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Abstract:

The search for tools and techniques aimed at model analysis has gained momentum in the system
dynamics community during the last decade. A variety of approaches have been developed,
modified and applied to replace or enhance the traditional intuitive-based schemes for
understanding the behavior of dynamic models according to its feedback structure. Despite the
diversity of the methods developed for model analysis, recent studies suggest that there is
considerable convergence in the results they produce. The objective of this paper is to explore
some of the similarities and differences between pathway participation metrics and eigenvalue
elasticity analysis that can potentially explain the reasons for the convergence and divergence in
analysis. In the first part of the paper, we lay out some of the theoretical differences and
similarities in approaches between aspects of pathway participation metrics and eigenvalue
elasticity analysis in order to explain how they, despite the significant differences in the process
of model analysis, can produce similar and comparable results under certain conditions. The
second part of the paper presents application of pathway participation metrics in four well-
known models that have been previously analyzed using the eigenvalue elasticity approach. The
case studies highlight some of the similarities and differences between the two approaches in
detecting the dominant structure.

INTRODUCTION

The search for tools and techniques aimed at model analysis has gained momentum in the system
dynamics community during the last decade. A variety of approaches have been developed,
modified and applied to replace or enhance the traditional intuitive-based schemes for
understanding the behavior of dynamic models according to its feedback structure. The breadth
and scope of the effort is mainly technical and is targeted towards a small interest group.
However, the ultimate goal is to reach a wider audience that works with models as decision and
policy support tools. The ambition is to equip the commercial system dynamics software
packages with a toolbox for model analysis to facilitate “telling correct, cogent and coherent
dynamic stories” (Mojtahedzadeh, 1996), to support “modeling at the speed of conversation”
(Hines, 2003) and to facilitate the identification of leverage points (Forrester, 1982). Sterman
(2000) suggests that “Understanding model behavior goes beyond the invocation of simple
archetypes ...While true, these statements don’t provide the deep insight into model structure



and behavior required to develop your intuition about dynamics or your ability to identify high
leverage policies.” Although the battle is not yet won, we are continually getting closer to
accomplishing the goal of reliable and consistent automated model analysis.

Despite the diversity of the methods developed for model analysis, there is a considerable
convergence in the results they produce. A number of comparative studies conducted to contrast
the outcome of alternative techniques for model analysis have concluded that a significant
overlap may exist among the outcomes of various approaches to model analysis (Ford, 2005;
Olivia, 2004; Kampmann, 2006; Giineralp, 2006). While the overlap may not be unexpected as all
the outcomes are filtered through the intuition of the developer who interprets the results, an
interesting theme for research is to look for the fundamental basis that can create convergence
and divergence.

The objective of this paper is to explore some of the similarities and differences between pathway
participation metrics and eigenvalue elasticities analysis that can potentially lead the
convergence and divergence in the outcome of model analysis. Kampman and Olivia (2006)
compare the results of eigenvalue elasticity analysis and pathway participation metrics in
Industrial Structures model (Mojtahedzadeh et al, 2004) and conclude that the dominant
structure identified by the two methods are “to a large extent, in accordance” with one another.
Giineralp (2006) reports the analysis of Lotka-Volterra model with eigenvalue elasticities and
concludes that the results are “surprisingly” in agreement with those of pathway participation
metrics, although with some exceptions.

Why do the results of the two seemingly different approaches converge in some cases? Is this just
a random phenomenon? Are there any classes of models for which pathway participation metrics
and eigenvalue elasticity analysis make the same conclusions?

In the first part of this paper, we lay out some of the theoretical differences and similarities
between aspects of pathway participation metrics (PPM) and eigenvalue elasticity analysis (EEA)
to explain how the two approaches, despite their differences in the process of model analysis, can
produce “similar and comparable” results under certain conditions. The second part of the paper
presents applications of pathway participation metrics in four well-known models that have
previously been analyzed using the eigenvalue elasticity approach. The case studies highlight
some of the similarities and differences between the two approaches in detecting the dominant
structure.

THEORETICAL COMPARISON OF EEA AND PPM

Telling systems-level stories in the pathway participation metrics approach begins with the
variable of interest and it’s over time behavior. It detects the dominant feedback loops and
pathways that are mainly responsible for the pattern of behavior observed by the variable of
interest. Model analysis in eigenvalue elasticity approach starts with the eigenvalue of interest, a
global measure of the system derived from model parameters and indicates the modes of the
system behavior. The dominant structure is selected based on an elasticity metrics, eigenvalue
elasticities, that determine the sensitivity of the behavior modes to the feedback structure.



The pathway participation metrics approach strives to arrive at global and system-level
statements about the structure from local indicators such as the variables of interest and its
overtime behavior revealed by simulation. The eigenvalue elasticity approach, on the other hand,
attempts to find its way from global system-level measures -- originally developed for linear
systems-- to explain simulation results often generated by nonlinear structure.

