An Introduction to GoldSim:
A Dynamic Probabilistic Simulator
(Part 1/2)

Rick Kossik
GoldSim Technology Group
Issaquah, Washington
USA
Outline

- What is GoldSim and where did it come from?
- A summary of the major differences between GoldSim and traditional SD codes
- Basic GoldSim Features
- Overview of Advanced GoldSim Features
- Overview of GoldSim Extension Modules
- Can GoldSim complement traditional SD codes?
- Questions and Discussion
Outline

- What is GoldSim and where did it come from?
- A summary of the major differences between GoldSim and traditional SD codes
- Basic GoldSim Features
- Overview of Advanced GoldSim Features
- Overview of GoldSim Extension Modules
- Can GoldSim complement traditional SD codes?
- Questions and Discussion
GoldSim Technology Group

- Originally a division of Golder Associates
 - International civil and environmental engineering firm

- Began developing GoldSim in 1990
 - First customers were US Department of Energy and analogous government organizations in Europe and Asia
 - Focused on risk analysis for complex engineered systems associated with waste management

- Started marketing software in 2002
 - Rapidly expanded into other related engineering arenas (mining, water resources, failure analysis, long-term strategic planning)

- Became independent company in February 2004
 - GoldSim represents over 50 man-years of development
 - Over 1,000,000 lines of code (C++)
What were the main drivers behind the development of GoldSim?

- Systems being evaluated had lots of uncertainty and involved stochastic processes
- Clients required predictions of future performance in order to optimize system design and meet regulatory requirements
- Evaluations needed to be transparent and easy to explain to multiple audiences.

Goal was to create a probabilistic simulation framework that could be applied to complex and diverse engineering and scientific problems.
Outline

- What is GoldSim and where did it come from?
- A summary of the major differences between GoldSim and traditional SD codes
- Basic GoldSim Features
- Overview of Advanced GoldSim Features
- Overview of GoldSim Extension Modules
- Can GoldSim complement traditional SD codes?
- Questions and Discussion
What are the key differences between GoldSim and traditional SD tools?

- GoldSim puts much greater emphasis on probabilistic simulation and producing probabilistic predictions of performance.
Define uncertain variables

Define stochastic time series

Specify statistical-defined events

Define Monte Carlo simulation options
What are the key differences between GoldSim and traditional SD tools?

- **GoldSim puts much greater emphasis on probabilistic simulation and producing probabilistic predictions of performance**
- **GoldSim provides a much broader range of model objects**
 - Makes the model logic and structure less abstract and more transparent
 - Includes objects to superimpose discrete dynamics on a continuous system
GoldSim provides over 40 element types...
What are the key differences between GoldSim and traditional SD tools?

- **GoldSim puts much greater emphasis on probabilistic simulation and producing probabilistic predictions of performance**
- **GoldSim provides a much broader range of model objects (elements)**
 - Makes the model logic and structure less abstract and more transparent
 - Includes objects to superimpose discrete dynamics on a continuous system
 - An important implication is that GoldSim does not use the “stock and flow” paradigm
Example: Simple Inventory Model
Example: Simple Inventory Model

Arrows all represent “influences”
What are the key differences between GoldSim and traditional SD tools?

- GoldSim puts much greater emphasis on probabilistic simulation and producing probabilistic predictions of performance
- GoldSim provides a much broader range of model objects
- **GoldSim was designed to accommodate the addition of specialized extension modules**
 - Modules either address processes that can’t be adequately represented using simpler constructs, or add to model transparency
Financial Module

Deductible and cap are reset every two years.
Reliability Module

Risk Analysis for Planetary Orbiter

- Launch
- Cruise
- Command_Control
- Attitude_and_Orbit_Control
- Thermal_Control
- Power
- Science_Instrumentation
- Orbit_Phase_Started
- Orbit_Inserted
- Ion_Propulsion
- Xenon_Reserves
- Attitude_Thruster_Reserves
- Attitude_Thrusters
- Communication
Contaminant Transport Module

Wastes are apportioned between the two waste layer cells, the upper one potentially accessible to biota and the lower one inaccessible. These cells exist in the WasteLayers Source Container.

