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Abstract 

A coupled oscillator approach to game theory has been designed to resolve two of 
its major problems: The arbitrariness of valuing cooperation greater than competition in 
determining social welfare; and the lack of interdependent uncertainty. The bistable 
approach means that agents in relationships are more likely to be found in reactive states 
that correspond to their observation-action or energy-time levels. In our view, games are 
initialized, evolved to a state that solves a target problem, and then measured, 
consequently creating a measurement problem. In past research, we have addressed the 
measurement problem, leading to the development of metrics that have been applied to 
organizations in the field (we briefly illustrate an application to military Medical 
Department Research Centers). In this paper, we focus on modeling control in bistable 
close and market relationships to produce evolvable systems. One of our goals is to 
produce a model that can be used to study the information flows associated with 
congestion. We speculate that as congestion increases, it can be characterized by standard 
deviations of decreasing frequency and increasing time.  

 
Introduction.  
 Two significant problems exist with traditional game theory, also known as 
methodological individualism (Nowak & Sigmund, 2004): The arbitrary assignment of 
relatively greater preference values for cooperation to assure that cooperation has 
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superior value in comparison to competition in promoting social welfare; and the lack of 
interdependent uncertainties in relationships (for a more complete list of problems with 
game theory, see Lawless & Grayson, 2004). Quantum Game Theory (QGT; e.g., Arfi, 
2005) overcomes the latter but not the former problem. In this paper, by introducing 
bistable relationships placed within a reactive social circuit, building on past research 
(Lawless et al., 2006; Lawless & Whitton, 2007), we begin to develop a means to resolve 
both problems based on a simple model of coupled exchanges between partners engaged 
in an evolving interaction.  
 
Social circuit between partners A-B.  

In this model of a game, we assume that relationships have complementary aims 
(Winch, 1958); e.g., partner A wants sex more than B but B wants the relationship more 
than A; or in the marketplace, partner A wants the market power afforded by controlling 
B’s market leading products, but B wants the technological skills provided by A (e.g., 
SBC’s successful alliance in 2001 with Yahoo to sign up SBC’s—renamed AT&T—
customers for new broadband services, now changing with Yahoo’s loss of market 
dominance to Google). The result is a set of bistable agents operating within a bistable 
relationship as they cycle between higher and lower energy, E, states. As one of the 
partners gains control, its energy consumption is reduced, while the one losing control 
increases its energy consumption, producing a bistability in each agent and also a bistable 
relationship. If in addition, the agents are reactive (e.g., alternatively acting like an 
information capacitor and inductor inside of a series or parallel circuit), a delicate dance 
is generated between the two partners that can be modeled with a reactive circuit 
dynamically moving between resonance and dampening. In a series circuit, resonance 
represents the maximum positive action by one partner in response to the other's 
minimum driving stimulus, and critical dampening (or anti-resonance in a parallel circuit) 
inverts the action to become the maximum resistance in response to the other's minimum 
input stimulus. Each agent reacting alone to a stimulus from the other agent is unstable, 
but collectively stable and can be modeled as coupled harmonic oscillators. The 
combination leads to a relationship with evolving dual controls: As partner A moves 
away from the relationship, partner B offers more opportunities to draw A back into the 
circuit, but as A exploits the situation, B begins to shut A’s opportunities off. 
 A circuit consists of at least two coupled harmonic oscillators; an organization 
links circuits into a lattice structure to accomplish a specific function or set of functions. 
We set aside the circuit, lattice, and construction of bistable agents for future research. 
Instead, in this paper, with reactance borrowed from Brehm’s (1966) theory of reactance, 
we model the concept of controlling opportunities between agents A and B in a 
relationship using May’s (1973) system approach and oscillatory responses. Reactance is 
the overvalued preference for a target action, possibly the best-fitted action for survival, 
in reaction to a perceived threat precluding a desired action, motivating an agent to regain 
control by countering the threat. We propose that reactance can by used to model two 
reactive agents or organizations seeking control of a mutual relationship.  
 
