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ABSTRACT. The paper deals with the system dynamics modeling of a
stochastic behavior. The starting point is replacing the traditional sys-
tem dynamics model with a discrete-time stochastic dynamic model in
which state variables are measured indirectly, through noisy and incom-
plete measurements. The state variables and possible unknown param-
eters in such a model can be systematically estimated from the available
measurements using the Bayesian paradigm. Closed-form solutions exist
only for a few special cases, such as a linear normal model with known
parameters, otherwise numerical approximations are required. The paper
suggests a particle filter algorithm as a particularly appealing approxima-
tion that preserves much of the intuitive workings of system dynamics. A
practical example illustrates both the stochastic modeling process and the
approximate Bayesian analysis.
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Introduction

The practical appeal of system dynamics modeling stems to a large extent
from the conceptual simplicity of its underlying mathematics. It is by no
means accidental that most system dynamics publications focus on con-
struction of a particular model rather than technical issues. This is in stark
contrast to theoretical publications in statistics, machine learning, control
or signal processing that predominantly aim at advancing the technical
knowledge while practical models, if considered at all, serve typically as
motivational or illustrative ones.

It is a matter of continued discussion (see, e.g., Forrester, 1985; Graham,
2002) whether and how system dynamics theory and practice can bene-
fit from the technical progress made by the other communities, without
losing its traditional focus on practical modeling of complex, real-life sys-
tems.

One of the issues that has long attracted the attention of modelers of all
provenances is the treatment of a stochastic behavior of systems. In fact,
there are many practical problems where the stochastic behavior cannot
be neglected and needs to be carefully modeled.

One class of such problems appear in connection with management of fi-
nancial and operational risks. The risk management is traditionally based on
quantifying a ‘value at risk’, defined as a proper quantile of the underly-
ing probability distribution of the target variable. Simulation of any single
“representative” behavior is not sufficient for calculation of the value at
risk; one has to consider the entire collection of possible behaviors to cal-
culate the quantile.

Another class of problems is related to modeling of the dynamic performance
of value networks in which individual organizations dynamically recombine
in order to deliver jointly a tangible value to the end customer. The goods
and services produced by one node are consumed by other nodes. Each of
the nodes adds value along the network. The uncertainty as to the value
added by individual nodes propagates through the network in a way that
is difficult to grasp intuitively. Once again, the set of all possible behaviors
needs to be considered if one is to understand the range within which the
network performance evolves.

The paper demonstrates how the system dynamics paradigm can be gen-
eralized so as to cope with the stochastic behavior. First, the standard sys-
tem dynamics model is extended, step by step, to a stochastic state-space
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model. Then, a general Bayesian solution to the problem of estimating the
states (and possible unknown parameters) in the model is presented. Its
sequential Monte Carlo approximation, known as a weighted bootstrap or
particle filter, is introduced and demonstrated on a simplified model of a
service company growth. In addition, a Bayesian solution to the problem
of testing multiple hypotheses about the model structure is outlined. Fi-
nally, the relationship between Bayesian inference and system dynamics
is discussed and the benefits of the Bayesian viewpoint are summarized.

Modeling of Stochastic Behavior

The process of generalizing the system dynamics model can be split into
several phases.

System Dynamics Model

It is practical to rewrite the traditional system dynamics model (Sterman,
2000) in the following compact form

dxt
Tl f(xt),
ye = g(xt),

where x; stands for a vector of state (“stock”) variables and y; denotes a
vector of measurements, both at time ¢t. The introduction of measurements
yt allows for modeling of state variables that cannot be observed directly
(as is, e.g., the case of “soft” variables such as team morale or individual
experience level). The vector functions f(-) and g(-) are considered known
at this stage. Note that the bulk of the system dynamics modeling work is
hidden here in specification of the flow vector f(-).

