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Abstract  

Building on an in-depth study of clinical problem solving in crisis situations, we develop 

a formal mathematical model of diagnostic sensemaking that represents the interactions 

among acting, interpreting cues, and cultivating new diagnoses.  Driven by powerful 

reinforcing dynamics, the interplay among these processes opens and closes windows of 

opportunity for adaptive sensemaking.  There are critical moments before which each 

activity can remediate weaknesses in the others, and critical moments beyond which the 

inertia of a dysfunctional sensemaking activity can no longer be deflected. 



INTRODUCTION 

Understanding and improving action-oriented sensemaking during crises in complex, 

high-stakes settings such as medicine, aviation, nuclear power, or fire-fighting is a crucial 

aspect of organizing for high reliability.   When facing a complex and ambiguous 

situation where quick action is needed, people have to make sense, to create meaning that 

will allow them to act.   To act, people need to be able to answer the question, what is 

happening here?  Diagnostic problem solving in complex, high-stakes settings is not a 

situation where “meaning already exists and is waiting to be found.”   Rather it “awaits 

construction that might not happen or might go awry…” (Weick, 1995a: 15).  Generating 

a plausible story or explanation about ambiguous cues helps organize and launch action; 

cues generated by acting help people know what further action routines or rethinking may 

be needed.   Given plausible stories or diagnoses about what is happening, do people then 

exploit known procedures to address the problem or do they reinterpret the situation by 

exploring additional diagnoses (cf. March, 1991)?  The interplay between these processes 

under time-pressure (Rudolph and Repenning, 2002) can make the difference between 

success and failure, even life or death. 

In this paper we explore how people address an unexpected and ambiguous problem with 

dire consequences by taking action, interpreting cues revealed by that action, revising 

their current view of the situation, and recursively taking more action.  Our theory 

development process starts with two premises. First, research on sensemaking shows that 

“when action is the central focus, interpretation, not choice, is the core phenomenon” 

(Snook, 2000; Weick, Sutcliffe, & Obstfeld, 2005: 409).   Rather than conceptualizing 

people as decision-makers evaluating and choosing among options whose meaning is 



somehow pre-constituted, we see them engaged in a meaning making process in which 

their own existing frames or diagnoses shape and are shaped by how cues are interpreted 

(Bartunek, 1984; Klein, Phillips, Rall, & Peluso, 2006; Steinbruner, 1974; Weick, 1987).  

Second, diagnostic problem solving does not rely solely on stand-alone, discrete episodes 

of judgment and choice, but rather is a continuous process involving feedback (Hogarth, 

1981; Kleinmuntz, 1985; Weick et al., 2005).   Discrete decisions without feedback have 

been likened to hitting a target from a distance in one try; it is much easier when one can 

monitor and correct the trajectory based on feedback (Hogarth, 1981; Kleinmuntz, 1985).  

When feedback is available, the focus shifts away from each individual choice or 

decision to a larger meaning making process in which numerous instances of noticing, 

bracketing, interpreting, and acting accrue in a current view of the situation and ideas 

about how to take action.  Our modeling effort focuses on diagnostic sensemaking as a 

dynamic process in which problem solvers revise and redraft their diagnoses as they go 

(Kleinmuntz, 1985; Hogarth, 1981; Weick et al. 2005). 

Our goal in this paper is to enhance theory about this recursive sensemaking by clarifying 

the dynamic relationships among three processes: 1) acting, 2) interpreting, and 3) 

cultivating new diagnoses.  We first summarize key concepts from the sensemaking 

literature, then situate sensemaking in the specific context of medical diagnoses, and 

finally describe our approach to articulating and extending sensemaking theory based on 

computer simulation.   

Sensemaking 

“Sensemaking is about the interplay of action and interpretation rather than the influence 

of evaluation on choice” (Weick et al., 2005: 409).  Sensemaking is a process by which 



people select out or bracket cues in the constant stream of experience to create a 

“situation that is comprehended explicitly in words and that serves as a springboard into 

action” (Taylor & Van Every, 2000: 40).   Sensemaking is an ongoing process that 

recursively links action, attention to cues generated by action, and interpretation of those 

cues.   

One of the important elements of the diagnostic process suggested by the sensemaking 

paradigm is the role of plausible stories or diagnoses in facilitating action (Gephart, 

Steier, & Lawrence, 1992; Gioia, 1986; Snook, 2000; Weick, 1993b; Weick, 1995a; 

Weick et al., 2005).  To take action, people formulate plausible accounts of what is 

happening (Gephart et al., 1992; Gioia, 1986; Klein et al., 2006; Snook, 2000; Weick, 

1993b; Weick, 1995a; Weick et al., 2005).  As long as these stories are sufficiently 

plausible, they provide a launching pad for action: 

The important message is that if plausible stories keep things moving, they 

are salutary. Action-taking generates new data and creates opportunities 

for dialogue, bargaining, negotiation, and persuasion that enriches the 

sense of what is going on. (Weick et al., 2005: 409)  

Plausible stories are the starting point for action that allows people to 

[create] truths of the moment that change, develop, and take shape through 

time. It is these changes through time that progressively reveal that a 

seemingly correct action “back then” is becoming an incorrect action 

“now.” (Weick et al., 2005: 412-413) 

Sensemaking theory has taken an optimistic view of how plausible stories, including 

diagnoses, help problem solvers move closer, through successive approximations, to a 

diagnosis of a problem that is adequate to launch effective action.  The sensemaking 

literature has not, however, explicitly captured the dynamics by which such updating 

occurs.  Sensemaking theory relies on the assumption that the sensemaking process 

automatically generates mid-course corrections.  



Fixation on a Diagnosis 

However, there is ample evidence in studies of “fixation error”—a process in which a 

person sticks with early-developed meanings despite countervailing external cues—that 

such mid-course corrections often do not happen.  A plausible but incorrect story persists 

as sensemaking filters and even distorts cues from the environment to prevent revision of 

the story (Cook & McDonald, 1988; De Keyser & Woods, 1990; Elstein, Shulman, & 

Sprafka, 1978; Finkelstein, 2003; Johnson, Moen, & Thompson, 1988; Johnson & 

Thompson, 1981; Smith & Blankenship, 1991; Voytovich, Rippey, & Suffredini, 1985; 

Xiao & MacKenzie, 1995).   

For example, Captain Rogers of the U.S.S. Vincennes believed evidence that a hostile 

Iranian fighter plane was headed his way but his crew mistakenly shot down a 

commercial Iranian airliner (Cannon-Bowers & Salas, 1998; Roberts & Dotterway, 

1995).  In 1994, American F-15 pilots in Iraq had visual, auditory, and tactical 

information that suggested a hostile Iraqi Hind helicopter, but they shot down an 

American Black Hawk helicopter (Snook, 2000).  Smoke jumpers had many times before 

managed ravine fires successfully and believed they would do the same in Mann Gulch, 

Montana in 1949, but 13 died when they could not drop their tools or accept orders to 

take refuge in an escape fire (Weick, 1993b).   

In each of these events people launched into action with the aid of highly or moderately 

plausible diagnoses of the situation but failed to revise these diagnoses in a way that 

improved their fit with reality.  Sticking with the current (faulty) view, a failure to 

improve the fit with external reality has been called a “collapse” of sensemaking (Weick, 

1993b).  Rather than seeing these failures to revise as a collapse of sensemaking, we 



follow Snook (2000) in emphasizing that people were still actively making sense of these 

situations.  They took action, interpreted cues stirred up by this action, elaborated a 

plausible diagnosis, and continued to interact with the environment that their 

sensemaking allowed them to perceive.  In each case, early-generated stories in the 

sensemaking process were plausible and were updated through interpretation of external 

cues produced by their actions, yet these updates somehow diverged from crucial aspects 

of external reality in a way that led to disaster (cf. Snook, 2000). Sensemaking did not 

stop, but rather, people continued making sense of the stream of experience with some  

distortion or limitation of their data gathering and story updating that foiled effective 

action. 

Modeling the Process of Diagnostic Sensemaking 

 Addressing acute medical problems is the kind of complex, ambiguous, often high-stakes 

situation that puts tough demands on sensemaking.   These crisis situations are 

challenging because people confront a combination of handling novel demands that 

require skillful exploration or reconsideration of ambiguous cues and handling many 

routine demands that require efficient exploitation of known procedures (Rudolph and 

Repenning, 2002).  An unfamiliar or novel presentation of a problem must be diagnosed 

and, at the same time, standard operating procedures need to be executed quickly.   This 

requires a delicate balance of acting, interpreting, and rethinking. 