Control opportunities between A and B: A system approach. 
 Let N be the total control opportunities between A and B, where N* is equilibrium 
and x is a deviation from equilibrium due to a perturbation to N. Then,  
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dN/dt = dN*/dt + dx/dt = dx/dt = F(N(t)).   (1) 
Assume that the rate of change in a perturbation is related to x(t) as 

dx/dt = a x(t) = F(N(t)),    (2) 
then from Equation (2), a solution for x is:  

x(t) = x0 exp (a t),     (3) 
with the rate of change, a, found near equilibrium from  

a = ∂F/∂N.      (4) 
Putting Equation (3) back into (2) gives 

dx/dt = a x0 exp (a t) = a x(t).   (5) 
In matrix form for multi-organizations or multiple groups, m, Equation (5) becomes 

xi(t) = ∑m
j=1 C ij exp (λj t)    (6) 

Taking the derivative of Equation (6) and rearranging to (A - λ  I) X(t) =0 gives 
det | A - λ I | = 0.     (7) 

Example:  
Let m = 2 (agents A and B), a the change rate of N1 and b that of N2 (e.g., a 

negative sign in front of b means that N2 is decaying), and let α and β represent the 
competition between N1 and N2 for control (e.g., when α is preceded by a negative sign, 
then N2 is taking control from N1) then  

F1(N1,N2) = N1 (a – α N2),  
F2(N1,N2) = N2 (-b + β N1).      (8) 

Setting F1 = F2 = 0 gives  
N1* = b/β, N2* = a/α.     (9) 

∂F1/∂N1 = a – α N2 = a – α a/α = 0 = a11,  
∂F1/∂N2 = – α N1 = – α b/β = a12, 
∂F2/∂N1 = βN2 = β a/α = a21, 
∂F2/∂N2 = -b + β N1 = -b + β b/β = 0 = a22.   (10) 
 

 -λ – α b/β   
det   = 0 (11) 

 β a/α -λ   
 
The eigenvector equation, λ2 + ab = 0, gives the purely imaginary eigenvalues + iω =   
(-1)1/2(ab)1/2 = i(k/mr)

1/2, representing a classical neutral system oscillating with a period 
of 2π/ω (and virtual spring constant, k, with reduced inertia mr). See Figure 1. 
Superpositions result from the linear combination of solutions, and a Lyaponuv function 
can be built so this neighborhood analysis describes its global character (i.e., λ in 
Equation (6)). In this system, if λ = ϕ + iω and with ϕ real and negative, perturbations 
die out; for ϕ real and positive, perturbations grow.  
 
Figure 1 (produced with Stella).  
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Only the real part of λ has consequences in the real world; however, the 
imaginary part affects oscillations, and can represent beliefs, justifications, preferences 
and other non-real, but reactive factors, which produce the oscillations. The character of 
oscillations have practical consequences. Compared to competitive decision rules, we 
have found in field research that neutral oscillations are more likely to arise under 
cooperative or consensus decision rules, producing by definition the lowest levels of 
discourse resistance but also less practical results from an increase in inertia to 
information or worldview change (Lawless & Whitton, 2007). As we have done in 
previous research (Lawless et al., 2006), comparing two decision systems is 
straightforward: The greater the inertia to system evolution, resistance to information 
change, or the more cooperative the organization, then the slower the oscillations that 
result. In contrast, the faster the oscillations, the greater the conflict and the more 
resources expended, but, counterintuitively, the fewer the reactive agents:  

ω1/ω2 = (mr2/mr1)
1/2    (12) 

An important corollary to (12) occurs in the measurement of human or bistable 
organizations and individuals: Cooperative decision making participants are much more 
rational in their worldview perspectives, viz., “normatively consistent” (Shafir & 
LeBoeuf, 2002). Thus, those operating under cooperative decision rules are not obliged to 
change their beliefs, only to engage them to the extent that protects their turf in the final 
decision product. The end result is a stable set of beliefs that do not have to compete in 
the market place of ideas (Holmes, 1919). Conversely, competitive decision makers are 
not consistent for several key reasons: The conflictual or oppositional nature of the 
decision drivers; the drivers tend to be more expert in the knowledge of the matter being 
decided (e.g., prosecutor and defense attorneys); and the matter is often decided by those 
who are more or less neutral to the subject matter but not to the outcome, a critical 
requirement that we have argued sets the stage for human subjects to become entangled 
in the decision-making process (Lawless & Whitton, 2007; Lawless et al., 2006).  
 When the competition between agents A and B for control is stable, plotting the 
phase space of N1 versus N2 produces a limit cycle. Competition occurs when the cross-
diagonal terms are less than one (Gauss-Lotka-Volterra criterion). The limit cycle 
becomes a circle when competition goes to zero (i.e., meaning that the actions of A and B 
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are mutually independent). As competition increases, their interactions become correlated 
and the limit cycle becomes elongated. As the cross-diagonal terms approach one, 
fluctuations caused by their interactions become severe.  
 
