular system variable.  One may 



 

   
15 

present the logic of the method and how EEA and EVA complement each other as shown in 
Figure 5.  As shown by Kampmann (1996), in a sense there is a one-to-one correspondence 
between eigenvalues and loop gains whereas the eigenvectors arise from the remaining “degrees 
of freedom” in the system.13  The observed behavior of the state variables in the model is then 
the combined outcome of the behavior modes (from the loop gains) and the weights for each 
mode (from the eigenvectors) in the respective state variable. 

A number of  researchers have attempted to develop EVA methods.  Some emphasize the 
curvature (second time derivative) of the behavior, similar to the starting point of the PPM 
method (Güneralp 2006; Saleh 2002; Saleh and Davidsen 2001a, b).  The slope or rate of change 

! 

˙ x t( )  of a given variable x in the linearized system may be written by 
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One may therefore interpret (10) has the sum of contribution from individual behavior modes.  
Güneralp (2006) suggested using the terms on the right-hand side of (10) as weights to combine 
elasticities of individual behavior modes 
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as a measure of the overall significance of that system element.  He further normalized the 
elasticity measure by the elasticity measure for other system elements, i.e., assuming there are K 
such elements (loops or links), the relative importance 

! 

"
k
 of the k-th element is defined as 

 

! 

"k =
# k

# j
j=1

K

$
, (12) 

with the motivation that elasticities may vary greatly in numerical values, making comparisons at 
different points in time difficult, whereas 

! 

"
k
 is a relative measure varying between +1 and -1.  

                                                
13 As mentioned above, a system with N links and n variables will have N-n+1 independent feedback loops.  The 
total degrees of freedom is equal to the N link gains that can all be varied independently.  The remaining n-1 degrees 
of freedom relate to the determination of the eigenvector direction in the n-dimensional state space.  Since an 
eigenvector can only be determined up to a scalar multiplier, i.e., if r is an eigenvector, then so is cr, where c is any 
scalar, the degrees of freedom of the eigenvector space is n-1, not n. 
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He then proceeded to illustrate the method on two models that have already been analyzed with 
EEA and PPM, namely the Lotka-Volterra model and the simple long wave model.  His results 
shed an alternative light on the behavior of these models, though in our opinion, there is no 
dramatic improvement in intuition.  In particular, the mathematical meaning, consistency and 
significance of the doubly normalized measure (12) remain to be clarified. 

It is still too early to tell what the most useful approach will be, but one may note that the 
emphasis on the curvature shares the basic weakness in the PPM approach in dealing with 
oscillations, as discussed above.   

Other researchers have looked directly at the weights 

! 

w
i
 in (9), i.e., on the relative weight of the 

modes for a particular variable, from a policy criterion perspective, similar to Forrester’s original 
focus and the starting point for the EEA analysis (Gonçalves 2006; Saleh et al. 2006, 2007).  For 
instance, Saleh et al. (2007) look at how alternative stabilization policies affect the behavior of 
business cycle models, using both a simple inventory-workforce model (Sterman 2000), and a 
more extensive model based on Mass (Mass 1975) and used in the LEEA analysis of Kampmann 
and Oliva (Kampmann and Oliva 2006).  Using the procedure in Figure 5, they decompose the 
net stabilizing effect of a policy into its effect on the behavior mode itself (LEEA) and its effect 
on the expression of that mode in the variable of interest (EVA).  It is fair to say, however, that 
the EVA work is still to early in its development to judge its potential. 

Discussion 

As mentioned in the introduction, we should not hope for a “grand unified theory” that will 
automatically provide modelers with “the” dominant structure.  Given the analytical intractability 
of nonlinear high-order systems found in our field, the most we can hope for is a set of tools that 
will guide the analysis and aid the development of the modeler’s intuition.   

That said, however, we are left with an impression that the analytical foundation for these tools is 
in need of further development before one rushes into implementing them into software 
packages.  We are quite satisfied with the current state of affairs in this regard, where code, 
models, and documentation are made freely to download (most of the cited papers provide URL 
were their code is available).  Understanding how and why the tools work the way they do is 
crucial, and this will require that a number of puzzles, uncertainties, and technical problems be 
addressed.  Only then will the time come to submit the methods for wider application to test their 
real-world utility.  It is too early to tell, in other words, what method is “the best”. 

While the classical method remains a useful intuitive guide and teaching tool for graduate 
students, there are no signs that it may be developed further.  (That said, it is possible that the 
classical control transfer function method may be employed in the eigensystem approaches to 
explore nested canonical systems, though this is purely speculative).  The pathway method 
would benefit from a firmer mathematical foundation.  In particular, it would be important to 
compare how its results and conclusions compare to those found in the LST.  It is possible that 
the pathway method may eventually be merged with the LST approaches as a subset of a general 
analytical toolbox.  We believe that there is a great deal of promise in combining the eigenvalue 
and eigenvector analysis in the LST approaches.  This combination will yield a complete system 
characterization and an understanding of both how particular feedback loops are involved in 



 

   
17 

generating a behavior mode, and how system elements determine the expression of that behavior 
mode in a particular variable.  A "unified" LST approach along the lines suggested in Figure 5 
thus seems within reach.   