Our theory development process began with data from an in-depth observational study of 

diagnostic problem solving by 39 doctors facing a simulated
1
 acute care crisis in a high-

                                                 
1 We use the term “simulation” in two ways in this paper. The first use refers to the initial source data for the study.  

These data were provided by a full-field, high-fidelity simulation (i.e. the research participant is in a fully equipped and 

staffed Operating Room (OR) with a computer controlled mannequin patient).  The second use of the term refers to the 

computer-based simulation we conducted to analyze the behavior of our mathematical model. 



fidelity simulated operating room crises (Rudolph, 2003; Rudolph & Raemer, 2004).  

Drawing on theory and data from other studies of diagnostic or crisis problem solving 

under time pressure (Cohen, Freeman, & Wolf, 1996; Cook et al., 1988; Cook & Woods, 

1994; De Keyser et al., 1990; Dörner, 1997; Elstein et al., 1978; Johnson, Hassenbrock, 

Duran, & Moller, 1982; Xiao et al., 1995) and sensemaking theory (Gioia, 1986; 

Schwandt, 2005; Snook, 2000; Weick, 1993b; Weick, 1995a; Weick et al., 2005), we 

developed a detailed dynamic model of a clinician attempting to diagnose and resolve a 

challenging problem to preserve the health and life of the patient.  Although many 

theoretical principles and empirical results are relevant to this model, creating a viable 

working model requires articulating these bits and pieces and filling many gaps.  Through 

an iterative model building and simulation process, we induce an internally consistent 

theory (represented by our model) of the mechanisms by which people blend acting, 

interpreting cues, and cultivating diagnoses.  This conversation between dynamic model 

and empirical content provides insights into theory and practice. 

METHODS 

To clarify the interplay of action, interpretation, and rethinking in sensemaking, we 

developed a mathematical model that can be simulated by computer.   Rather than deduce 

our model from general principles, we used the methods of grounded theory to build our 

model from fragmentary existing theory and data from Rudolph’s in-depth study of 

diagnostic problem solving.  Through an iterative process of theory elaboration 

(Vaughan, 1992), we refined the model through constant comparison between our 

emerging theory (represented by our formal model), other studies of diagnostic problem 

solving, and related literature on sensemaking.  While grounded theory is most 



commonly used to build theory from raw data using qualitative analysis, the method is 

not restricted to this application (Suddaby, 2006).  Strauss and Corbin (1994) were 

proponents of developing formal (or general) theories grounded in previously generated 

domain-specific analyses and point out that other proponents not only advocated using 

grounded theory with quantitative (not just qualitative) analysis, but also suggested using 

it to generate theory from theory (Glaser & Strauss, 1967).   

We chose formal modeling as a tool for enriching theory on diagnostic sensemaking for 

two reasons.  First, while the sensemaking literature clearly addresses the interplay of 

action, interpretation of cues, and redrafting of one’s current view or diagnosis (Weick et 

al., 2005: p. 409), the dynamic interplay of these processes is much less clear.  Since 

these processes are hard to study naturalistically, modeling provides a way to synthesize 

findings from a range of studies to illuminate the interplay.  Second, despite the great 

variety of studies invoking the sensemaking paradigm, these many different analyses 

converge in describing an inherently dynamic process.  Theorizing about dynamic 

processes without formal models is notoriously error-prone and can lead to important 

logical gaps and inconsistencies (Sastry, 1997; Sterman, 1994).  Inducing a formal 

mathematical model from existing data and theory provides an approach for both 

identifying structures common to the different narratives and for enforcing the internal 

consistency of the emerging theory (Black, Carlile, & Repenning, 2004; Rudolph & 

Repenning, 2002; Sastry, 1997; Sterman & Wittenberg, 1999).  Translating a narrative 

theory into a mathematical model dilutes some of the richness and nuance of the original.  

The benefit, however, is an internally and dynamically consistent theory whose central 

structures and relationships are explicitly, rather than implicitly, represented. 



The origin of our theory was Rudolph’s in-depth analysis of diagnostic problem solving 

in operating room crises (Rudolph, 2003; Rudolph et al., 2004).  Following established 

procedures for grounded theory building (Strauss et al., 1994; Suddaby, 2006), we used 

Rudolph’s typology of four diagnostic problem solving modes as our source data.  We 

started the theory building process by translating her text-based constructs and theoretical 

relationships into the system dynamics language of stocks, flows, and feedback loops 

(Forrester, 1961; Sterman, 2000).  To construct the model (which represents our theory) 

we used a process of constant comparison between our diagrams and the constructs and 

relationships identified in Rudolph’s study, and in other studies of diagnostic 

sensemaking and problem solving (Cohen et al., 1996; Cook et al., 1988; De Keyser et 

al., 1990; Elstein et al., 1978; Johnson et al., 1982; Johnson et al., 1988; Klayman, 1988; 

Klayman & Ha, 1987; Klein et al., 2006; Klein, Pliske, Crandall, & Woods, 2005; Klein, 

Orasanu, Calderwood, & Zsambok, 1993; Weick et al., 2005; Xiao et al., 1995). Through 

this processes of iterative model elaboration and revision, we translated the emerging set 

of relationships into a formal mathematical model and then used computer simulation to 

analyze it.  Lastly, we returned to the Rudolph’s empirical data as well as the literatures 

on sensemaking and diagnostic problem solving, noting both similarities and differences.  

The result is a theory that addresses gaps in the sensemaking literature by clarifying how 

action, interpretation of cues, and cultivating new diagnoses interact.   

FOUR MODES OF DIAGNOSTIC SENSEMAKING:  

EMPIRICAL SOURCE DATA 

To ground the mathematical model in concrete data, we begin by describing the 

diagnostic challenge and findings that served as the basis of our grounded theory building 

(Rudolph, 2003; Rudolph et al., 2004).  Rudolph’s study examined diagnostic problem 



solving by 39 doctors in a simulated acute care crisis.   The doctors were advanced 

anesthesia residents at several teaching hospitals taking part in required simulator-based 

training.   

The clinical problem.  In the simulation scenario studied, the anesthesiologist is called to 

take over anesthesia in an operating room where a 29-year-old woman urgently needs an 

appendectomy. The scenario presents a common, but serious problem in anesthesia: 

difficulty with the process of ventilating, that is, breathing for the patient using a 

mechanical bellows.  A variety of diagnoses for the ventilation problem are plausible, but 

contradictory evidence is present for each, except one: The patient has exhaled some 

mucous into the tube, partially blocking it.  Some air can get through the tube, but not 

enough for the patient to survive.  This is the actual cause of the problem.  Treatments 

addressing diagnoses other than the mucous plug in the breathing tube will not result in 

any sustained improvement in the patient’s status.  With a slowly dwindling level of 

oxygen in her blood, the patient can have uneven heartbeat and even go into cardiac 

arrest if the problem is not rectified.   The “stream of experience” doctors face in this 

situation includes the clinical signs and symptoms indicating the patient’s status.  First 

line treatments and diagnostic tests produce additional cues.  

Sensemaking modes. Rudolph inductively classified doctors’ verbal statements and 

clinical actions into four different sensemaking modes in addressing this diagnostic 

challenge: “stalled,” “fixated,” “vagabonding,” and “adaptive.”   The stalled problem 

solvers had difficulty generating a plausible diagnostic story to launch themselves into 

action.  Studying the clinical signs associated with the ventilation problem, they 

apparently couldn’t assemble them into a coherent diagnosis and, lacking this, couldn’t 



confidently exploit known treatment and test algorithms for any given diagnosis.  Since 

they didn’t take therapeutic action or conduct diagnostic tests, they did not generate new 

data to inform the process of generating diagnoses and were unable to resolve the 

ventilation problem. 

In contrast, those in the fixated sensemaking mode quickly established a plausible 

diagnostic story to explain the ventilation problem to themselves.   This plausible 

diagnosis served as a launching pad for pursuing known algorithms for treatments and 

tests.  Most fixated clinicians exploited a single known treatment over and over (rather 

than advancing through a variety of steps in a treatment algorithm).  While fixated 

problem solvers quickly and confidently generated an initial diagnosis, and cursorily 

explored one or two others, they returned over and over to the initial leading diagnosis as 

the main way to view the situation.  Working with this plausible (but erroneous) 

diagnosis, they gradually established a self-fulfilling process in which they interpreted the 

feedback they got as increasing the plausibility of that story.  Because the fit of their 

leading diagnosis with external reality did not improve, they did not address the 

underlying problem of the blocked breathing tube. 