Resource exploitation.  
 Equation (1) is generalized below in (13) by replacing a with ri as the integral 
over the resource spectrum and its utilization by agents or organizations (14), and by 
replacing the competition coefficients with αij as the convolution integral of the 
utilization functions between the i-j competitors (15).  

dNi(t)/dt = Ni(t) [ri - ∑
m

j=1 αij Nj(t)]   (13) 
ri = ∫ R(x) fi(x) dx    (14) 
αij = ∫ fi(x) fj(x) dx    (15) 

Q(t) = ∫ [R(x) - ∑i fi(x) Ni(t)]
2 dx   (16) 

In Equation (16), Q measures the squared difference between the available and 
consumed resources across a resource continuum. It indicates that as Q is minimized, the 
resource spectrum R(x) is synthesized from the addition of m Fourier components, fi(x), 
and Fourier coefficients, Ni. The utilization functions include time utilization, resource 
utilization for the agents-organizations to survive or to overcome barriers, and resource 
renewal. In addition, the minimum eigenvalue solution to Equation (13) should be larger 
than the resource variation, σ2, existing in the available resource spectrum.  

λmin  > σ2/<r>     (17) 
At equilibrium, dQ/dt ≤ 0 is minimum, implying from Equations (13) to (17) that the best 
fit has occurred to the available resource spectrum. In general, the greater the number of 
m organizations exploiting a resource continuum, the smaller will be each eigenvalue, the 
larger the total eigenvalue, and the more stable the system. 
 
Application: Military Medical Department Research Centers (MDRC’s) 
 Guided by our theoretical results, we have been studying organizations in the 
field, including a system of seven military MDRC’s. One of two primary goals that we 
have established with them is to help their Centers to become more productive; e.g., 
produce more research with greater impact; improve patient care; and reduce the costs of 
care.  However, at the same time, MDRC’s want to become transformative; e.g., 
transform medical treatments in the field; transform physician education in research; and 
transform publication impacts. These two goals are not just different, but contradictory 
(Smith & Tushman, 2005). Attempting to satisfy these two goals has led us to propose 
Figure 1 as an interim solution designed to help the Centers be more productive today, 
but also to evolve into more transformative organizations in the future.  
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Fig. 1. Preliminary proposal to a system of seven military Medical Department Research 
Centers. Based on the feedback from a new system of electronic metrics currently being 
planned, administrators would have responsibility to enact the Mission as effectively and 
efficiently as possible; e.g., Lean Six Sigma plans. At the same time, a group internal to 
each MDRC and a national group of elite professionals from all MDRC units would 
gather regularly to transform the Mission, its goals, and its procedures and rules with the 
same feedback. As these two systems compete in a bistable relationship to control the 
Mission, the two systems operate in tension, producing a natural evolution of the system.  
 
Conclusion 
 In this paper, we have introduced coupled harmonic oscillators as the basis of 
relationships between members of an organization. The advantage of using them is the 
straightforward mathematics that accompanies this model. We have also illustrated how 
our model is being applied in the field. While we have restricted our comments to 
coupled harmonic oscillators, which are likely to not demonstrate chaos but instead linear 
superposition in line with our quantum approach, non-linear oscillators could be used as 
an alternative to study chaos (e.g., Van der pol oscillators).  
 In the new approach we have presented in this paper to modeling social 
relationships among humans, organizations, and agent systems, social welfare improves 
when the resources available to a society are utilized effectively to solve the problems 
that it confronts. Social welfare can also improve when society finds the most efficient 
means of fully exploiting its resources to fine-tune solutions to problems it has already 
solved (i.e., the fewest number of steps to solve a particular problem; von Bayer, 2004). 
In both cases, the combination of competition between groups to find the best solutions to 
the problems that they face and cooperating to reach compromise between opposition 
drivers has been shown to have superior value to social welfare. 
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