Despite the fact that the two approaches begin from different ends in the process of model
analysis, the theoretical similarities between them can potentially lead to similar results in model
analysis. One way to study the similarities and differences between pathway participation
metrics and eigenvalue elasticity analysis is to compare and contrast the methods from the
following three perspectives: 1) metrics used to characterize structure and behavior, 2) selection
criteria for detecting dominant structure, and 3) interpretation of results.

1. Metrics

To identify dominant structure, we need to be able to characterize structure and behavior and
establish a connection between the two. In PPM analysis, pathway participation metrics
characterize the structure and total participation metrics characterize the behavior of the variable
of interest. In EEA, eigenvalues characterize the behavior, and the connection between behavior
and structure is established through elasticities (parameters, or gains). These measures meet in
steady states. Appendix A provides a detailed technical discussion on the relationship between
these metrics in the steady states.

1. 1. For linear systems, in the steady state condition, the total participation metrics, defined as
sum of the participation metrics coming into a state variable, is equal to the dominant eigenvalue
of the system.

Total Pathway Participation Metrics = Dominant Eigenvalue

1. 2. For linear systems, in the steady state condition, the participation metrics for the pathway
that leaves a state variable and reaches the state variable of interest is equal to the elasticity of the
dominant eigenvalue with respect to the parameter that connects the two state variables divided
by the participation factor for the state variable of interest.

Eigenvalue Elasticity

Pathway Participation Metric= -
Participation Factor

The participation factor of a state variable measures the degree of participation of the state
variable in the (dominant) eigenvalue (for more details, see Eberlein, 1982).

For oscillatory systems, the detection of dominant structure in PPM, in its current
implementation in Digest, is based on the rates of contractions and expansions in pathways,
while in EEA the dominant structure is chosen according to the impact of the links and loops on
the periodicity and envelop-curves of oscillatory modes. For explaining the periodicity and

! Digest is a piece of experimental software that detects and displays the dominant structure.



envelop-curves of observed cycles in oscillatory systems two new measures are developed which
are determined by the cycles in pathway participation metrics: pathway frequency factors and
pathway stability factors2. Pathway frequency factors indicate the participation of a pathway in
periodicity of the observed cycles in the behavior of interest. Pathway stability factor indicates
the participation of a pathway in the rate of divergence or convergence of the observed cycles.

1.3. In For linear systems, in the steady state condition, the total pathway stability factor, defined
as sum of the stability factors for the pathways coming into a state variable, is equal to the real
part of the dominant eigenvalue. Similarly, the total pathway frequency factor, defined as sum of
the frequency factors for the pathways coming into a state variable, is equal to the imaginary part
of the dominant eigenvalue.

Total Pathway Frequency Factors = Imaginary Part of Dominant Eigenvalue
Total Pathway Stability Factors = Real Part of Dominant Eigenvalue

Total pathway frequency factor reflects the length of an observed cycle and total pathway
stability factor indicates how fast a cycle is moving towards or away from equilibrium.

It should be emphasized that the relationship between eigenvalues and pathway participation
metrics holds only for the dominant eigenvalue of linear systems and in the steady states. These
relationships may also hold for nonlinear systems around their equilibrium values if linearization
does not significantly change the characteristics of the system.

2. Selection criteria for detecting dominant structure

In addition to metrics that characterize the behavior and the structure, the criteria for selecting
dominant structure will also influence the outcome. Forrester (1982) considers a loop as dominant
if it contains only links with large eigenvalue elasticities. Forrester identifies important links that
connect state variables, based on their eigenvalue elasticity, to form the dominant feedback loops.
“In most cases the dominant links fit together to form one or more interconnected feedback
loops” (Forrester, 1982). The loops that are formed with important links are considered dominant
“because they form paths for the propagation of waves” (Forrester, 1982).

The PPM approach takes a similar method that is identifying the dominant feedback loops based
on the dominant pathways. The main difference is that the PPM analysis begins with the variable
of interest, determines the dominant pathway and systematically follows back until a feedback
loop is formed. In other words, in the first stage, the dominant pathway coming to the variable of
interest is selected based on pathway participation metrics. In the second round, the states
variable at the tail of the dominant pathway is considered the variable of interest and the process
continues until a feedback loop is closed.?

2 The pathway stability factor and pathway frequency factor are in fact the real and imaginary parts of PPM
expressed in terms complex numbers.

3 Other approaches for loop dominance identification based on the eigenvalue elasticities are developed that
should be reviewed and compared with PPM approach for detecting dominant structures.



3. Interpretation of results

The concept of dominant structure is vast and open to different interpretations (Richardson,
1986). Researchers focusing on model analysis are under tremendous pressure to respond to a
variety of needs and definitions of dominant structure. Some modelers who strive to formulate
effective policies may expect model analysis to assist in detecting leverage points. A second
group of modelers may be interested in explaining why the model does what it does in terms of
its feedback structures. A third group of modelers may wish to identify a set of parameters that
helps to fit the model output to historical data. Yet another group of modelers may be interested
in model simplification and therefore look for a subset of the structure that does the same thing
as the full structure.