Although previous studies of fixation error (also known as premature closure or tunnel 

vision) generally concluded that broadening the range of alternatives considered is the 

needed antidote (Gaba, 1989; Johnson et al., 1982), Rudolph found a sensemaking mode 

she labeled diagnostic vagabonding
2
 in which doctors generated a wide range of plausible 

diagnoses, but utilized very few steps of standard algorithms for addressing these 

                                                 
2 This follows work of Dietrich Dörner, who identified a similar phenomenon among public officials attempting to 

identify effective strategies for public policy (Dörner, D. 1997. The Logic of Failure: Recognizing and avoiding error 

in complex situations. New York: Perseus.. 



diagnoses.  They occasionally carried out one treatment or study of a diagnosis, but did 

not work through the full diagnostic algorithm for any particular diagnosis.  Lacking 

clinical cues that would be generated by such treatments and tests, they could not 

ascertain which diagnosis was most plausible, and could not resolve the problem of the 

blocked tube. 

Finally, the adaptive sensemaking mode was characterized by generation of one or more 

plausible diagnoses of the ventilation problem and exploitation of known treatments and 

tests for those diagnoses.  These treatments and tests, in turn, produced more clinical cues 

that allowed them to generate other diagnoses and rule out ones already under 

consideration.  Unlike the fixated problem solvers who did not advance through steps of 

known algorithms, instead repeating the same treatment over and over, or the diagnostic 

vagabonds who conducted one or no treatments for a given diagnosis, the adaptive 

problem solvers advanced systematically through the treatment algorithm, step by step.  

When known approaches for a given diagnosis failed to resolve a problem, they 

generated other diagnoses. The combination of single-loop changes in treatments 

(changing and escalating treatments) and double-loop reconsideration of diagnoses based 

on feedback generated by the treatments allowed those in the adaptive sensemaking mode 

to test the accuracy of plausible diagnoses, rule some out, and resolve the clinical 

problem (Argyris, Putnam, and Smith, 1985).  

MODEL STRUCTURE 

Overview 

Our representation of diagnostic sensemaking encompasses three processes that unfold 

and interact recursively as the doctor confronts a diagnostic challenge under time 



pressure.  The processes are acting, interpreting, and cultivating alternative diagnoses. 

Our model assumes that the trigger for diagnostic sensemaking is a divergence from what 

people expect (Klein et al., 2005; Louis & Sutton, 1991; Mandler, 1984; Weick et al., 

2005).  In our source data, the doctor observes and seeks to address a serious problem 

with the patient.  To treat the patient she needs an organizing story about what is wrong.  

Based on her scan of clinical signs, patient history, and timing of the problem, a plausible 

story develops in her mind; this takes the form of a diagnosis (Elstein, 2001; Elstein et 

al., 1978; Klein et al., 2006; Rudolph et al., 2004).   Our model picks up the story at this 

point.   

Acting 

Catalyzed by some initial organizing story in the form of a diagnosis, the doctor launches 

into action.  Conducting treatments and studies in diagnostic problem solving often 

involves following a standardized algorithm, a set of steps that can combine therapeutic 

treatment with diagnostic tests (Cook et al., 1994; Elstein et al., 1978).  By moving 

through the steps of an algorithm, problem solvers generate cues that become available 

for them to notice, bracket, filter, and interpret.  The degree to which these cues are 

available to the diagnostician depends directly on the progress that has been made in 

advancing the diagnostic algorithm:  having advanced the algorithm further, the problem 

solver has access to a larger pool of cues for making meaning. 

We model the process of advancing the algorithm and generating cues as the 

accumulation of progress towards an end in which the algorithm steps are complete.  We 

represent this accumulation of progress in Figure 1 in the form of a stock and flow 

diagram (Sterman, 2000).  A stock is a reservoir or accumulation (like water in a bathtub) 



and is represented by a rectangle; flows, like the spigot and drain on a bathtub, fill or 

drain the stock and are depicted as “pipes” with “valves.”  The accumulated progress is 

the stock labeled Algorithm Steps Completed.  The stock is increased by Advancing 

Algorithm, a flow variable.  Stocks have a key role in creating dynamics: they create 

delays, give systems inertia, and provide systems with memory (Repenning & Sterman, 

2002). For example, accomplishing steps in the diagnostic algorithm takes time (delays), 

sets the problem solver on a course of action (inertia), and yields results that remain 

available for interpretation (memory). 

----------------------------------------------- 

Insert Figure 1 about here. 

----------------------------------------------- 

To define the pace at which the doctor advances the algorithm, we assume a limit or end 

that would define a fully complete algorithm according to accepted medical practice.  

This creates an index ranging from 0 to 1, where 1 signals a fully completed algorithm.  

Our source data show that treatment algorithms for the four most commonly considered 

diagnoses averaged about four steps.  We further assume that the doctor moves the 

algorithm towards completion at a pace that accomplishes a constant fraction of the 

remaining algorithm, where that fraction is defined by the Time Needed to Advance 

Algorithm.  This time constant captures the time delays associated with mental organizing 

to do the test, physical rearranging to prepare for the test, conducting the test, awaiting a 

physiological response from the patient, and noticing the results as cues in the stream of 

ongoing experience.  The time constant of 8 minutes to complete the algorithm used in 

baseline simulations produces a good match with the number of algorithm steps 

completed and diagnoses doctors considered during the approximately 25 minute 



scenarios in the source data.  (Later, we change Time to Advance the Algorithm in 

sensitivity analyses to examine how a different pace of acting influences sensemaking.)   

Advancing the diagnostic algorithm makes Cues Available.  As the doctor accomplishes 

the algorithm, she generates new diagnostic information that she uses in the sensemaking 

process to update how plausible she considers her leading diagnosis (which we label 

Plausibility of Leading Diagnosis and will define more fully in the next section).  When 

working on the correct diagnosis, the cues are more likely to confirm or favor the leading 

diagnosis; when working on an incorrect one, they are more likely to be disconfirming.  

We distinguish a correct from an incorrect diagnosis with the binary variable Accuracy of 

Leading Diagnosis, where a value of 0 means the current or leading diagnosis is incorrect 

and a value of 1 means it is correct.  (The diagnostician does not know the accuracy of 

the diagnosis, but this variable has utility as a modeling construct to control the stream of 

cues.)  When the algorithm is complete, Cues Available will equal the Accuracy of 

Leading Diagnosis.  When the algorithm begins, Cues Available will equal Starting 

Plausibility of Leading Diagnosis, a model variable (not shown in the figure) that is reset 

each time a new diagnosis takes over as the leading diagnosis.
 3

  The stock of Algorithm 

Steps Completed is the fraction of the algorithm completed, so it indicates the fraction of 

the difference that has been revealed at any given time between the Starting Plausibility 

of Leading Diagnosis (not depicted) and the Accuracy of Leading Diagnosis.  Formally, 

the equations for Figure 1 are: 

Algorithm Steps Completed (t) = ∫t(Advancing the Algorithm (s) ds)  

                                                 
3 The Plausibility of New Diagnosis takes the value of Plausibility of Leading Diagnosis, at which time the new 

algorithm begins and then stays constant until the next algorithm starts.  



Advancing the Algorithm (t) = (1 - Algorithm Steps Completed (t)) / Time Needed to Advance 

Algorithm 

Time Needed to Advance Algorithm = 8 minutes 

Cues Available (t) = Starting Plausibility of Leading Diagnosis (t) + Algorithm Steps Completed 

(t)* (Accuracy of Leading Diagnosis (t) – Starting Plausibility of Leading Diagnosis (t)) 

 

Starting Plausibility of Leading Diagnosis (t0) = 0.5  

 

Accuracy of Leading Diagnosis (t) = (0 if incorrect, 1 if correct). 
 

Updating 

Considerable prior research suggests that plausibility is the engine of sensemaking; a 

plausible diagnosis is what allows people to move forward with problem solving (De 

Keyser et al., 1990; Weick, 1988; Weick et al., 2005).  Studies of medical decision 

making (Elstein, 2001; Elstein et al., 1978; Johnson et al., 1982), tactical decision-making 

under stress (Cannon-Bowers et al., 1998), problem detection (Klein et al., 2005; 

Mandler, 1982), and naturalistic decision-making (Klein et al., 1993; Snook, 2000; 

Zsambok & Klein, 1997) indicate that the perceived plausibility of the leading diagnosis 

waxes and wanes, that changes in this level are not instantaneous, and that delays in 

updating directly influence problem solving.  To capture these attributes, we model 

Plausibility of the Leading Diagnosis as a stock that can increase or decrease (see Fig. 2).  

A crucial feature of our model is the fact that people’s sense of how plausible the leading 

diagnosis is at any time does not change instantaneously but, instead, happens with a 

delay.     

----------------------------------------------- 

Insert Figure 2 about here. 