Introduction of Exogenous Input

While the system dynamics methodology typically prefers endogenous
explanations of the observed behavior, there are cases where explicit con-
sideration of exogenous inputs is beneficial or even necessary. This is, e.g.,
the case of a value network modeling where the performance of individual



nodes is combined together via exogenous inputs. Denoting the inputs as
u;, we have

% = f(xt,ut), 1)
ye = glxy,ur). 2)

Treatment of Unknown Parameters

As a rule, the functions f(-) and g(-) are not known precisely. The un-
certainty about their exact forms can be expressed through a vector of un-
known parameters 0

dx
d_tt — f(xf/ Ug, 9)/

ve = g(xt,u0).

Since in Bayesian analysis the model parameters enter the calculations in
the same way as the model states, we prefer treating the unknown parame-
ters as additional state variables augmenting the original state vector. With
some abuse of notation, from now on we use the symbol x; for a vector
combining the model states and model parameters. With this convention,
the model (1)-(2) applies again. An extra advantage of this approach is that
through f(-) we can explicitly model the changes of unknown parameters
in time.

Discretization of Continuous-Time Dynamics

The differential equation can be discretized using the Taylor expansion
(Heermann, 1990). Under suitable assumptions we can expand the state
variable x; in a Taylor series

n—11,i

h .
xt+h = Xt + Z Z—' xi(l) + O(hi’l)
i=1
For n = 2, we have
d
Xeop =Xt +h > O(I?).

dt
After dividing both sides by h and substituting for dx;/dt from (1), we get

WY (xn — xt) = fxp,up) +O(h).
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Assuming that the variables x;, y; are sampled at regular time instants
ty,to, ... with a constant sampling period

Ts = tge1 — trs k=1,2,...
and introducing the simplified notation

A

X = Xy, k=1,2,...
Yk = Yy, k=1,2,...
we obtain from (1)—(2) the discretized model
T (e =) = f(xm), 3)

ye = &(xk uk). 4)

Note that Eq. (3) can be rewritten as Euler integration

X1 = Xk + Ts f (X, ug).

The form, although not the most compact one, preserves the meaning of
f(-) as (a vector of) flows adding to or subtracting from the stock values
at the previous time instant.

Stochastic Behavior

In a discrete-time model, the stochastic behavior can be modeled easily
through introduction of vectors of random variables wy and vy into the
functions f(-) and g(-), respectively. As a result, we obtain

Ts 1("Ck—O—l - xk) = f(xk/ Uk, wk)/ 5)

Ve = 8(%k Uk, k). (6)
The variables {wy} and {v}} are assumed mutually independent so that

both the state x;, and the measurement y; are statistically dependent on
the state x; and the input u; only.

Probabilistic Formulation

The equations (5)—(6) are well suited for simulation of sample trajectories
of the states x; and the measurements vy, but they do not provide a com-
pact description of the overall uncertainty. For the latter, we need to in-
troduce probability density functions of x;,1 and y; (assuming both are
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Figure 1: A graphical representation of the structure of dependence among
the model variables. The left-hand diagram corresponds to a completely
endogenous explanation of the observed behavior, the right-hand diagram
introduces exogenous variables.

continuous) conditional on x; and uy, i.e.,

P (g1 Xk, ige), 7)
P (Yi|xx, ) (8)

The formulation of a discrete-time state-space model in terms of condi-
tional densities stresses the dependence structure of the model. This can
be visualized graphically as shown in Fig. 1.

Bayesian Inference

With measurements of y; and u; available for j = 1,..., k, the uncertainty
of the state vector x; and x;, 1 can be expressed through their respective
densities conditional on the sequences of measurements y* = (y1,...,y)
and uf = (uy,...,ug).

Recursive Formulae

The state estimation process is encapsulated in the sequential updating

measurement time
update update

p(aly Ll = plaly dF) = plaa v e 9)

for k = 1,2,... The recursion starts at k = 1 from the prior density
p(aaly’, u®) = p(x1).



We present here the measurement and time update steps without proofs,
which can be found, e.g., in Peterka (1981, Section 5).

MEASUREMENT UPDATE. Assuming that the generator of the input uy
does not use any other information about the state x; than information
contained in the past measurements y*, u* (cf. the natural conditions of
control in Peterka, 1981), the posterior density p(x;|y*, u*) is related to the
prior density p(xi|y*~!, u¥~1) through the Bayes rule

p (x| y¥, uF) o p(yelxe, we) p(xgy* L, uf 1. (10)

The symbol o stands here for proportionality, i.e., equality up to a normal-
izing factor.