While there can be a considerable overlap among these inquiries, the answer to one inquiry may
not necessarily be the same as another. It is unlikely that a single method or technique can
provide appropriate answers to all these questions. There is a need to clearly define the dominant
structure in order to correctly set the expectations.

The question of what part of the structure gives rise to the behavior may be different than
inquiries for leverage points—the part of the structure that changes the behavior. For example,
balancing major loops usually generates oscillation; however, a minor balancing loop can
dampen the oscillation. In other words, what creates the behavior may not be the same thing as
that controls it.

Another point to keep in mind is that the dominant structures may or may not be the same as
what is causing the particular pattern of behavior. It could merely mean that among the feedback
loops that are responsible for creating the behavior of interest, the identified feedback loops are
more influential. For example, in the Yeast model discussed in the next section, a major balancing
loop around Cell deaths is identified as dominant during the reinforcing decline of the Cells. This
major loop is, in fact, not the cause of the collapse although it is more influential than other
feedback loops.

The main objective of the pathway participation metrics approach to model analysis is to tell
correct and consistent system-level stories about the observed behavior of a simulation. In other
words, it facilitates the interpretation of simulation output based on the stock and flow and
feedback structure that created the behavior. The hope, however, is that the explanation of the
dynamic behavior based on its feedback structure will help to search more effectively for answers
to other inquiries in model analysis.

APPLICATION OF PPM IN FOUR WELL-KNOWN MODELS

1. The Inventory-Workforce Model

The Inventory-Workforce model is a simple second-order system that produces oscillatory
behavior. In the model, Inventory is increased by production and reduced by sales. Production is
proportional to workforce that is changes by net hiring which is determined by desired
production, productivity, current workforce and a hiring adjustment time. The desired
production is proportional to the inventory gap and expected demand which is the average
demand or sale. The behavior of the model in response to a sudden change in sales is analyzed
and explained using different approaches. While Mass & Senge (1975) strive to provide intuitive



explanation for how the structure of the model creates oscillation, Gongalves (2006) uses
eigenvalue and eigenvector analysis to describe the cyclical behavior in the model. The former
method explains the cycles based on rates of contractions and expansions in the time segments of
oscillations. The latter approach identifies the feedback loops that contribute to the periodicity
and envelope curve of cycles as a whole. In this section, we examine the behavior of the

Workforce-Inventory model with PPM to provide both explanations for the oscillatory behavior

in the model.

Phase Based Dominant Structure:

The PPM approach, in its current implementation in Digest, detects the dominant structure in
oscillatory systems based on the four phases of the oscillation and the rate of expansions and
contractions in pathways. Figure 1 depicts the feedback structure and the behavior of the
Workforce-Inventory model as well as the dominant structure detected in PPM analysis.
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Figure 1: Dominant Structure in Phases of Inventory Dynamics based on PPM

The state variable Inventory contains one pathway that starts with Workforce and ends with

Inventory. Workforce contains three pathways. The first is Inventory-Workforce Pathway that

connects Inventory to Workforce through inventory corrections, desired production, desired
workforce and hiring/laying off. The second pathway is actually a minor feedback loop -- Hiring
Loop -- around Workforce. Finally, the third pathway connects the Expected Demand to the
Workforce through desired production, desired workforce and hiring/laying off. The latter
pathway is not shown in Figure 1 because Expected Demand is constant, except for a very short
period of time around time 5 when demand is stepped up.

Time (months) | 5 7.87 10.67 16.66 20.35 26.19 32.03
Duration 2.87 2.8 5.99 3.69 5.84 3.66
(months)

Dominant Workforce - | Workforce - | Workforce - | Workforce - | Workforce - | Workforce -
Pathway for Inventory | Inventory Inventory Inventory Inventory Inventory
Inventory Pathway Pathway Pathway Pathway Pathway Pathway
Dominant Inventory- Hirin Inventory- Inventory-
Pathway for Workforce Loo & Workforce | Hiring Loop | Workforce | Hiring Loop
Workforce Pathway P Pathway Pathway

Table 1: Dominant Pathways for Workforce According to PPM



Since the variable of interest, Inventory, contains only one pathway, the dominant structure will
depend on Workforce. Table 1 shows the dominant pathways for Inventory over time
determined by pathway participation. The first row in Table 1 is time (months), the second row
shows the duration (month), the third and fourth indicates which pathway is dominant for
Inventory and Workforce according to PPM.

The Story about Inventory Dynamics: According to PPM, after a sharp increase in demand at
time 5, the Inventory-Workforce Balancing Major Loop has the highest influence for about 2.87
months. During this period, the increasing gap between desired and actual level of inventory
along a higher expected demand leads the desired workforce to grow rapidly. Because of the
growing desired workforce, the impact of Inventory-Workforce Pathway remains higher than the
Hiring Loop. As a result, the Inventory-Workforce major loop is dominant. The slowing growth
in the desired workforce diminishes the impact of Inventory-Workforce pathway on Workforce
and the Hiring Loop dominates at time 7.87. After 2.8 months, when the desired workforce
begins to experience a speedy decline due to decreasing inventory corrections, the impact of the
Inventory-Workforce Pathway on Workforce exceeds that of the Hiring Loop, and thus the
Inventory-Workforce Major Loop becomes dominant at time 10.66. The major loop remains
dominant for about 6 months. Once the system reaches steady states, the major loop would be
dominant for 5.84 months while the minor Hiring Loop would dominate for about 3.66 months,
and the story repeats with the same periodicity.