----------------------------------------------- 

In our model, the doctor uses the Cues Available to update beliefs about the Plausibility 

of Leading Diagnosis.  We define Plausibility of Leading Diagnosis as a measure ranging 

from 0 to 1 that captures the diagnostician’s belief that the leading diagnosis will solve 



the problem; 1 indicates the highest possible perceived plausibility.  We define a 

construct that represents the aggregation of the most recently available information about 

the leading diagnosis, which we show in Figure 2 as the Plausibility from New Cues.  For 

now, let us say this is equal to the Cues Available, as defined previously.  We will 

introduce a difference in these two concepts in the next section when we incorporate self-

fulfilling interpretations.  Updating (the flow) is the process by which the current view of 

the Plausibility of Leading Diagnosis (the stock) is adjusted to equal the Plausibility from 

New Cues.  The stock represents the net accumulation of whatever updating has occurred; 

it “remembers” the cumulative results of the updating process.  Updating is not 

instantaneous; it requires time for people to contemplate new information, match it with 

previous experience, and assess how plausible the current diagnostic story is (Berner & 

Graber, 2006; Elstein et al., 1978; Gaba, Maxwell, & DeAnda, 1987; Klein et al., 1993; 

Raufaste, Eyrolle, & Marine, 1998).  The time constant for this process is the Time 

Needed to Update.  Because updating should be relatively fast compared to acting, which 

was given an 8 minute time constant, we chose a value of 2 minutes for this parameter.  

Formally, 

Plausibility of Leading Diagnosis (t) = ∫t Updating(s) ds + Starting Plausibility of Leading 

Diagnosis (t0) 

Updating (t) = (Plausibility from New Cues (t) - Plausibility of Leading Diagnosis (t)) / 

Time to Needed Update.)  

Time to Needed Update = 2 minutes 

 

Interpreting 

How plausible people consider a particular diagnosis or situation assessment influences 

whether they stick with the current assessment and exploit standard operating procedures 

and treatment algorithms for that diagnosis or step back to think about and generate new 



possibilities.  Research suggests that when people are skeptical of a diagnosis, i.e., when 

perceived plausibility of the leading diagnosis is low, they pay careful attention to 

external cues as a way to gain more information and revise the diagnosis (Cohen, 

Freeman, & Thompson, 1998; Cohen et al., 1996; De Keyser et al., 1990; Klein et al., 

2005).  As Plausibility of Leading Diagnosis rises, the weight they place on external cues 

declines.  New external cues are ignored, discounted, or interpreted in favor of the current 

leading diagnosis (Johnson et al., 1982; Johnson et al., 1988; Klein et al., 2006; Luchins 

& Luchins, 1950; Reason, 1990).   

To incorporate the influence of current beliefs on interpretation, we introduce two new 

variables in Figure 3.  The Weight on Cues depends on the Plausibility of the Leading 

Diagnosis, and the Effect of Plausibility on Weights defines this dependency relationship.  

We model Plausibility from New Cues as the weighted average of the objectively correct 

information available (Cues Available) and an anchor (taking the value 1) representing 

the belief that the current hypothesis is correct.  Formally, 

Plausibility from New Cues (t) = Cues Available from Algorithm (t) *Weight on Cues (t) 

+ (1 - Weight on Cues (t)) 

 

With this weighted average, when the Weight on Cues is 1 (at its maximum), the 

Plausibility from New Cues equals the Cues Available, indicating the doctor is attending 

fully to all available cues.  When the Weight on Cues is 0 (at its minimum), the 

Plausibility from New Cues will be 1, indicating the doctor is so committed to or 

confident in her current diagnosis that she does not attend to any cues.   

----------------------------------------------- 

Insert Figure 3 about here. 

----------------------------------------------- 



To specify the Weight on Cues, we must formalize the linkage between how plausible the 

problem solver considers the current diagnosis (Plausibility of the Leading Diagnosis) 

and the interpretation of cues.  Research on diagnostic error, fixation errors, garden path 

errors, and tunnel vision supports the notion that as the plausibility of the current 

diagnosis rises, openness to external cues, represented by the weight they place on 

external cues, especially ones that defy the current view, decreases (Cook et al., 1988; 

Cook et al., 1994; De Keyser et al., 1990; Johnson et al., 1988; Luchins et al., 1950; 

Staw, 1976; Staw, Sandelands, & Dutton, 1981; Xiao et al., 1995).  In other words, 

Weight on Cues is a downward-sloping function of Plausibility of Leading Diagnosis.   

However, prior research is surprisingly silent regarding the exact form of this relationship 

between weight given to external cues and plausibility.  Drawing on the behavior of 

diagnosticians in our source data, we induced a representation of the relationship between 

Plausibility of the Leading Diagnosis and Weight on Cues.  First, we say that when 

Plausibility of Leading Diagnosis is at its extreme value of 0 (the problem solver has no 

confidence in their diagnosis), the Weight on Cues should be at its extreme value of 1 (the 

problem solver pays full attention to cues).  Conversely, when Plausibility equals 1, the 

Weight on Cues should equal zero.  Second, we note that the effect of changes in 

plausibility on cue weight may vary across individuals (Klein et al., 2006; Klein et al., 

2005; Lesgold et al., 1988; Raufaste et al., 1998).  We chose a functional relationship that 

allows us to capture such differences.  Thus, 

Weight on Cues (t) = ( 1 - Plausibility of Leading Diagnosis (t)) ^ Effect of Plausibility on 

Weights 



where the exponent Effect of Plausibility on Weights is a parameter chosen to represent 

possible individual and/or situational differences.  Appendix 1 shows the shape of this 

function for several values of the parameter, and in the next section we explore how 

changes in this parameter affect model behavior.   

The new links in Figure 3 close a feedback loop that has an important effect on the 

dynamics of the system.  Consider the response when there is a small increase in the 

Plausibility of Leading Diagnosis.  The Weight on Cues decreases slightly, leading to a 

small increase in the Plausibility from New Cues (because with less weight on cues, the 

anchor – which is the maximum value for plausibility – is weighted more heavily), which 

in turn causes Updating to rise, further increasing the stock Plausibility of Leading 

Diagnosis, and the process continues.  The interpretation process amplifies a change in a 

reinforcing feedback process (labeled with the loop identifier “R” for Reinforcing).  We 

name this feedback loop the “Self-Fulfilling Interpretation loop.”   In the absence of any 

offsetting influences, this loop pushes the plausibility of an early-generated diagnosis 

toward ever great plausibility.   If the loop is driving toward ever-greater plausibility of 

an erroneous diagnosis, it will generate the well-known self-confirming pattern of 

fixation, in which an initially plausible diagnosis and the filtering of external cues 

recursively influence each other so that the problem solver sticks to the diagnosis despite 

cues he is on the wrong track.  If the loop is driving toward ever-greater plausibility of a 

correct diagnosis, this is salutary.   As we demonstrate later, the interplay between this 

interpretation process and the processes of acting, gathering cues, and cultivating 

alternative diagnoses gives rise to the distinctive patterns of sensemaking in Rudolph’s 

study. 



Cultivating Alternatives 

Changes in Plausibility of Leading Diagnosis are accompanied not only by changes in 

attending to external cues, but also changes in internal sensemaking processes.  Our 

source data as well as in-depth case studies of diagnostic sensemaking indicate that 

problem solvers extract cues to support a leading diagnosis while at the same time 

elaborating a second, alternative diagnosis (Rudolph, 2003; Klein et al., 2006; Weick et 

al., 2005).  Several processes are at play.  First, when perceived plausibility of the leading 

diagnosis or schema is low, people tend to generate and consider other ways of looking at 

the situation (Bartunek, 1984; Dörner, 1997; Klein, 1998; Klein et al., 2006).  Second, 

people conduct “mental simulations” to explore the likely impact of new diagnoses or 

courses of action (Klein, 1998).  Third, this process of elaborating alternative diagnoses is 

likely to be non-linear.  Based on an accumulation of cues discrepant with the leading 

diagnosis, the problem solver suddenly (not gradually) abandons this diagnosis and it is 

replaced by an alternative (Klein et al., 2005).  Each of these processes takes effort, 

thought, and time. To evoke the time and effort involved, we combine them under the 

label Cultivating alternative diagnoses.  Figure 4 depicts our representation of this 

process. 

----------------------------------------------- 

Insert Figure 4 about here. 