TIME UPDATE. The predictive density p(xiy1|y", u¥) follows from the
posterior density p(x¢|y*, u*) by elementary operations of probability cal-
culus, which result in

Py’ u*) = /P(xkﬂlxk,uk)lﬂ(kak/ ") dxg. (11)

Kalman Filter

Closed-form solutions to the recursion (10)—(11) exist only for a few spe-
cial cases. One case of particular importance to the modeling theory and
practice is Kalman filter.

MODEL. Assume that the data are modeled by a linear Gaussian state-
space model
Xep1 = A X+ Brug +wy,
Vi = Cixp+ Dyuy+ e,

with matrices Ay, By, Ck, Dy of appropriate dimensions and normally dis-
tributed random variables

wr ~ N(0,Qx),
e ~~ N(O,Rk),



fork=1,2,...

Recursive estimation of the state vector in the above model is solved by
the Kalman filter (Jazwinski, 1970; Anderson and Moore, 1979; Peterka,
1981).

DATA UPDATE. Assuming that the prior density p(xi|y*~!, u*~1) is nor-
mal N(£x—_1, P—1), the posterior density p(x¢|yk, u*) is also normal
N(%kjk, Pyjg)- Its mean vector and covariance matrix are updated according

to the formulae

B = L1 T Ke (W — Jie—1),
Per = Pepe—1 — Pee—1 G St Cre Prei—1,

with the help of the auxiliary statistics

Sk = CkPyk—1Cr+ Ry,
Ky = Pe1GiS¢
k=1 = Ck Xgjp—1 + Dy iy,

The recursion starts at k = 1 from a normal prior density N(£;, Py|o) with
the mean £,y and covariance Py .

TIME UPDATE. Assuming that the posterior density p(x|y*, u¥) is nor-
mal N (%, Per), the predictive density p(xy i1 ¥, u¥) is also normal
N (%) 1)k Prsajx)- Its mean vector and covariance matrix are updated ac-
cording to the formulae

Bpp1e = Ak Xgp + B g,
Pk+1‘k - Qk"‘Akpk“{A;(.

The structure of a linear Gaussian model with a single state, single input
and single measurement is outlined in Fig. 2. Note that in higher dimen-
sions the graphical notation can quickly become overwhelming because of
the “Everything’s related to everything else” generality of the model. While
Kalman filtering is critically dependent on the matrix calculus, system dy-
namics tends to proceed the other way around, by carefully selecting first
which of many possible dependencies should be included in the model.
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Figure 2: A system dynamics representation of linear Gaussian dynamic
model with a single state, single input and single measurement.

Historical Remarks

While the use of probability for modeling of a stochastic behavior appears
as a rather natural option, its application to quantification of the mod-
eler’s uncertainty (as to the most plausible model for a given purpose
and evidence at hand) has met with mixed reactions. In fact, the concep-
tual and philosophical disputes between the proponents of frequentist and
Bayesian schools of statistical thought occupied much of the last century.

The Bayesian approach uses probabilistic description symmetrically for
both quantities we observe and quantities about which we wish to learn.
Whether one proceeds from a model to a sample or from a sample to a
model, the same (product and sum) rules of probability calculus apply.
This leads to the fundamental principle of Bayesian inference: To form a
judgment about the likely truth or falsity of any proposition, the correct
procedure is to calculate the probability that the proposition is true condi-
tional on all the evidence at hand (Jaynes, 2003, Chapter 4).

The name ‘Bayesian” comes from the frequent use of Bayes’ theorem in
the inference process. What we know today as Bayes’ theorem appeared
first, in a very special context, in Bayes (1763). It was, however, Laplace
(1774) who saw the result in generality and showed how to use it in real
problems of hypothesis testing.

Much later, Keynes (1921), Jeffreys (1939) and in particular Cox (1946,
1961) demonstrated that probability theory is in fact the only theory of
plausible reasoning under uncertainty that abides by logical consistency.
Cox did so through a functional derivation of probability theory as the
unique extension of Boolean algebra where probability represented a sub-



jective degree of plausibility.