Dominant Structure in Observed Cycles:

The two news measures for analyzing the characteristics of observed cycles, pathway stability
factor and pathway frequency factor, can be calculated given the information about cycles in
pathway participation metrics. Pathway frequency factors indicate the participation of a pathway
in periodicity of the observed cycles in the behavior of interest. The larger the pathway frequency
factor means the smaller the periodicity. On the other hand, pathway stability factor indicates the
participation of a pathway in the rate of divergence or convergence of the observed cycles. A
negative pathway stability factor means convergence while a positive pathway stability factor
denotes divergence.

The new measures of stability and frequency indicates that the major loop is responsible for the
cyclical behavior of Inventory and Workforce, however, the hiring minor loop around Workforce
is the cause for convergence of the oscillations.

Inventory- Hiring ExpDemand
Workforce Half-Cycles | Factors | Workforce Loop -Workforce | Total
Half-Cycles | Factors | Inventory- | Total Pathway pathway
Pathway Half-Cycle1 | Freq. 0.2 - 0.2 0.40
Half-Cycle 1| Freq. 0.32 0.32 (8 months) | Stab. 0.01 0.2 - -0.19
(10 months) | Stab. -0.12 -0.12 Half-Cycle 2 | Freq. 0.34 - -0.01 0.33
Half-Cycle2 | Freq. 0.33 0.33 (9.6 months) | Stab. 0.13 -0.25 - -0.12
(9.5 months) | Stab. -0.127 -12.7 Half-Cycle 3 | Freq. 0.33 - - 0.33
(9.5 months) | Stab. 0.123 -0.25 - -0.127
Table 2: Inventory
Frequency and Stability Factors Table 3: Workforce Frequency and Stability Factors



Table 2 and 3 provides the information on pathway stability factors and pathway frequency
factors for Inventory and Workforces. As shown in Table 2, two half-cycles are identified in
Inventory from the simulation outputs. In both half-cycles, Workforce-Inventory pathway, the
only pathway involved in the Inventory, is dominant. Table 3 shows that in the first half-cycle of
Workforce, 8 months, both Inventory-Workforce and Expected Demand-Workforce pathway
share the dominance in creating the periodicity of Workforce. Therefore, the major feedback loop
around Workforce and Inventory along with the minor loop around Expected Demand
contributes to the periodicity of the first cycle. In the second cycle, the Expected Demand-
Workforce Pathway plays no roles in the periodicity of Workforce and thus, the major loop
becomes the only source of oscillation. The stability of the cycles comes from the minor loop
around Workforce.

Notice that the total frequency factor for Inventory (Table 2) and Workforce (Table 3) converges
in the steady states and is equal to the real part of the dominant eigenvalue. Similarly, the total
stability factor for Inventory (Table 2) and Workforce (Table 3) converges in the steady states and
is equal to the imaginary part of the dominant eigenvalue.

2. The Yeast Model

The Yeast model has been examined by Saleh (2002), Giineralp (2005) and Phaff et al (2006) using
eigenvalue analysis as well as Ford’s behavioral approach. The model consists of two stocks
labeled Cells and Alcohol and shows that the impact of alcohol concentration on cell deaths and
cells births can create an overshoot in the number of Cells. Figure 2 depicts the structure of the
model that includes the impact of alcohol concentration in cell deaths. The simulation results
indicate that the Cells population at time 65.5 reaches its maximum and then begins to decline.
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Figure 2: Dominant Feedback of the Yeast Model based on PPM

According to Phaff et al (2006), both Ford’s behavioral approach and EEA indicate that the
reinforcing cell Births Loop is responsible for the reinforcing growth in the beginning of
simulation. Both methods also find the balancing decline towards the end of the simulation is
generated by the balancing Death Loop. These findings are intuitively sound as both in the
beginning and towards the end of the simulation the impact of Alcohol on births and deaths is
almost constant or moves very slowly.

As shown in Figure 2, the application of PPM shows that the minor Birth Loop is more influential
until time 51. From time 51 to time 65 the most influential loop, according to PPM, is the Birth



Major Loop. The dominant loop then shifts to the Death Major Loop between times 65 and 75,
and after time 75 the minor Death Loop dominates.

It should be observed that PPM maintains the reinforcing minor Birth Loop as dominant as long
as the reinforcing growth continues in the number of Cells. When the impact of balancing Birth
Major Loop exceeds that of the reinforcing minor Birth Loop, the balancing Birth Major Loop
dominates and the behavior of Cells alters to balancing growth. The Birth Major Loop remains
dominant until the Alcohol level approaches a threshold and begins to influence cell deaths rate
exponentially (as formulated in model). As a result, the balancing Major Death Loop dominates
around time 65. The minor balancing Death Loop dominates around time 75 when the impact of
Alcohol on death reaches a plateau.