Sinks accept contaminants leaving the important parts of the model.

The plume function is defined in WaterTransport.
GoldSim models are typically deeply hierarchical

- Due to the nature of our original user base, GoldSim was designed to support very large models
 - Largest model to date has 35,000 elements
- To support this, GoldSim provides:
 - Unlimited nesting of hierarchical models
 - Local variables
In this simple model for manufacturing, it is assumed that the workday (and hence the Manufacturing Delay) is fixed. In a more realistic model, for example, the workday could potentially ramp up and down in response to demand (the Desired Production Start Rate). This in turn would impact the Manufacturing Delay.
Logic for Shutting Down and Starting Up the Assembly Line in Response to a Strike
GoldSim models are typically deeply hierarchical

- Due to the nature of our original user base, GoldSim was designed to support very large models
 - Largest model to date has 35,000 elements
- To support this, GoldSim provides:
 - Unlimited nesting of hierarchical models
 - Local variables
 - This, by definition, makes feedback loops more difficult to see graphically
 - We provide other tools to find loops
Outline

- What is GoldSim and where did it come from?
- A summary of the major differences between GoldSim and traditional SD codes
- **Basic GoldSim Features**
- Overview of Advanced GoldSim Features
- Overview of GoldSim Extension Modules
- Can GoldSim complement traditional SD codes?
- Questions and Discussion
GoldSim Simulation Philosophy

- Models should be constructed in a “top-down” manner
 - Capture all key aspects and inter-relationships
 - Only add as much detail as required and justified
 - Keep focused on the “big picture”

- Must accurately and honestly express our uncertainty in all aspects of the system
 - parameters
 - processes
 - events

- A model that cannot be explained and understood is a model that will not be used
 - No black boxes!
GoldSim Features Reflect this Philosophy

- **Scalable and Extensible**
 - Design allows you to build a simple model, and then add details in a hierarchical manner as warranted
 - Can link to other programs (e.g., spreadsheets, user programs)
 - Designed to facilitate addition of custom modules for specific applications

- **Can represent uncertainty and stochasticity in parameters, processes and events**

- **Specialized objects make models less abstract and more transparent**

- **Powerful navigation, presentation and documentation features allow you to build, maintain and present complex models**
What Kind of Simulator is GoldSim?

The user creates a model by using GoldSim objects (called elements) to draw a schematic or influence diagram of the system being simulated.
Element Categories
Input Elements

- Some elements provide a mechanism for you to enter **Data** into a model. You can specify a single scalar datum, or vectors and matrices of data.

- **Time Series** elements allow you to specify a time series of data.

- You can also specify that a particular datum is uncertain, by defining it as a probability distribution (referred to as a **Stochastic**).
Function Elements

- Other elements act as **functions**, which operate on one or more inputs and produce one or more outputs.
- The simplest function element is the **Expression**.
- You define an Expression by simply typing in an equation. Similar to a cell in a spreadsheet, when defining an expression, you can use a wide variety of operators and functions.

\[f_X \]

- \(3 \cdot \sin(a) \)
- \(\min(x,y) \)
- \(\text{if}(b>10,x,y) \)
- \(\text{bess}(a,b) \)
- \(\exp(k \cdot \text{time}) \)
- \(\log(x/y) \)
- \((x-y) \cdot (z+v) \)
Dimensions and Units in GoldSim

- GoldSim is dimensionally aware.
- GoldSim elements are all strongly typed (unit, scalar/vector/matrix, value/condition).
- GoldSim has an extensive database of units and conversion factors. You can enter data and display results in any units. You can even define your own custom units.
- When elements are linked, GoldSim enforces dimensional consistency and carries out all unit conversions internally.
Examples of Other Function Elements

- Another example of a function element is the **Look-Up Table**. In this element, the output is computed by interpolating between the values of a user-defined table (1D, 2D, or 3D).

- Other function elements have more complex behavior. For example, a **Selector** allows you to specify nested “if, then” logic in your model (it acts like a switch with multiple settings).

- The **Extrema** element computes the highest (peak) or lowest (valley) value achieved by its input.
Dynamic Elements (Stocks)

- Dynamic element outputs are determined by the previous values of their inputs.