Numerical Approximation

Since most system dynamics models include nonlinear feedback loops,
closed-form solutions to the Bayesian estimation problem are rare. A suit-
able numerical approximation is required otherwise.

Monte Carlo Simulation

A particular appealing option for our purpose is Monte Carlo approxima-
tion of Bayesian inference, which is based upon essential duality between
asample {x(),i = 1,..., M} and the density p(x) from which the sample
is generated (Smith and Gelfand, 1992): the density generates a sample,
and from a sample we can approximately recreate the density.

In terms of samples, the Bayesian recursion (12) translates into sequential
updating of a sample set

measurement time
update update

{51} {xﬁi} P (12)

fork =1,2,.... The recursion starts at k = 1 from the prior sample {x%}

The use of Monte Carlo simulation in Bayesian inference has been studied
in various contexts since the 1940s. But, it was the application of sampling-
importance resampling (Rubin, 1988) and weighted bootstrap (Smith and
Gelfand, 1992) to state estimation of dynamic systems (Gordon et al., 1993)
that gave birth to a whole new family of recursive nonlinear filtering al-
gorithms, known as sequential Monte Carlo (Liu and Chen, 1998) or particle
filtering (Doucet et al., 2001).

The approximate Bayesian recursion proceeds as follows.
Particle Filter Algorithm
1. Initialization: Draw M samples from the prior distribution
x% ~p(x),i=1,...,.M
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and set k := 1.

2. Data Update: Collect the data uy, y. If the output y; is measured at
time k, then evaluate the importance weights

pyelxl) )
= k-1 Ji=1,..., M (13)
Z 1p(yk|xk|k 17 k)

and draw M samples from a kernel approximation to the posterior
distribution

() —
k|k Zn] Y1) i=1,..., M

If the output vy is not measured, set

(i) _

=L i=1 M,

* klk—17

3. Time Update: Draw M samples from a mixture approximation to the
predictive distribution

E

k+1|k Z xk+1|x;£]|,){, ug), i=1,..., M.

4. Iteration: Increment k := k + 1 and iterate from data update.

The function K(x) stands for a suitable kernel function (Silverman, 1986;
Hastie et al., 2001), here normalized so as to integrate to one. The use of
a kernel density estimate in the particle filter — known as kernel smoothing
(Kulhavy and Ivanova, 1999), reqularized particle filter (Musso et al., 2001)
or smooth bootstrap (Stavropoulos and Titterington, 2001) — prevents the
degeneracy of a sample set.

lllustrative Example

It was shown that coupling of as few as two nonlinear feedback loops
can yield a rather complex dynamic behavior. In particular, Forrester
(1968, Section 2.5) considered sales growth and delivery delay modeled
through self-reinforcing and balancing feedback loops, respectively, and
interlinked through the actual orders made. We modify the original exam-
ple as follows (cf. Figure 3).
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NONLINEAR DYNAMICS. Consider a service company whose economic
results depend on the performance of both its sales and service staff.

The stocks of Sales Capacity and Service Capacity are measured in
multiples of full-time equivalents (FTE) of an average sales or service
person. This is to relate the labor capacity to the total performance
of a team rather than the number of physical persons. Hence, hiring
an additional person can increase the stock by more or less than one,
depending on the actual person’s productivity.

The Cost of Sales and Cost of Service are defined by the cost of an av-
erage sales and service person, respectively. Combined with the pre-
vious point, the definition captures the fact that the team of highly
knowledgeable and experienced persons cost more than an equally
large but less productive team.

The sales performance, Sales Generation Rate, is expressed in man-
days of service work that one unit of Sales Capacity is capable to
generate per unit of time.

The actual Signing Rate is bounded by the limited Service Demand. As
the sales capacity increases, the actual sales growth slows down so
that it never exceeds the demand (see the upper left plot in Fig. 4).

The Revenue generated through sales is partially used to cover the
Labor Cost. The available funding is distributed among Sales Capacity
and Service Capacity. The actual split between the two, expressed
through Sales Cost Ratio, is governed by a company policy.