The story told by PPM is generally consistent with EEA but departs in details and reasoning
particularly during the transition periods of the behavior of Cells variable. In EEA, the overshoot
in Cells is seen as oscillation in disguise. As a result, the Major Birth Loop is considered to be
dominant around time 40 while the number of Cells is growing at an increasing rate. The
dominant loops are then identified based of the contribution of the feedback loop to the
oscillatory modes derived from the linearized systems (Saleh, 2002; Guneralp, 2006).

The shifts in loop dominance identified using Ford’s behavioral approach, according to Phaff
(2006), appears to be more consistent with the PPM story, particularly in details. According to
Phaff (2006), Ford’s approach identifies the Birth Loop as dominant until time 50. In phase 2, time
50 to 65, the Birth Major Loop is dominant, and in phase 3, time 65 to 75, both birth and death
major loops are dominant.

It should be noted that the shifts in the dominant loops, according to pathway participation
metrics, occurs at time 65 which coincides with the reinforcing decline in the behavior of Cells. It
does not, however, mean that the balancing Death Major Loop is the “cause” for reinforcing
decline. Both birth and death major loops contribute to the reinforcing decline, although the
contribution of the Death Major Loops is more than the Birth Major loops.

In fact, the behavior of the model would not qualitatively change, if we eliminate the Death Major
Loop. If Alcohol were to only impact the births, the number of cells would still follow the
overshoot and collapse pattern of behavior although with slower dynamics. The story told by the
pathway participation metrics will remain the same except in phase three when Cells decline
with an increasing rate. In this case, the reinforcing decline in Cells, according to PPV, is induced
by the same feedback loop that limits cell births. The increasing level of Alcohol continues to
control cell births and when the births fall bellow deaths, Cells begin to experience a reinforcing
decline.

3. The Case of the Industrial Structure Model

Another simple model that produces overshoot behavior is the Industrial Structure model that
has been analyzed through PMM (Mojtahedzadeh, et al, 2004) and EEA approach (Kampmann et
al, 2006) to identify the shifts in loop dominance. The model consists of two stocks -- Industrial
Structures and Water Reserves. The continuous growth of Industrial Structures reduces Water
Reserves and that diminishes Water Adequacy which, in turn, limits expansion of Industrial
Structures.



Kampmann et all (2006) compare the results of EEA and PPM analysis of the Industrial Structure
model. They found that dominant structure identified by the two approaches are “to a large
extent, in accordance” with one another. The only point of departure between the two analyses is
the duration in which Industrial Structures experiences a reinforcing decline (Figure 3).
“Indeed, we question whether it makes sense to speak of two distinct phases in
this case—the time path of the variables is simply a temporary transition not
driven by structure but by the relative position of the state variables”
(Kampmann et al, 2006).

PPM: The balancing loop that EEA: Temporary
controls water consumption, transition not driven
lowers new industries l by structure
60
10K f)
30
50K Industrial -
Structures 1 |\
~_ 7 new. \
industries K| Demolition
0 o M
0 o~
0 12.5 25 37.5 50
Time

Figure 3: Explaining Reinforcing Decline in Overshoot

The pathway participation metrics suggests the same balancing structure around Water Reserves
that controls the New Industrial Structure causes the reinforcing decline.
“what forces Industrial Structure to fall faster and faster is exactly the same
process that controls it. The balancing loop that controls water consumption
continuously lowers new industries and, once new industries fall behind
industrial demolition, Industrial Structure generates a reinforcing decline”
(Mojtahedzadeh et al, 2004).

The different interpretation by two approaches is not unexpected in the transition period. The
idea of “temporary transition not driven by structure”, however, raises the question whether it is
possible to explain the temporary transition of complex systems in terms of their feedback
structure. Is there a class of models whose temporary transition can be explained by its feedback
structure?

Despite the similarity in the Industrial Structure and Yeast models, EEA provides two very
different explanations underlying the feedback structure influential in creating the overshoot and
collapse. In the yeast model, the transition period in the overshot is seen as oscillation while in
the case of the Industrial Structure model the reinforcing decline phase of overshoot is explained
by temporary transition caused by relative positioning of stocks and not driven by feedback
structure.

If temporary transitions cannot be explained with the feedback loop structure, what should be

the metrics for identifying them and analyzing them? Is the “relative position” of the state
variables sufficient for the analysis of the transition periods? What other “building blocks” are
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needed, in addition to feedback loops, to fully explain the patterns of behavior from the
beginning of the simulation to the end.