----------------------------------------------- 

Our formulation for cultivating an alternative diagnosis is directly analogous to the 

formulation for advancing the algorithm.  Here, the stock is the Plausibility of Alternative 

Diagnosis.  The inflow, named Cultivating, increases the stock towards its maximum 

value of 1 at a pace governed by a time constant, the Time Needed to Cultivate.  For our 



baseline simulations, we chose a value of 4 minutes for this time constant, between the 

time for advancing the algorithm and the time for updating.  As shown in Figure 4, there 

is also an Effect of Current Plausibility on Alternative that slows down the pace of 

cultivating when the Plausibility of the Leading Diagnosis is high.  We model this effect 

so that below a threshold value (Plausibility of Leading Diagnosis = 0.5), Cultivating 

continues at the normal pace, and above the threshold the pace declines linearly to equal 

zero when Plausibility reaches its maximum of 1.  Formally, 

Plausibility of Alternative Diagnosis (t) = ∫t(Cultivating (s) ds)  

Cultivating (t) = Effect of Current Plausibility on Alternative (t) *(1 - Plausibility of Alternative 

Diagnosis (t)) / Time Needed to Cultivate; 

Effect of Current Plausibility on Alternative (t) = Min (1, 2-2*Plausibility of leading diagnosis 

(t)); 

Time Needed to Cultivate = 4 minutes; 

To describe how the diagnostician switches from one leading diagnosis to another, we 

assume the she holds a leading diagnosis until an emerging alternative becomes more 

plausible in her view, at which time the alternative takes over the role of leading 

diagnosis.  To implement this logic in our model, we define a Change Trigger as the 

condition that the Plausibility of Alternative Diagnosis is greater than the Plausibility of 

Leading Diagnosis.  When this trigger occurs, the model tracks the change by resetting 

the three stocks.  Plausibility of Leading Diagnosis takes the value at that time for the 

Plausibility of Alternative Diagnosis, and the stock for Plausibility of Alternative 

Diagnosis is set to zero ready to be filled by cultivating yet another alternative.  The 

stock of Algorithm Steps Completed is also set to zero, ready to be filled by steps in the 

new algorithm.  The dotted lines in Figure 5 are a summary notation to signal these 



changes when the leading diagnosis is switched.  Details of how the switching process is 

implemented in the model are in the Appendix. 

----------------------------------------------- 

Insert Figure 5 about here. 

----------------------------------------------- 

RESULTS: THE DYNAMICS OF ACTION-ORIENTED SENSEMAKING 

We now use simulation analysis of our model to show how different patterns of 

diagnostic sensemaking arise from the interplay of acting to advance the algorithm, 

interpreting cues to update plausibility of the leading diagnosis, and cultivating new 

diagnoses.   To develop the main insights, we begin with a set of experiments that show 

how the simple underlying structures of our model produce the behavior visible in the 

four modes of diagnostic sensemaking observed in our source data.  In the experiments 

that follow, we control for the effects of random search by assuming that all 

diagnosticians generate alternative diagnoses in the same sequence.  Specifically and 

consistent with the modal sequence in the field data, we say that the first, second, and 

third diagnoses considered are incorrect, the fourth is correct, and the fifth and all others 

after that are incorrect.  (More extensive simulation analysis not presented here confirms 

that results highlighted here are replicated under various other search assumptions.)  

Four modes of diagnostic sensemaking  

As our simulations begin, the doctor is considering the first (incorrect) leading diagnosis 

with a moderate level of plausibility (set to 0.5 (out of 1.0) in the initial conditions).  To 

highlight differences among the four sensemaking modes we display in Fig. 6 the 

behavior of the Plausibility of the Leading Diagnosis over time.   



Adaptive Sensemaking 

To clarify the impact of differences in the interplay among acting, interpreting cues, and 

cultivating diagnoses, we begin with an illustration of the adaptive mode of diagnostic 

sensemaking (See Figure 6).   The problem solver’s sense of the plausibility of the first 

diagnosis begins at its initial value of 0.5 and three things begin to occur simultaneously.  

First, the doctor begins acting - advancing the algorithm associated with the first 

diagnosis.  The stock of Algorithm Steps Completed increases, and the Cues Available 

increase as well.  Second, in the interpretation process, the Weight on Cues, capturing 

how open the problem solver is to external cues, starts to decline slowly as the Self-

Fulfilling Interpretation Loop drives an increase in plausibility.  In the first few moments, 

the doctor has done little to advance the diagnostic algorithm, so the limited cues have 

little effect on plausibility.  After a short time, the accumulated cues (which are 

“objectively” disconfirming information because the first diagnosis is incorrect) begin to 

show their effect on plausibility, and we see a slow decline in the Plausibility of the 

Leading Diagnosis.  Meanwhile, the third process unfolding is the cultivation of an 

alternative diagnosis.  The plausibility of this alternative diagnosis builds as the doctor 

considers it in the face of cues unfavorable to the leading diagnosis.  Eventually, the 

declining plausibility of the first diagnosis coupled with increasing plausibility of the 

alternative reaches a point where the alternative has a higher plausibility than the leading 

diagnosis.  At this moment, the first diagnosis is rejected, and the second diagnosis 

becomes the leading diagnosis.  The doctor begins pursuing the algorithm associated with 

the second diagnosis, the new leading diagnosis.  As before, plausibility increases for a 

short while, disconfirming cues accumulate and begin to cause a reduction in plausibility, 

and an alternative diagnosis gains favor and eventually overtakes the leading diagnosis.  



As Figure 6 shows, the pattern continues with sensemaking processes regarding 

diagnoses two and three.  When the doctor begins to consider diagnosis number four, the 

correct one, plausibility initially begins to grow as before.  However, the new cues 

available as algorithm steps are completed offer confirmation of this diagnosis and are 

interpreted to build even more plausibility in the leading diagnosis.  Moreover, the Self-

Fulfilling Interpretation loops reinforces the increases in plausibility, reducing the Weight 

on Cues thus boosting plausibility still further.  The diagnostician pursues the treatment 

and study algorithm to completion and converges on a steady state choice of the correct 

diagnosis. 

----------------------------------------------- 

Insert Figure 6 about here. 

----------------------------------------------- 

The simulation in Figure 6 shows two important features of the dynamics that arise from 

the interplay among acting, interpreting, and cultivating alternatives.  First, the 

consideration of each diagnosis in a sense enjoys a honeymoon period during the time it 

takes for an alternative diagnosis to emerge as a viable contender as the basis for action – 

a temporal interplay between a leading and an alternative diagnosis.  In the adaptive 

sensemaking mode of Figure 6, this temporal interplay is “well-balanced” in that the 

honeymoon period is long enough for the doctor both to take action and to interpret the 

results stirred up by that action for both the incorrect and correct diagnoses she considers.  

Second, there is a dynamic interchange in the roles of acting and interpreting because the 

cues available accumulate slowly relative to the ongoing process of interpreting 

experience.  The result we see in Figure 6 is that for each new diagnosis the first thing 

that happens is that plausibility increases but then later (for each incorrect diagnosis) 



decreases.  Plausibility increases at first because few cues are available and updating 

driven by the cognitive interpretation process occurs relatively quickly.  But meanwhile, 

the doctor continues to interact with the physical world by advancing the algorithm and 

generating more cues.  As the disconfirming evidence mounts, it eventually overcomes 

the effects of the self-fulfilling interpretation.  Plausibility reaches a peak and then begins 

to decline as disconfirming evidence continues to mount.   

Fixating 

Figure 7 shows simulation results that replicate the fixating mode of diagnostic 

sensemaking.  The only difference between this experiment and the one in Figure 6 is a 

change in the interpretation process: the Effect of Plausibility on Weights is stronger in 

Figure 7 (specifically, Effect of Plausiblity on Weights = 1).  Again, the first diagnosis the 

doctor generates is incorrect (by assumption and consistent with the field study data).  

The simulation begins as before with an initial plausibility of 0.5 that starts to rise at first 

due to self-fulfilling interpretations.  However, in contrast to the adaptive mode, the 

lower Weight on Cues in this scenario allows the self-fulfilling process to gain 

momentum.  As the diagnostician acts, she interprets cues and creates meaning that 

supports the current diagnosis, and the Weight on Cues falls even more.  The process of 

constructing meaning to support the current diagnosis gains strength.  The Self-Fulfilling 

Interpretation loop reinforces the current diagnosis, and because the loop is so strong, the 

first diagnosis is always preferred to an alternative that might be considered.  The 

diagnostician does not move on to any other diagnosis.  The strong reinforcing effects of 

the Self-Fulfilling Interpretation loop result in fixating, a pattern of diagnostic problem 

solving in which the doctor is completely confident in the incorrect diagnosis.  Self-



fulfilling interpretations filter out some of the available disconfirming evidence, so the 

current diagnosis locks in prematurely, squeezing out the cultivating of alternative 

diagnoses, and the doctor never has a chance to find the correct diagnosis.  The outcome 

is a false positive convergence on the incorrect diagnosis, a Type I error in diagnostic 

sensemaking. 

----------------------------------------------- 

Insert Figure 7 about here. 