The Sales Capacity and Service Capacity are adjusted dynamically to-
wards the optimum capacities through negative feedback loops.

The service Delivery Rate is determined by the available Service Ca-
pacity and the average Workload per one unit of Service Capacity.

The Service Backlog is built up with Signing Rate and depleted with
Delivery Rate.

The ratio of Service Backlog and Delivery Rate yields Delivery Delay.

The Perceived Delay as recognized by the client follows dynamically,
through a first-order filter, the Delivery Delay.

As the Perceived Delay increases, the market demand drops. The Rel-
ative Drop in Demand is a nonlinear function of the Perceived Delay
(see the upper right plot in Fig. 4).
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Figure 3: The structure of a service company dynamic performance model.
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e In addition to the limited Service Demand and the nonlinear Relative
Drop in Demand, the Signing Rate is affected by the Service Specification
Error. This accounts for the uncertainty as to the actual service work
that the service company commits to.

Figure 5 shows the prediction of the state variables for one particular com-
bination of the model parameters. The sampling period is 7z = 1 week.
The length of simulation is 100 weeks. The oscillatory behavior results
from the interplay between the nonlinear feedbacks and dynamic delays.

STOCHASTIC BEHAVIOR. Since most variables in the model are positive
by definition, we model the sources of random fluctuations via log-normal
distribution LN(y, 02) with the density

1
zZ0V 27T

1
p(zin o) = eXP(—@(lnz - 1?).

In particular:

e Service Demand is modeled as log-normal with y = In Average De-
mand and o = Service Demand Fluctuation.

e Service Specification Error is modeled as log-normal with = 0 and
appropriate standard deviation o.

e Both Sales Capacity and Service Capacity are modeled in terms of log-
arithm of the state variable ¢;; = Inx;; (with index j pointing at the
appropriate entries of the state vector) as

Cikr1—Cik & — Gk 2
T R +ejk gk~ N(O,07)

where C;.‘k =In x;‘k is logarithm of a target value of the state vari-

able and 7; stands for the adjustment time constant. After taking the
exponential function of both sides, we obtain the state equation in a
multiplicative form, including multiplicative log-normal error

Ts

X; = Xj xj*’k )
PR ik

I

Siks Sjk ~ LN(0, T07). (14)

Figure 6 shows the prediction of the state variables for the same combi-
nation of the model parameters as in Figure 5, except for a multiplicative

14



<
o -
[¢0)
& T
n G
o | |
3 ® g ©
£ o
g £
b7 ©
£ 9 S o]
(@) o
| (3]
2 g <
: 89 g 3
g 4
N
O -
T T T T T T © T T T T T T
0 100 200 300 400 500 0 2 4 6 8 10
Potential Sales Perceived Delivery Delay
o
ol S
i
c c
2 S
g g v
z z -
> 37 =
‘@ '
S S <2
a 8 -
= 2
37 g n |
Qo o O
< <)
a o
o
od - _ > |
T T T T T © T T T T
090 095 100 105 1.10 0.5 1.0 1.5 2.0
Service Capacity Error Measurement Error
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log-normal error (o = 0.025) affecting Service Capacity through Eq. (14)
(see the lower left plot in Fig. 4). The shades of gray indicate the sample
quantiles 0%, 5%, 10%, ..., 95%, 100%; the black line marks the sample
median. The particle filter uses 1,000 samples.

Notice how the relatively small error in the Service Capacity produces sig-
nificant uncertainty in all state variables (and, of course, all dependent
variables, incl. Revenue).

BAYESIAN INFERENCE. Finally, let us assume that measurements of Sales
Capacity, Service Capacity and Service Backlog are available and modeled
via multiplicative log-normal errors

Yik = Xik i Ojx ~ LN(0,07) (15)

with o; = 0.1 (cf. Fig. 3 and the lower right plot in 4), for all j pointing at the
corresponding entries of x and y vectors. The simulation of measurements
proceeds in two steps — first, the state variables are simulated using the
same model as considered for estimation, then the simulated state values
are perturbed through Eq. (15).