The PPM approach suggests the concept of “pathways” in addition to feedback loop, to
characterize the transition period. Pathway participation metrics take into account the “relative
position” of the state variables in the form of the ratio of the net changes in the two state
variables. The ratio of the net changes becomes the elements of eigenvectors in the steady states
when the dynamics of the relative position of state variable settles and the moves toward the
dominant eigenvalue (Mojtahedzadeh et al, 2004). Pathways not only carry the information about
the “relative position” of state variables but also the polarity of the links through which this
information makes its way around the feedback loop containing the variable of interest. In the
extreme case when the polarity of a pathway is zero, the “relative position” of state variables
does not impact the variable of interest.

4. The Prey-Predator Model with Prey Starvation:

The Prey-Predator model is a second-order nonlinear system that produces sustained oscillation.
The addition of the prey starvation to the model bounds the growth of prey and dampens the
oscillation. In this model, as shown in Figure 4, prey birth and natural death is proportional to
prey population size and prey starvation grows faster than the prey population. The number of
preys killed by predators and predator births depends on the size of the both population.

stafgz%;on starvation

—— p deaths natural death

Prey
) Starvation fraction
prey birth Loop
factor
Prey Birth Prey Death
Loop Loop
Prey pay -
prey birth total prey
deaths \
Prey-Predator kill factor
predator Major Loop
birth factor death rate
predator
Predator Z

predator Predator Predator predator
birth  Birth Loop Death Loop deaths
v

Figure 4: Prey-Predator Model with Prey Starvation

Phase Based Dominant Structure:

Figure 5 shows the behavior of Prey and Predator and its phases based on shifts in the dominant
structure. The behavior of Predator contains four phases. In the first and third phase, the Predator
birth loop and death loop is dominant, respectively. In phase 2 and 4 the Prey-Predator pathway
is more influential than others in creating the behavior of Predator. The behavior of Prey in the
beginning and end part of phase 2 and 4 is driven by Predator-Prey pathway, and therefore the
major loop around Prey and Predator is dominant. In the middle part of phases 2 and 4, the
impact of the Prey Starvation Loop in creating the dynamics of Prey exceeds other loops and
pathways.
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Figure 5: The Behavior of Predator and its Phases

Description of the Phase in Predator:

Phase 1(from 0 to -3.5): The rapid growth in Predator during this phase is mainly influenced by
the reinforcing Predator Birth loop as Prey is relatively constant.

Phase 2 (from 3.5 to 24): As Predator grows, more preys are killed, therefore Prey begins to
decline quickly and the Predator-Prey Pathway causes further decline in Prey. At the same time,
the falling Prey controls the growth of Predator causing Predator to grow slower and slower.
Around time 11.5, when Predator is changing very slowly, the dynamics of Prey is highly
influenced by the balancing Prey Starvation Loop. Around time 17, Predator begins to fall
quickly due to declining Prey and the major balancing loop dominates again and controls the rate
of decline in Prey.

Phase 3 (from 24 to 25.5): In this phase, while Prey remains almost constant, the Predator
balancing death loop control the decline of Predator.

Phase 4 (from 25.5 to End): This phase is the reverse of what happened in Phase 2. The major
balancing loop is dominant for 11.5 months controlling the decline of predator and speeding the
growth of Prey. Around time 37 when the changes in Predator is slow Prey Starvation Loop
slows down the growth of Prey. However, around time 40 the major balancing loop, Prey-
Predator Loop dominates causing a reinforcing growth in Predator and a balancing growth in
Prey.

Dominant Structure in Observed Cycles:
Table 4 and 5 summarizes the pathway stability factor and pathway frequency factor for both
Prey and Predator.

Prey- Predator Minor Loops
Half-Cycles | Factors | Predator Total
Pathway Total Birth Death
Half-Cycle 1 Freq. 0.133 - - - 0.133
(23.7 months) Stab. -0.028 -0.017 0.183 -0.2 -0.045
Half-Cycle 2 Freq. 0.134 - - - 0.134
(23.5 months) | Stab. -0.022 0.01 0.19 -0.2 -0.012
Half-Cycle 3 Freq. 0.133 - - - 0.133
(23.6 months) | Stab. -0.025 -0.006 0.194 0.2 -0.031
Half-Cycle4 | Freq. 0.134 - - - 0.134
(23.5months) | Stab. -0.023 0.003 0.197 -0.2 -0.020

Table 4: Predator Frequency and Stability Factors
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Predator

Prey Minor Loops
Half-Cycles | Factors -Prey Total
Total Birth Death | Starvation | Pathway
Half-Cycle1 | Freq. - - - - 0.137 0.137
(23.7 months) Stab. -0.059 0.15 -0.01 -0.199 0.022 -0.037
Half-Cycle 2 Freq. - - - - 0.131 0.131
(24 months) | Stab. | -0.041 0.15 -0.01 -0.181 0.025 | -0.016
Half-Cycle 3 | Freq. - - - - 0.135 0.135
(23.3 months) | Stab. | -0.052 0.15 -0.01 -0.192 0.023 | -0.029
Half-Cycle4 | Freq. - - - - 0.133 0.133
(23.7months) | Stab. | -0.046 0.15 -0.01 -0.186 0.024 | -0.022

Table 5: Prey Frequency and Stability Factors

Half-Cycles: According to Table 4 and 5, both Prey and Predator go through half-cycles that are
approximately 23.5 months long. The total frequency factors for Prey and Predator is about 0.13
which reflects the length of half-cycles involved in these two variables. The total stability factors
for both Prey and Predator are negative in all cycles indicating dampening oscillation in the
behavior of the model. Note that total frequency and stability factors for Prey and Predator
converge in the long run and are equal to the imaginary and real part of the dominant
eigenvalue, respectively.