----------------------------------------------- 

Diagnostic Vagabonding 

Figure 8 shows simulation results that replicate the vagabonding mode of diagnostic 

sensemaking.  The difference between this experiment and the one in Figure 6 is in the 

interpretation process:  the Effect of Plausibility on Weights is weaker in Figure 8 

(specifically, Effect of Plausibility on Weights = 0.15). In this simulation, the first three 

diagnoses are rejected as before because a better alternative had emerged, but compared 

to the adaptive case in Figure 6, these diagnoses are rejected more quickly.  This implies 

that the doctor in this scenario does not advance the algorithm as much, consistent with 

the field data  which showed that diagnostic vagabonds generated diagnoses but 

performed few or no steps of the treatment/test algorithm.  When the third diagnosis is 

rejected, the fourth becomes the leading diagnosis, and we begin to see important 

differences compared to the adaptive case.  The plausibility of the leading diagnosis, now 

a correct one, increases, but not as rapidly as in the adaptive case.  Here our stylized 

doctor places a higher weight on cues (due to a weaker effect of plausibility on weights), 

but the cues to confirm the diagnosis accumulate somewhat slowly because they must be 

made available by acting to advance the algorithm.  Meanwhile, an alternative diagnosis 



gains favor and eventually overtakes the correct diagnosis to become the preferred one.  

In contrast to the adaptive mode, the doctor in this scenario also rejects the correct 

diagnosis number four.  Once this diagnosis is rejected, the doctor continues identifying 

alternatives, choosing them as the leading diagnosis, and rejecting them in favor of the 

next emerging alternative. 

The error in this mode is the premature rejection of the correct diagnosis number four, a 

false negative or Type II error in diagnostic sensemaking.  The stylized doctor in this 

simulation is quite capable of cultivating new diagnoses and of attending carefully to 

cues, but lacking more confident beliefs about the plausibility of a diagnosis she does not 

hold onto it long enough to adequately advance the algorithm for any one diagnosis.  The 

result is vagabonding, a pattern of diagnostic problem solving in which the doctor jumps 

from one plausible diagnosis to the next without treating the patient.  The dynamic 

interplay among acting, interpreting, and cultivating alternatives is out of balance: the 

doctor yearns for clarifying information (interpreting) but the pace of generating and new 

cues associated with the leading diagnosis (acting) is too slow relative to the pace of 

cultivating alternatives.  The doctor gets stuck in a steady state of generating new 

alternative diagnoses but not discovering enough about these diagnoses to reach an 

effective conclusion.  This mode of diagnostic problem solving fails because the effect of 

plausibility on interpretation is so weak that even the correct diagnosis is rejected.   

----------------------------------------------- 

Insert Figure 8 about here. 

----------------------------------------------- 

 



Stalling 

The model can also generate a mode of sensemaking in which the doctor is stalled, 

unable to move forward to advance any algorithm.  One such scenario is a stylized doctor 

with an Effect of Plausibility on Weights like the vagabond and for whom both advancing 

the algorithm and gaining plausibility of a new diagnosis are extremely slow processes 

(represented in the model with high values for the Time Needed to Advance Algorithm 

and Time Needed to Gain Plausibility).  A simulation with these settings, not shown here, 

yields a flat line for plausibility, stuck at its initial value.  Rudolph’s analysis classified 

only 2 out of 39 doctors as stalled, and both exhibited behaviors of advancing the 

algorithm little or not at all and establishing working diagnoses very slowly, consistent 

with this story.  However, with so few examples and so little action to learn from, we 

omit this mode from subsequent analysis. 

The experiments so far show how the feedback structure in our model of diagnostic 

decision making (Figure 5) generates the modes of diagnostic problem solving observed 

in the field study.  Stalling occurs when the diagnosticians do not generate proposed 

diagnoses.  Fixating occurs when they do not discard an incorrect diagnosis, never 

discovering the correct hypothesis.  Vagabonding occurs when they do not determine a 

correct diagnosis to be so and thus prematurely discard it.  Adaptive problem solving 

occurs only when they both discover the correct diagnosis and determine that it is the 

correct one.   

Sensitivity analysis: The interplay of acting, interpreting, and cultivating diagnosis 

To highlight the critical dynamic interactions among interpreting cues, advancing the 

algorithm, and cultivating alternative diagnoses, we present a set of experiments in which 



we vary the pace of these processes. Although fixation, adaptive sensemaking, and 

vagabonding could be generated by varying only the Effect of Plausibility on Weights, we 

gain further insight about the combinations of processes and limiting conditions for such 

behaviors.   

We begin with a set of simulations in which all parameters are identical to the ones used 

for the scenario that results in vagabonding (Figure 8) except that we vary the pace at 

which the doctor advances the algorithm by setting the Time Needed to Advance 

Algorithm to values ranging from very fast (1 minute) to very slow (16 minutes).  Figure 

9 shows the first experiment comprising eleven simulation runs that separate into two 

distinctly different patterns.  One set, corresponding to the faster advancing of algorithm 

steps, displays adaptive sensemaking in which the plausibility of diagnosis number four 

climbs smoothly toward one.  The other set, corresponding to the slower advancing of 

algorithm steps, displays vagabonding in which diagnosis number four is rejected and 

new alternative diagnoses continue to move into position as leading diagnoses.  Different 

rates of advancing the algorithm generate qualitatively different dynamics:  the doctor 

converges on the correct diagnosis for fast rates of advancing, but rejects it when the rate 

of advancing is too slow.  The results highlight an important feature of the systems’ 

dynamics: more action (advancing the algorithm faster) offsets the effects of less self-

fulfilling interpretation, and protects the problem solver from being swept into 

vagabonding mode.  Small differences in the rate of advancing can mean the difference 

between adaptive sensemaking and vagabonding. This result raises the question as to just 

what pace of advancing is needed to escape from the perils of vagabonding. 



----------------------------------------------- 

Insert Figure 9 about here. 

----------------------------------------------- 

To shed light on this question, we conducted an extensive set of experiments to test the 

relationship among the pace of advancing the algorithm, the pace with which an 

alternative gains plausibility, and the strength of the effect of plausibility on 

interpretation.  We performed sets of simulations similar to those in Figure 9 for various 

values of the Effect of Plausibility on Weights.   In each set of simulations, we identified 

the threshold Time Needed to Advance Algorithm that distinguished adaptive 

sensemaking from vagabonding.  In other words, we found the pace of advancing needed 

to achieve adaptive sensemaking for the given combination of the other two parameters.  

For example, from the set of simulations shown in Figure 9, we can determine that a pace 

of advancing faster than 7 minutes for the Time Needed to Advance Algorithm will yield 

adaptive sensemaking, and a slower pace will yield vagabonding.  Indeed, diagnostic 

vagabonds rarely advanced the algorithm beyond the first step or did so up to 15 minutes 

into the scenario.  The results, displayed in Figure 10, show that for weaker Effects of 

Plausibility on Weights, faster advancing of the algorithm is needed for adaptive 

sensemaking.  A weak interpretation effect describes a doctor who wants more cues, so 

the pace of acting must be faster in order to lead to adaptive sensemaking.  When the 

appetite for cues is high (weak effect), slow action induces vagabonding.  Conversely, a 

modest degree of confidence in the leading diagnosis contributes to the robustness of the 

sensemaking process by thwarting the lurking threat of vagabonding.  

----------------------------------------------- 

Insert Figure 10 about here. 

----------------------------------------------- 



To fully characterize the dynamic interplay among the processes of acting, interpreting, 

and cultivating alternatives, we repeated the analysis for several values of the Time 

Needed to Gain Plausibility.  The resulting family of curves (Figure 11) shows how the 

threshold pace of advancing the algorithm depends on both the Effect of Plausibility on 

Weights and the Time Needed to Gain Plausibility.  As the strength of the interpretation 

effect increases, the threshold pace of advancing needed for adaptive sensemaking gets 

slower.  When the pace of cultivating alternatives is very fast, the risk of vagabonding is 

quite high and not mitigated much by stronger interpretation effects; very rapid action is 

still needed.  For a slower pace of cultivating alternatives, small increases in the strength 

of the interpretation effect yield larger improvements in the robustness of the 

sensemaking process: slower paces of action are still adequate to achieve adaptive 

sensemaking.   

----------------------------------------------- 

Insert Figure 11 about here. 

----------------------------------------------- 

DISCUSSION 

Our simulation model is able to generate the four modes of diagnostic sensemaking 

identified in Rudolph’s study.  Stalling occurs when the diagnosticians are unable to 

generate a diagnosis they consider plausible enough to launch action.  Fixating occurs 

when the leading diagnosis quickly, but erroneously, gains plausibility; problem solvers 

do not discard their leading diagnosis and never discover one that solves the problem.  