- Two types of dynamic elements are the Fund and the Reservoir. In their simplest form, these elements require an initial value, rates of additions (deposits) and withdrawals, and output a current value:

\[
\text{Current Value} = \text{Initial Value} + \int \text{Rate of Change}
\]
To do predictive modeling, we need to represent:
- Uncertain parameters
- Stochastic variables

Use Monte Carlo simulation
Simulating the Occurrence and Consequences of Discrete Events

- In some kinds of systems, processes occur which are **discrete**, rather than **continuous**
 - accidents, system failures, financial transactions
- **GoldSim** provides a powerful collection of elements for representing the **occurrence and consequences** of discrete events.
Creating Subsystems

- Complex models may have many **thousands of elements**. In order to organize and view such a model, it is useful (in fact, essential) to group the elements into **subsystems**.

- Subsystems are created by placing elements into **Containers**. A container is analogous to a “folder” or a “box”.

- Containers can be placed into other containers, and any level of containment can be specified.

- Containers can be **locked**.

- Containers can be easily **reused**.

- Containers have many other features for advanced users.
Some Additional Elements Useful for Material Management Simulations

- **The Splitter** element splits an incoming flow into multiple outputs based on specified fractions.

- **The Allocator** element allocates an incoming flow into multiple outputs given specified demands and priorities.
Delay Elements

- The output of a Delay element lags its input.
- Delay elements can be used to model processes such as the movement of water through soil, the movement of parts on a conveyor, and the transfer of information from one person to another.
Conditions and Triggers

- Some elements can be defined as conditions (True/False) rather than values
- Use of conditions can make the model logic much clearer

“Events” are of two types:
- “Scheduled” or “Timed” events
 - e.g., once a week regularly, once a year randomly
- Conditional events
 - e.g., whenever X becomes greater than Y
Outline

- What is GoldSim and where did it come from?
- A summary of the major differences between GoldSim and traditional SD codes
- Basic GoldSim Features
- **Overview of Advanced GoldSim Features**
- Overview of GoldSim Extension Modules
- Can GoldSim complement traditional SD codes?
- Questions and Discussion
Advanced Properties of Containers

- You can **localize** Containers in your model so that variable names can be repeated without causing conflicts.
- You can **clone** a Container (or individual elements in a Container). Clones all behave identically.
 - Allows you to rapidly build and maintain models consisting of parallel systems that are governed by the same equations but require different inputs.
- You can make Containers **conditional**. This allows you to make a Container and all of its contents inactive unless specific events occur and/or conditions are met (useful for simulating tasks and projects).
- Can **have their own timestep**.
- Can be **iterative (looping)**.
Additional Features for Managing Complexity in GoldSim

- **Powerful search capabilities**
 - Find an element
 - who affects who?

- The ability to record versions (revisions) of a particular model file, so that you can identify the differences between the various versions of the file as the model is iteratively modified.
Convolution Element

- Solves convolution integrals
- Inputs:
 - An input function (which can be time-variable)
 - A transfer function (impulse response function)
- Effectively allows you to create custom transfer or delay functions
History Generator Element

- A powerful element that generates stochastic time series given some statistical inputs (e.g., growth rate, volatility)
 - Can simulate a variety of history types
 - Can simulate geometric growth, random walks, and random movement around a target
 - Can simulate correlated arrays of stochastic variables (by specifying a correlation matrix)
Random Walks: High and Low Volatility
Random Walks: With and Without Reversion to a Constant Target
Geometric Growth: High and Low Volatility
Volatile Geometric Growth: Multiple Realizations
Random Walk That Tracks a Dynamic Target: With and Without Time Lag
Working with Arrays