The importance weights (13) in the particle filter follow from the product
of log-normal densities
1

1 B 2
TT; o I:[ Vix T exp(—ﬁ(lny]-,k —In xj,k\k—l) )

The combined estimation (until ¢ = 80 weeks) and prediction (starting
from t = 81 weeks) of the state variables is shown in Fig. 7.

The Bayesian analysis of the illustrative model has been implemented in
the R programming language (a full code is available from the author upon
request).

Model Comparison

In the preceding sections, we dealt with the problem of estimating state
(and parameter) values within a single model with preassigned structure.
We show now how Bayesian inference can be extended to the case of mul-
tiple model structures. Consistently with the Bayesian paradigm, we mea-
sure the plausibility of a model structure, labeled by a discrete index /, by
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the probability of I conditional on the data sequences yN and uN. We as-
sume that the observed data y; and uy are common to all model structures,
whereas the state vectors xj ; can vary with the model structure [.

Assuming further that the generator of the input u; does not use any other
information about the model structure I and the state x; ; than information

contained in the past measurements y, u* (cf. again the natural conditions
of control in Peterka, 1981), the posterior density p(I|yN, u!N) is related to
the prior density p(!) through the Bayes rule

N
pUly™, uM) o< p() [T p(yily™", v, 1) (16)
k=1
where the predictive density is defined as

p(yely* 15 1) = /p(yk|xk,l/ukrl)p(xk,lh/k1ruk1/l)dxk,l- (17)

The calculation of the predictive probabilities p(y,|y*~!,u¥,1) for given
data y*, u* can be approximated using Monte Carlo integration

_ 1M ;
plyely* Ll D~ ) Pyl i 1) (18)
i=1

with M samples drawn from the posterior density

(1) (M)

k—1 k-1
Xpfreeor Xy ~p(xglyut )

using the particle filter algorithm described earlier.

Careful analysis of the formula (17) reveals that Bayesian inference has an
inherent tendency to favor — among models of similar predictive power —
those that are more parsimonious or “simpler” in terms of the dimension
of a state (and parameter) space. This behavior, often referred to as Oc-
cam’s razor, is brilliantly elucidated in Jaynes (2003, Chapter 20), see also
MacKay (2003, Chapter 28). The “default” behavior of Bayesian model
comparison can be easily overridden by assigning higher prior probabil-
ity to a more complex model if prior information indicates that such model
is more plausible for a given purpose.
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System Dynamics vs. Bayesian Inference

System dynamics and Bayesian inference have much to offer to each other.
On the one hand, system dynamics can equip Bayesian modeling with
a practical methodology for converting prior information into a dynamic
model structure. The reach of system dynamics is determined by its dis-
tinct features:

o All stocks, flows and parameters in a model are required to be inter-
pretable in terms of a real system.

e A particular problem behavior is modeled rather than the underlying
system.

e Data is aggregated, for a purpose; the microscopic behavior is of no or
little interest.

¢ Any information that is considered relevant to the modeling problem
at hand can in principle be incorporated (including process, busi-
ness, equipment, and human factor information).

o A closed-loop system behavior, subject to implemented or contem-
plated policies, is modeled rather than an open-loop, ‘to be con-
trolled” system.

The attention that system dynamics pays to careful modeling of a struc-
ture generating the problem behavior distinguishes it from the empiri-
cal (or black-box) approaches based on statistical extrapolation from data.
The focus that system dynamics puts on modeling of a particular behav-
ior rather than the system itself makes it different from the theoretical (or
mechanistic or first-principle or white-box) approaches. Being positioned
between the two extremes, system dynamics has much in common with
phenomenological modeling in natural and social sciences (Turchin, 2003)
and grey-box modeling in engineering sciences (Bohlin, 2006).

In problems that match the above characteristics, system dynamics offers
effective means for constructing highly informative priors by interrelating
individual pieces of evidence. This is no small thing, compared to the gen-
eral advice to “make use of all available information” that the practitioners
typically get from the Bayesian statistics textbooks.