We conclude the paper with a concrete analytical “to-do list:”  

Loop analysis:  We need to understand better how the different loop representations 
(independent loop sets) relate to one another, specifically how they relate to the elasticity 
measures from Mason’s rule (see footnote 11). 

Loop and link vector spaces: As shown by Kampmann (1996), the link eigenvalue elasticities 
constitute a current in the causal network of the model, which is why the number of independent 
loops is equal to N-n+1.  However, the dual “voltage space” of the link elasticities, which has 
dimension n-1 may provide a clue to the effect on the eigenvectors.  There may be an equally 
fundamental mathematical property here waiting to be discovered. 

Non-distinct eigenvalues.  We need a full account of the case where the eigenvalues are not 
distinct.  This includes first an assessment of how common this situation might be in real-world 
models, how to identify and use the generalized eigenvectors needed for this approach, how to 
characterize the behavior (which will now include power functions of time), and what happens 
when two identical eigenvalues bifurcate into two distinct ones (does behavior change 
smoothly?). 

Alternative output criteria. This involves using some of the measures outlined in Table 2, which 
will include both EEA and EVA analysis.  As mentioned in the text, one can exploit the linearity 
property of most filters. 

Applications to nonlinear models. We need more experiments and examples of using the 
EEA/EVA method to different nonlinear models, perhaps based on the taxonomy suggested in 
this paper (quasi-linear, nonlinear single-transient, nonlinear periodic, nonlinear multi-mode).  It 
would be interesting to apply it to a truly large-scale model, like Sterman’s energy transition 
model (Sterman 1981), for instance. 

Relationship between PPM and EEA/EVA methods.  So far, the comparison between the two 
methods has been by looking at results of their application (e.g., Kampmann and Oliva 2006).  It 
ought to be possible, however, to derive analytical results showing the relationship between 
EEA/EVA measures and the PPM measures. 

Special cases and exceptions.  It seems that certain structures pose an analytical puzzle.  These 
are relatively simple structures which should lend themselves well to formal analysis.  For 
instance, a “figure-8” second-order loop where two levels interact through two first-order loops 
via the same auxiliary variable (as happens in the Lotka-Volterra model, see Güneralp 2006, Fig. 
1) will not be considered a loop unless the auxiliary variable is eliminated  from the equations, 
yet it may conceptually be an important loop.  Another special case is the “phantom loops” 
discovered by Kampmann and Oliva (2006).  There are probably several more such cases which 
need to be fully understood. 
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Numerical issues.  Finding a stable an efficient method of eigenvalue calculation will be crucial 
for implementing the method in mainstream software packages. 

Visualization.  Ultimately, the aim of the exercise will be to provide intuitive illustrative 
measures for the practitioner.  It may be that this can best be achieved through various visual 
aids.  For instance, one could make the links between variable in the model diagram “glow” with 
different color and brightness depending on their significance to a given measure.  The visual 
aids may capitalize on the ability of the human eye to detect patterns that may ultimately prove 
much more efficient and effective than the measures currently under consideration. 
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Figure 1 
Phase-and-gain diagram (Bode diagram) showing the inventory A sin(ω t + φ) with amplitude A and 
phase shift φ, relative to a sinusoidal demand sin(ω t), for varying values of the frequency ω of the 
demand fluctuation. 
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Figure 2 
Characteristic behavior patterns based on the first and second time derivatives. 
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Figure 3 

Three alternative forms of dominant structure in the PPM method 
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Figure 4 

Characterization of eigenvalues plotted in the complex plane 

 

 
Figure 5 

Schematic view of eigenvalue and eigenvector analysis approach 
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 Time graphs Freq. response Eigenvalues 

Linear Eberlein (’84, ’89) Model 
reduction Nonlinear 

Traditional  
 

Linear Classical Structure 
contribution Nonlinear 

Traditional, 
PPM  

EEA/LEEA, 
EVA 

Table 1: Taxonomy of methods for identifying dominant structure. 
PPM: Pathway participation metric.  EEA/LEEA: (Loop) eigenvalue elasticity analysis.  EVA: 

Eigenvector analysis.  Adapted from Richardson (1986) 
 
 

Policy 
Criterion 

Description Change in 
eigenvalue 

0, >±= !!"# i  

Change in 
BDW w  

Appropriate 
measure in 
time path 

Damping Increases the rate of decay of 
oscillation (or decreases the 
rate of expansion) 

0<
!

!

"

" g

g
 

N/A ( )
( )tx
Ttx +  

Frequency Decreases the frequency of 
oscillation (or lengthens the 
period T) 

0<
!

!

"

" g

g
 

N/A T  

Variance Reduces the variance of a 
target variable (or the 
weighted average variances of 
several variables) 

No simple 
relation 0<

!

!

w

g

g

w  ( )! dttx
2  

Auto-
spectrum 

Reduces variance of target 
variable(s) within a target 
frequency range 

No simple 
relation 0<

!

!

w

g

g

w  
Filter in 
frequency 
domain 

Frequency 
response 
gain 

Reduces the gain 
(amplification) in the target 
frequency range for a 
particular combination of 
disturbance exogenous and 
output variables. 

Based upon transfer function ( )!iG  

Table 2 
Stabilization policy criteria and corresponding effects on eigenvalues and BDW of a policy change in a 

system element g. 
 
 