Vagabonding occurs when the leading diagnosis does not gain enough plausibility to 

sustain concerted action; even if people hit upon a diagnosis that solves the problem, they 

do not recognize it.  Adaptive diagnostic sensemaking occurs when the leading diagnosis 



gains enough plausibility to sustain concerted action, but not too much to prevent 

alternatives from emerging. 

Our modeling and analysis contribute three new insights to understanding sensemaking in 

high-stakes, time-pressured settings.  First, we highlight self-fulfilling interpretation as 

beneficial for adaptive sensemaking.  While much research has documented the liabilities 

of self-fulfilling cognitive processes such as confirmation bias and fixation, we show that 

such processes have benefits in staving off diagnostic vagabonding, preventing stall-outs 

in sensemaking, and steadying sensemaking processes so that diagnoses can be redrafted 

with the benefit of new cues.  Second, understanding the challenges of sensemaking 

under time pressure requires a more finely differentiated conceptualization of processes 

that contribute to fixation.   Third, we show that the dynamic interplay of acting, 

interpreting cues, and cultivating new diagnoses opens and closes windows of 

opportunity for adaptive sensemaking.  There are critical moments when each of these 

sub-processes can remediate weaknesses in the others, after which the missteps of 

dysfunctional sensemaking can no longer be remedied.  These insights have important 

implications for both scholarly research on and practical approaches to improving time-

pressured sensemaking.   

The benefits of self-fulfilling interpretation in sensemaking.  Earlier work on 

sensemaking has argued persuasively that a plausible diagnosis or story (rather than a 

perfectly accurate one) is not only adequate, but often optimal to launch effective action 

(Sutcliffe & Weber, 2003; Weick et al., 2005).  Our analysis indicates that beyond its 

crucial role in launching action, plausibility also plays a critical role in sustaining action.  

The problem solver’s sense of the plausibility of a diagnosis provides useful momentum 



to keep moving on a current course of action (i.e., the current algorithm).  The counter 

example of the diagnostic vagabonds highlights the importance of this inertia.  When the 

diagnostic vagabonds considered the correct diagnosis, they discarded it because 

feedback processes undermined rather than intensified the plausibility of their leading 

diagnosis.  Without an increasing sense of plausibility, they were unable to hold the 

leading diagnosis firmly enough to sustain therapeutic and diagnostic action.   

One of the challenges of time-pressured sensemaking is the ongoing competition between 

the plausibility of the leading and the alternative diagnoses.  Following an algorithm or 

standard operating procedure sustains the current story; it enacts the current story.  

Without this sustained action, cues needed to build a sense of plausibility do not surface.  

Especially when the cues that become available early are ambiguous, a little bit of 

fixation is essential to keep the problem solver on track long enough for a critical mass of 

cues to accumulate.  Self-fulfilling interpretation allows problem solvers to do what Klein 

and colleagues call “preserving the frame” (Klein et al., 2006) long enough to sustain 

needed action and allow the leading diagnosis to win the competition with alternative 

diagnoses. 

A nuanced continuum of self-fulfilling interpretation and fixation.  We have argued 

that some self-fulfilling interpretation is needed to build a person’s sense that their point 

of view is plausible and thereby promote adaptive sensemaking.  Previous discussions of 

fixation error have noted that a distinctive presentation or unfolding of the problem locks 

people into a sense that their (erroneous) diagnosis is highly plausible or correct (cf 

Johnson et al., 1988; De Keyser and Woods, 1990).  Our model captures this idea that as 

one’s perceived sense of plausibility increases, openness, especially to disconfirming 



cues, decreases.  Paradoxically, some self-fulfilling interpretation, or holding to a 

diagnosis despite some countervailing cues, allows a richer range of cues and alternative 

diagnoses to emerge.   

Further, our model elaborates a detailed representation of the relationship between the 

increasing sense of plausibility and openness to external cues.   Appendix 1 provides four 

hypothetical examples that illustrate different degrees of impact of plausibility on 

openness, ranging from when  the problem solver is always completely open to cues (no 

impact of plausibility) to when openness is directly and inversely proportional to 

plausibility.  Our simulations showed the importance of this relationship: changes in the 

shape of the relationship between different levels of plausibility on openness to cues 

alone can produce sensemaking modes ranging from vagabonding through adaptive to 

fixation.  This captures the ideas of March and Sastry also based on computer 

simulations, that learning from experience can suffer from being either too slow or too 

fast (March, 1991; Sastry, 1997).   

Balancing and reinforcing feedback as building blocks of sensemaking. Our analysis 

highlights dualities in the three processes of sensemaking we mapped.  Although 

deliberation is often crucial to effective action, in diagnostic sensemaking under-time 

pressure, acting quickly, even on an uncertain diagnosis, can mitigate the effects of slow 

interpretation.  Although self-fulfilling interpretation can lead to fixation, it is crucial to 

adaptive sensemaking.  Although generating new diagnoses is crucial to adaptive 

sensemaking, when it happens too fast, it can be a liability.  These dualities express the 

dynamics of underlying balancing and reinforcing feedback processes.   



Sensemaking theorists and some decision theorists have argued that feedback provides 

balancing loops that improve problem solving.  Sensemaking theory argues that if people 

generate plausible diagnoses (or stories) and begin to act on them, this action will stir up 

corrective feedback, through balancing loops, that will allow people to “[redraft] an 

emerging story so that it becomes more comprehensive, incorporates more of the 

observed data, and is more resilient in the face of criticism” (Weick et al. 2005: 412).  

Similarly, the on-going processes in dynamic problem solving environments provide 

frequent corrective feedback from new cues generated by action, making such 

environments more forgiving than simple static judgment tasks (Kleinmuntz, 1985; 

Hogarth, 1981).  However, in contrast to the presumed balancing feedback processes that 

improve the fit between the current diagnosis and the correct one, the self-fulfilling 

interpretation loop in our model is a reinforcing or positive feedback loop that acts to 

amplify small changes and create both virtuous and vicious cycles that can be 

destabilizing.   

Thus, the self-reinforcing interpretation process interacts with the therapeutic and 

diagnostic actions and generating of new diagnoses to open and close windows of 

opportunity for adaptive sensemaking.  These critical moments occur when there is a 

close competition between the leading and the alternative diagnosis.  Under the time 

pressure assumed in our model, there are two generic failure modes from which problem-

solvers cannot recover:  Just at the moment when the problem solver could disconfirm the 

leading diagnosis and switch to another, the momentum of the self-fulfilling feedback 

loop sweeps her into fixation.  Or, just at the moment when sticking with the leading 

diagnosis would help advance the appropriate treatment algorithm, the combination of 



rapid generation of alternative diagnoses and slow accumulation of cues sweeps her into 

vagabonding.   

The self-fulfilling interpretation loop presented here can act benignly to strengthen a 

nascent diagnosis so that it is more resilient in the face of disconfirming evidence, but can 

also act malignly to weaken faith in a plausible diagnosis so that it loses out to a less 

good one, or to strengthen faith in a poor diagnosis that should be discarded.  Fixation 

can arise if the effect of plausibility on cue interpretation is very strong; neither acting 

swiftly to generate cues, nor deftly cultivating alternative diagnoses will make a 

difference.  When the effect of plausibility is moderate, small changes in acting to 

advance the algorithm can open or close the window on adaptive sensemaking.  When the 

leading diagnosis is incorrect, a slower pace generates fewer disconfirming cues, 

allowing plausibility of the leading diagnosis to gain crucial early ground that quickly 

squeezes out gains for the alternative.  A faster pace of acting allows the alternative 

diagnosis to gain ground and eventually overtake the leading one.   

Improving sensemaking in practice.  Our analysis points to several promising avenues 

for improving time-pressured sensemaking.  First, whereas scholars have previously 

identified a range of strategies to mitigate the risks of falling prey to fixation, our work 

suggests the need to also develop ways to overcome the risks of diagnostic vagabonding.  

Ironically, too much success in training diagnosticians to avoid fixation may increase the 

tendency to move quickly from diagnosis to diagnosis and lock in to a mode of 

vagabonding.  We offer some propositions about situations that pose a high risk of 

vagabonding:  1) When urgency is high, when more is at stake, when situational factors 

constrain or slow down the ability to take action and gather information, and when there 



are many plausible alternatives, vagabonding will be more likely;  2) When these factors 

are coupled with slower or less confident interpretation processes, as might be expected 

with novel problems or relatively inexperienced problem solvers, the risk of vagabonding 

will be greater; and 3) These results imply that potential strategies to avoid vagabonding 

are to slow down the pace of cultivating alternatives, take action more confidently, and 

hold leading diagnoses more confidently to allow more cues to surface.  These three 

strategies interact and support each other, so improvement in one dimension can 

compensate for a shortfall along another. 