Periodicity (Frequency): The periodicity of Prey and Predator is driven by the major balancing
loop around the two variables. According to Table 2 and 3, in the half-cycles of Predator, the
frequency factor for the Predator-Prey Pathway in dominant, while in the half-cycles of Prey the
frequency factor for the Prey-Predator Pathway is dominant. As a result, the Predator-Prey
balancing Loop becomes the only source of oscillation.

Envelope Curve (Stability): The stability of the system is mainly driven by the balancing Prey
Starvation Loop. The stability factors for Predator indicates that Prey-Predator pathway is
dominant and the stability factors for Predator shows the significance of Prey starvation loop.

CONCLUSION

During the last decade, a number of techniques have been developed to detect dominant
structure in dynamic models. Several comparative studies conducted to contrast the outcome of
alternative techniques for model analysis have concluded that a significant overlap exists among
the outcomes of various approaches to model analysis. This paper explored some of the
similarities and differences between pathway participation metrics and eigenvalue elasticity
analysis to explain the convergence and divergence of outcomes of the two methods in
identifying dominant structure in dynamic models. It showed that the metrics used by PPM and
EEA to characterize the structure and behavior are closely related in linear systems in steady
states.

In analyzing the nonlinear systems, the eigenvalue approach relies on the piecewise linearization

of the nonlinear system. The challenge is to assure that the linearized system is sufficiently
accurate representation of the original nonlinear system under different conditions. The second
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case study shows that linearization of nonlinear systems that produce overshoot pattern of
behavior can result in complex eigenvalue. The interpretation of complex eigenvalues in a system
that does not oscillate is difficult.

Understanding the transient behavior presents another challenge in eigenvalue analysis approach
as discussed in the third case study. Does the sub-dominant eigenvalues appropriately
characterize the transition period? Does the analysis of sub-dominant eigenvalues correspond to
simulation outcomes? Should we consider transient behavior as something that may not be
driven by feedback structure? The pathway participation approach does not work with
eigenvalues, although the metrics used in this method come close to the dominant eigenvalues
and their elasticities in linear system in steady states. The total participation metrics that
characterize the behavior corresponds to the simulation outputs both in transition periods and
steady states.

Identifying dominant structure in oscillatory systems using PPM approach has so far been based
upon time slices of the behavior of the variable of interest. The dominant structure is identified
according to rates of contractions and expansions in variables. The method is similar to the
intuitive explanation of oscillation provided by Mass and Senge (1975). An alternative approach
in characterizing oscillations is based on frequencies and the envelope curves of observed cycles
in simulation output. The two new metrics that are developed for oscillatory systems help to
examine the characteristics of observed cycle in the simulation outputs. Pathway frequency
factors indicate the participation of a pathway in periodicity of the observed cycles in the
behavior of interest. On the other hand, pathway stability factor indicates the participation of a
pathway in the rate of divergence or convergence of the observed cycles. While not thoroughly
tested, it is expected that the dominant structure detected for the observed cycles using these new
measures converge with that EEA in that steady states.

One challenge for both PPM and EEA approaches is to precisely and clearly define the concept of
dominant structure and the set realistic expectations for what each method can offer. Is the
dominant structure the smallest subset of the structure the produces the same behavior? Or, the
partial structure around the system’s parameters that results in significant change in the behavior
is the dominant structure? Alternatively, one can define the dominant structure as a subset of
feedback loops and pathways that helps to explain the behavior of the dynamic systems. The
pathway participation approach to model analysis strives to construct correct and consistent
system-level stories about the observed behavior of a simulation and to interpret simulation
outputs based on the stock and flow and feedback structure that created the behavior.
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Appendix A:

This Appendix describes the relationships between pathway participation metrics and eigenvalue
elasticities. These relationships hold only for the dominant eigenvalue of linear systems and in
the steady states. These relationships may also hold for nonlinear systems around their
equilibrium values if linearization does not significantly change the characteristics of the system.
Two new measures for analyzing characteristics of observed cycles are formulated based on the
reinforcing and balancing periods in pathway participation metrics: The pathway frequency
factor that indicates the participation of a pathway in the periodicity of the observed cycles the

pathway stability factor which indicates the participation of a pathway in the rate of divergence
or convergence of cycles.

1. For linear systems, in steady-states, the pathway participation metrics for the pathway that
connect j-th state variable to i-th state variable is:

J— *
Pij = ajj 7’]‘/7’1'

where 7; and r;and i-th and j-th right eigenvector associated with dominant eigenvalue and &; is

an element of reduced form matrix.