On the other hand, there are several ways how system dynamics can ben-
efit from Bayesian inference. First, the Bayesian framework helps clarify
the roles and relationships of individual ingredients of dynamic modeling.
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Let us mention only two points here.

e By allowing for a random behavior in both state and measurement
equations, one can study models of different complexity and level
of detail within a single framework. One can consider even highly
simplified models, capturing only the dominant dynamics of the tar-
get behavior. Obviously, such models make a poor “pointwise” fit
to the actual behavior. This has stimulated in the past much discus-
sion as to the methodological differences between system dynamics
and statistics (or econometrics). Embedding system dynamics mod-
els within a broader class of stochastic models reconciles the apparent
conflict. Simpler models naturally tend to exhibit more uncertainty
in their states and/or measurements, but as long as this uncertainty
is consistently accounted for, there is no reason to seek after a new
inference mechanism.

e By introducing probability as a modeling language, one can give a
precise meaning to causality. The term, often used rather vaguely, is
substituted in a probabilistic setting with the concept of conditional
independence (Dawid, 1979). A specific instance of it is the Markov
property of a system state. As Jaynes (2003) stressed, physical causa-
tion is not an essential ingredient of Bayesian inference; what mat-
ters is the assumption of a logical connection between hypotheses and
data. It is the model purpose that decides on what logical connec-
tions are important to consider. For instance, if the purpose of a
model is to optimize a particular policy, it is crucial to capture the
logical connection between the policy and the observable behavior
of a system, but it is not necessary to include in the model the whole
chain of microscopic causes and effects.

Second, Bayesian inference yields a coherent framework for consistently
updating the prior state of knowledge about unknown or uncertain states
and parameters of the model with numerical evidence at hand. As an infor-
mation updating mechanism, the Bayesian scheme offers no definite an-
swers, no absolute truths. It remains the modeler’s responsibility to elicit
prior information from available sources and to convert it to probabilities,
represented in our problem setting by the densities p(x1), p(xg.1|xk, ux)
and p(yx|xk, ux). Two modelers, even with the same evidence at hand,
may end up with different models because of different prior information
they have been able to extract from available resources or because of differ-
ent interpretations of the same piece of information. Only the models that
have been assigned positive prior probability can be eventually selected;
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failure to include a plausible model among candidate models cannot be
corrected with any amount of data.

Third, the Bayesian paradigm enables the modeler to capture and combine
uncertainty in all its forms, including system state fluctuations, measure-
ment errors, unknown model parameters and unknown model structure.
The consistent treatment of uncertainty is essential if one is to prevent is-
sues like overfitting or overly optimistic prediction. It is crucially impor-
tant in making decisions as to the most appropriate model. The Bayesian
literature distinguishes three major tasks in this respect:

e Model comparison selects the most plausible model out of candidate
models.

o Model assessment checks that the model provides adequate fit to the
data and behaves sensibly even under extreme conditions.

e Model robustness analysis tests the sensitivity of inference results to
the modeling assumptions.

Much has been published on these topics. We have only briefly touched
on the first task in the previous section and refer the interested reader to
Carlin and Louis (2000, Chapter 6) and Gelman et al. (2004, Chapter 6) for
more information and further insight.

Conclusion

Embedding the system dynamics modeling process within the Bayesian
inference framework enables the modeler to formulate and solve — in a
unified and consistent manner — the tasks of

o modeling — testing of hypotheses about the model structure,

e estimation of stock variables and model parameters from the avail-
able measurements,

o prediction of stock and flow variables beyond the period of available
measurements.

All the tasks are solved by calculating the probability distribution of un-
certain variables of interest conditional on available measurements.

The price paid for the extra power and comfort is twofold:
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e a more complex model that has to account for all significant sources
of uncertainty, be it the stochastic behavior of the underlying system
or the uncertainty of the model structure and parameters;

e a more computationally intensive algorithm that replaces simulation
of a single trajectory in the state space with simulation of a much
larger set of trajectories approximating the probability distributions
of interest.

In this paper, we have attempted to show that

e careful modeling of the stochastic behavior can be beneficial in its
own right,

e the progress made in sequential Monte Carlo, coupled with the ever
increasing performance of computing have made Bayesian inference
an attractive option, especially for problems where quantification of
the state uncertainty is a key requirement.
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