The second set of strategies to improve sensemaking addresses constraints on the 

processes of acting, interpreting, and cultivating alternatives.  Some sensemaking settings 

present only minor constraints, yet other settings may impose significant limits on one or 

more of these processes.  The pace of action might be limited by resource constraints, 

technological factors, or physical factors such as the time needed to conduct certain 

activities and for a physiological response from the patient to develop.  The set of 

possible actions may be limited when urgency rules out actions that simply take too long.  

The ability to adjust self-fulfilling interpretation effects might be limited by people’s 

ability to be mindful of or “bystand” their own diagnostic frames rather than mistaking 

them for reality (Kegan, 1994; Langer, 1989; Torbert, 1991).  The pace of generating 

alternatives might be limited by cognitive capacity in light of other demands for attention 

and by knowledge and experience relevant to the problem at hand.  Constraints such as 

these mean that the recipe for combining acting, interpreting, and cultivating alternatives 

that fits one situation may not be feasible in others.  Just as a virtuoso musician will learn 

to play over a range of loudness, the versatile problem solver will develop the ability to 



adjust the pace of acting, interpreting, and cultivating alternatives to match the needs of 

the situation.  However, this is a difficult challenge when the environment is novel or 

complex, time is short, and stakes are high.  Such expertise develops over considerable 

time and exposure to a variety of situations; experience in problem solving under routine 

circumstances is not sufficient to foster development of this meta-skill. 

Limitations and future research.  Our theory development approach based on computer 

simulation offers a relatively new way to hold a conversation between theory and data.  

We recognize that our source data is a single study of medical residents in only one 

scenario, itself a high-fidelity simulated training experience.  Both the restricted context 

of the source data and the nature of simulation mean that our model of diagnostic 

sensemaking excludes many features of real-world problem solving.  We have not 

explicitly modeled the status of the patient, nor have we included group-level aspects of 

sensemaking.  Moreover, we have not captured the range of the doctor’s actions that do 

not directly advance the algorithm or the effects of emotion.  There is much room for 

future research to continue the theory development process in diagnostic decision making 

and other theory contexts.  Field research or future modeling efforts could test or explore 

the theoretical and practical implications of stronger and weaker effects of perceived 

plausibility on openness to external cues.  More empirical and computational studies are 

needed of the relationships between balancing and reinforcing loops in complex problem-

solving situations.  

CONCLUSION 

This paper developed a grounded theory about the role of plausibility in action-oriented 

sensemaking by drawing on existing theory and empirical data.  The theory we developed 



is represented by a mathematical model portrayed in causal loop diagrams and simulated 

by computer.  The mathematical model rigorously articulates, through the constraints of 

linked, internally consistent equations, underlying structures and relationships that 

produce various sensemaking modes:  stalling, fixating, vagabonding and adapting.   The 

formal modeling process helped extend existing sensemaking theory in three ways: 1) it 

has clarified core dynamic elements of inertia and change in acting, interpreting, and 

generating new diagnoses (i.e. the stocks and the flow equations that represent each 

process).  2) It has taken narrative theories of sensemaking that assert interactions among 

acting, interpreting, and revising diagnoses and represented the interactions explicitly 

(e.g., how the pace of generating new cues influences assessments of plausibility and the 

need for cultivating alternate diagnoses).  3) Most importantly, it has generated new 

insights suggesting that sensemaking theory must include both balancing and reinforcing 

processes.  Specifically, the formal modeling process has allowed us to demonstrate the 

benefits and nuances of self-fulfilling interpretation; some fixation-like activity is needed 

for adaptive diagnostic sensemaking (but too much can cause problems).  Through 

modeling we have also demonstrated that the specific form of the relationship between 

faith in the plausibility of the current diagnosis and openness to new cues is more 

complex than previous theories of sensemaking and fixation have appreciated; this is a 

fertile ground for future research.   
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APPENDIX A 
 

Figure A-1 

Weight on Cues as a Function of Plausibility of Leading Diagnosis 

for Various Settings of Effect of Plausibility on Weights  
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APPENDIX B 
 

Integral equations are written in this appendix using the following notation: 

Stock= INTEG (Inflow-Outflow, Initial Value of Stock), where the INTEG function 

means the integral from time 0 to time t (the current time) of the inflows less the outflows 

plus the initial value of the stock.  The model is simulated using Vensim DSS software, 

available from www.vensim.com. 

 

Equations for the Acting Subsection (Figure 1): 

 
Algorithm Steps Completed= INTEG (Advancing the Algorithm-Resetting Algorithm ,0) 

Units: Dimensionless 

 

Advancing the Algorithm=(1-Algorithm Steps Completed)/Time Needed to Advance Algorithm 

Units: Dimensionless/Minute 

 

Time Needed to Advance Algorithm=8 

Units: Minute 

 

Cues Available=(Starting Plausibility of Leading Diagnosis+Algorithm Steps Completed*(Accuracy of 

Leading Diagnosis- Starting Plausibility of Leading Diagnosis)) 

Units: Dimensionless 

 

Accuracy of Leading Diagnosis=IF THEN ELSE(Current Diagnosis=True Diagnosis, 1, 0) 

 Units: Dimensionless  

 

True Diagnosis=4 

Units: Dimensionless 

 

Equations for the Interpreting Subsection (Figures 2 and 3): 

 
Plausibility of Leading Diagnosis= INTEG (Updating +Carry Over to Leading -Resetting Leading, Initial 

Plausibility) 

Units: Dimensionless 

 

Updating=(Plausibility from New Cues-Plausibility of Leading Diagnosis)/Time to Needed Update 

Units: Dimensionless /Minute 

 

Plausibility from New Cues=Cues Available*Weight on Cues+(1-Weight on Cues) 

Units: Dimensionless 

 

Time to Needed Update=2 

Units: Minute 

 

Weight on Cues=(1-Plausibility of Leading Diagnosis)^Effect of Plausibility on Weights 

Units: Dimensionless 

 

Effect of Plausibility on Weights=0.5 

Units: Dimensionless 

 



Equations for the Cultivating Alternatives Subsection (Figure 4) 

 
Plausibility of Alternative Diagnosis= INTEG (Cultivating-Resetting Alternative,0) 

Units: Dimensionless 

 

Cultivating=Effect of Plausiblity on Alternative*(1-Plausibility of Alternative Diagnosis)/Time Needed to 

Cultivate 

Units: Dimensionless/Minute 

 

Effect of Plausiblity on Alternative=min(1,2-2*Plausibility of Leading Diagnosis) 

Units: Dimensionless 

 

Time Needed to Cultivate=4 

Units: Minute 

 

Equations for Switching Diagnoses (Figure 5): 
 

Change Trigger=IF THEN ELSE( Plausibility of Leading Diagnosis<Plausibility of Alternative Diagnosis, 

1, 0)/TIME STEP 

Units: Dimensionless/Minute 

 

Resetting Algorithm=Algorithm Steps Completed*Change Trigger 

Units: Dimensionless/Minute 

 

Resetting Leading=Plausibility of Leading Diagnosis*Change Trigger 

Units: Dimensionless/Minute 

 

Carry Over to Leading=Resetting Alternative 

Units: Dimensionless/Minute 

 

Resetting Alternative=Plausibility of Alternative Diagnosis*Change Trigger 

Units: Dimensionless/Minute 

 

Starting Plausibility of Leading Diagnosis = INTEG (New Plausibility-Resetting Starting Plausibility, 

Initial Plausibility) 

Units: Dimensionless 

 

New Plausibility=Resetting Alternative 

Units: Dimensionless/Minute 

 

Resetting Starting Plausibility=Change Trigger* Starting Plausibility of Leading Diagnosis 

Units: Dimensionless/Minute 

 

Initial Plausibility=0.5 

Units: Dimensionless 

 

Current Diagnosis= INTEG (Diagnosis Counter,1) 

Units: Dimensionless 

 

Diagnosis Counter=Change Trigger 

Units: Dimensionless/Minute 

 



FIGURES 

 

Figure 1 

The basic stock and flow structure of advancing the algorithm 
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Figure 2 

Updating the plausibility of leading diagnosis 
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Figure 3 

Feedback structure of Self-fulfilling interpretation 
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Figure 4 

Core model structure showing the interaction of acting, interpreting, and cultivating 

alternatives 
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Figure 5 

Changes to reset the model when the alternative diagnosis becomes the leading 

diagnosis 
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Figure 6 

Adaptive Sensemaking:  Discovering the correct diagnosis 
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Figure 7 

Fixating on an incorrect leading diagnosis 
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Figure 8 

Diagnostic Vagabonding:  Rejecting the correct diagnosis 
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Figure 9 

Sensitivity analysis showing system behavior for various rates of advancing the 

algorithm 
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Figure 10 
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Figure 11 
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