Proof:
Consider the following linear system:

[1] X =AX

Where X, (n*1), is the vector of state variable, X , (n*1) is the vector of changes in the state
variable, and A (n*n) is the interaction matrix. Write the dimension,.

Given the following dynamic equation for the i-th state variable:

[3] X; = %:ai].x j

The PPM for the link that leaves state variable j and reaches state variable i, p;; , will be:
[4] Pij =05 X; [%;

In steady state, since by definition we have x; = Ar;and x; = 1r;, thus p; approaches

[5] pij = a;t; I7;
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where 7; and 7; are the j-th and i-th eigenvector associated with the dominant eigenvalue, 4,

respectively.

1L.1. For non-oscillatory systems, the value of p;; approaches a;r; /7; in steady states.
1.2. For oscillatory systems, p;; can be expressed by complex numbers whose real part is s; and
imaginary partis f;. Within a half-cycle, the duration in which the sign of p;; remains the same

is:
[6] a)f; =atan(-f; [s;)* w; | 7,

where w; is a half-cycle of the oscillation which in steady states is 7/i4 and iA is the imaginary

part of the dominant eigenvalue.

2. The sum of participation metrics coming to state variable i, p;;, called total pathway

participation metrics for state variable x; , Tp;, equals the dominant eigenvalue.

Proof:
(7] Tpi =2 p;
j
=Xa;*n/n
j
1
=—>aq.r.

The definition of right eigenvalue is >a;r; = A *r;, where Ais the (dominant) eigenvalue .
j

Therefore, the above equation can be rewritten as:

8] Tp=—(1*r)

7;

=1

2.1. For non-oscillatory systems, the sum of PPM, Tp;, is essentially the dominant eigenvalue in

steady states.

2.2. For oscillatory systems, the total pathway participation metrics can be expressed in complex
numbers whose real part and imaginary part are Ts; and Tf;, respectively. Within a half-cycle,
the duration in which the sign of Tp; remains the same is ® = atan(~Tf; /Ts;)* w; | =, which is
the same as atan(-iA/r1)/iA, where rAand i are the real part and imaginary part of the
dominant eigenvalue. If the duration is which Tp; is greater (less) than half of the half-cycle, the
variable is of interest show exploding (dampening) oscillation.
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3. The participation metric for the pathway that connect the j-th state variable to i-th state
variable, Pij 1 is:

[9] Pij =(1/ﬂ)*5ij/’(z’

Where 4 is the dominant eigenvalue, & is the elasticity of dominant eigenvalue, a;; is the

parameter that connects the j-th to the i-th state variable, and «; is the participation factor.

The Participation Factor, «;, for the i-th state variable shows the level of the participation of the

i-th state variable in the (dominant) eigenvalue. (See Eberlein, 1982)

Proof:
We already showed that
[51 pii =at; I;

Multiplying both denominator and numerator of the right side of the equation by f; and 4

gives:
[10] pij =it fil 7 fiA

where f; is the i-th element of the left eigenvalue associated with the dominant eigenvalue. The

definition of the elasticity of the (dominant) eigenvalue with respect to a;; is

[11] & =fl-rja,-]- /A

We also know that, y definition, the participation factor for the i-th state variable is:
121 x=nf

Substituting [11] and [12] in [10] yields:

131 py =4A%&; /&

4. For the i-th state variable, we have

(141  pjj ! pi =&l &, if pj and g are nonzero.

Poof:
Substituting [12] in the left side of [13] yields:

[15] (/1* ;i K )/(/1* & K ): ;i l &
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5. The sum of all pathway frequency factors for all pathway coming to the variable of interest, is
equal to the imaginary part of the dominant eigenvalue. Similarly, the sum of all pathway
stability factors for all pathways coming to the variable of interest is equal to the real part of the
dominant eigenvalue.

Proof:
Suppose @; is a half-cycle of the variable of interest, x; , that starts and ends with x; =0, the

pathway frequency factor for the pathway that connects j-th to i-th state variable is defined by:
(161 fy=(z/w)* By |Th;

where Tp; is total participation metric and p,; participation metrics for the pathway that

connects j-th to j-th state variable in the beginning of the cycle. The total frequency factor is:

71 T=%f
=X(7/®,)* p; [Tp;
=(n]w;)

which in steady state is the imaginary part of the dominant eigenvalue.

On the other hand, the stability factor for the pathway that connects j-th to i-th state variable is:
[18] Si]' = fl] /tan(— ¥ a)5 /a)l)

The above equation can be rewritten as:

[19] (()5 Zﬂtan(—fij/sij )* a)i /71'

A comparison between equations [19] and [6] indicates that the stability factor is the same as the
real part of the pathway participation metrics when it is expressed in complex numbers.
Therefore, the total pathway stability factor is equal to the real part of the total participation

metrics. Consequently, the total pathway stability factor in steady states approaches the real part
of the dominant eigenvalue.
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