GoldSim provides almost 40 functions for manipulating arrays

<table>
<thead>
<tr>
<th>Vector Constructor</th>
<th>vector(,)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Item Access</td>
<td>GetItem(v,r)</td>
</tr>
<tr>
<td>Vector Row Access</td>
<td>GetRow(v,r)</td>
</tr>
<tr>
<td>Vector Length</td>
<td>GetRowCount()</td>
</tr>
<tr>
<td>Vector Sum</td>
<td>sumv()</td>
</tr>
<tr>
<td>Vector Product</td>
<td>prodv()</td>
</tr>
<tr>
<td>Vector Minimum</td>
<td>minv()</td>
</tr>
<tr>
<td>Vector Maximum</td>
<td>maxv()</td>
</tr>
<tr>
<td>Vector Mean</td>
<td>meanv()</td>
</tr>
<tr>
<td>Vector Standard Deviation</td>
<td>sdev()</td>
</tr>
<tr>
<td>Vector Minimum Ordinal</td>
<td>rowmin()</td>
</tr>
<tr>
<td>Vector Maximum Ordinal</td>
<td>rowmax()</td>
</tr>
<tr>
<td>Vector Dot Product</td>
<td>dot(,)</td>
</tr>
<tr>
<td>Y * VT = M</td>
<td>vvmatrix(,)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix Constructor</th>
<th>matrix(,)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Item Access</td>
<td>GetItem(m,r,c)</td>
</tr>
<tr>
<td>Matrix Row Access</td>
<td>GetRow(m,r)</td>
</tr>
<tr>
<td>Matrix Column Access</td>
<td>GetColumn(m,c)</td>
</tr>
<tr>
<td>Matrix Length</td>
<td>GetRowCount()</td>
</tr>
<tr>
<td>Matrix Width</td>
<td>getColumnCount()</td>
</tr>
<tr>
<td>Matrix: sum of items in each row</td>
<td>sumr()</td>
</tr>
<tr>
<td>Matrix: product of items in each row</td>
<td>prodr()</td>
</tr>
<tr>
<td>Matrix: mean of items in each row</td>
<td>meanr()</td>
</tr>
<tr>
<td>Matrix: std. dev. of items in each row</td>
<td>sdr()</td>
</tr>
<tr>
<td>Matrix: smallest item in each row</td>
<td>minr()</td>
</tr>
<tr>
<td>Matrix: greatest item in each row</td>
<td>maxr()</td>
</tr>
<tr>
<td>Matrix: sum of items in each column</td>
<td>sumc()</td>
</tr>
<tr>
<td>Matrix: product of items in each column</td>
<td>prodc()</td>
</tr>
<tr>
<td>Matrix: mean of items in each column</td>
<td>meanc()</td>
</tr>
<tr>
<td>Matrix: std. dev. of items in each column</td>
<td>sdc()</td>
</tr>
<tr>
<td>Matrix: smallest item in each column</td>
<td>minc()</td>
</tr>
<tr>
<td>Matrix: greatest item in each column</td>
<td>maxc()</td>
</tr>
<tr>
<td>Matrix Transpose</td>
<td>trans()</td>
</tr>
<tr>
<td>Matrix Inverse</td>
<td>inv()</td>
</tr>
</tbody>
</table>

Array Minimum (term-by-term) | min(,)
Array Maximum (term-by-term) | max(,)
Array (Linear Algebra) Multiplication | mult(.)
Linking Spreadsheets and Databases to GoldSim

- You can dynamically link GoldSim to a spreadsheet
 - Import time series, lookup tables, or scalar or array data from a spreadsheet
 - Export time series and other results to spreadsheet
 - Spreadsheet can act as a sub-routine
 - Can link to VBA applications

- You can import information from any ODBC compliant database directly into GoldSim prior to a simulation
 - GoldSim records when the database was uploaded
 - Facilitates QA/QC of model data
Dynamically Linking External Programs to GoldSim

- If GoldSim’s built-in elements are not capable of adequately representing a particular aspect of your model, you can dynamically link an external program to GoldSim.
- It behaves identically to an Expression element, but instead of using an equation, GoldSim dynamically calls and runs the external program.
- This allows complex external programs to be linked directly into the probabilistic, graphical GoldSim framework.
Sensitivity Analysis

- **Computes statistical measures**
 - Based on multiple Monte Carlo simulations (all variables changed simultaneously)

- **Graphical sensitivity analyses (tornado charts, x-y charts)**
 - Variables of interest are changed while holding all other variables constant