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Abstract:  With the adoption of integration and system perspectives in managing the 
manufacturing systems and the pressure imposed by the increased competition and rapidly 
changing business environment, the need has arisen for new approaches for simulating the 
manufacturing enterprise. We have proposed SDDES; a hybrid System Dynamics Discrete Event 
Simulation approach to simulating the integrated manufacturing enterprise. SDDES offers 
comprehensive simulation models that encompass all management levels and recognize the 
differences between them in terms of scope and frequency of decision making as well as the 
levels of details preferred and used at each level. SDDES maintains the integrity of the two 
simulation paradigms and can use existing/legacy simulation models without requiring learning 
new simulation skills. In this paper we describe the modular structure of SDDES, our method to 
synchronize and coordinate SD and DES, and the functional model of the SDDES controller, 
which manages the integration of the two simulation methodologies. 
 
Keywords: Hybrid continuous-discrete simulation – Manufacturing enterprise - System 
dynamics – Discrete event simulation 
 
1. Introduction 

The advances in information and computing technologies in addition to the 
unprecedented levels of competition and fast pace of changes in the business environment have 
created a more flattened enterprise system and changed the way enterprises should be managed. 
This is creating challenges to using simulation tools. The presence of manufacturing and non-
manufacturing functions in the manufacturing enterprise, the different types of behavior in the 
system, differences between management levels in the scope of planning, frequency of decision 
making, and levels of details they deal with, indicate that a single simulation approach can not 
offer all that is needed in a simulation of such a complex system.  

The traditional use of discrete event simulation (DES) to simulate the manufacturing 
systems has narrowed the scope to detailed statistical analyses at the operational levels of the 
system. At that level, the main concerns have been the flow of materials and the levels of 
inventories and work in process, and the performance at the individual level of resources, units 
of products or processes (Smith, 2003; Bonder and McGinnis, 2002; Lee et al., 2002a; Wu, 2002; 
1992; Law and Kelton, 2000; Kosturiak and Gregor, 1999; De Souza et al., 1996; Pegden et al., 
1990; Carrie, 1988). The need to simulate the whole system (aggregate and detailed management 



level functions) has challenged DES, which was inadequate to approximate the continuous 
behavior in the system generally and particularly at the aggregate levels, or communicate 
appropriately the financial computations to higher management (Lee et al., 2002a; Johnson and 
Eberlein, 2002; Barton et al., 2001). DES works effectively with problems of narrow scopes, but 
it is “… incompatible with a global point of view” (Lin et al., 1998). And it does not address the 
stability of the system (Rabelo et al., 2005) that should be considered at an aggregate level before 
any detailed analyses can be conducted (Towill and Edghill, 1989). Add to that its high demand 
for data and its tedious data preparation processes.  There are always detailed data available for 
the manufacturing functions. But for the aggregate management levels data is not usually 
available and in most cases only rough estimates exist (Zulch et al., 2002; Mandal and Sohal, 
1998; Anthony et al., 1989).  

Meanwhile, SD has been successful as a system thinking approach that targets top 
management levels with a comprehensive integrative perspective, with relatively minimal data 
requirements. SD is appropriate for modeling large scale systems and the higher levels of 
decision making where aggregation is preferred. It focuses on the policy decisions that are 
embodied in the feedback loops, and not on individual localized decisions. Nevertheless, using 
SD at the operational level of the manufacturing system has failed to offer the needed granularity 
(Godding et al., 2003; Barton et al., 2001; Baines and Harisson, 1999; Bauer et al., 1982). The 
same was observed by Choi et al. (2006) who could not use SD to model the performance of the 
individual processes in a software development system. In addition, while SD permits the study 
of the stability of the system over the long range, the trends of behavior that it generates do not 
indicate what specific actions to be made and at what values of the action parameters. Such 
specifity requires more detailed considerations that SD does not seem to work with, while DES 
has been effective at. 

Consequently, we have argued (Rabelo et al., 2005; Helal and Rabelo, 2004) that SD and 
DES can complement each other to offer the needed tools to meet the needs created by the 
modern, integrated manufacturing enterprise system. In this paper, we describe the details of our 
proposed SDDES simulation method.  

The rest of the paper is organized as follows: Section 2 provides a review of literatures 
supporting the proposed methodology. Section 3 describes the modular structure of the SDDES 
simulation method and the formalism to describe and communicate the SD and DES modules. 
Section 4 proposes a new synchronization mechanism to coordinate SD and DES. The 
synchronization mechanism explicitly recognizes and respects the integrity of the two simulation 
paradigms. In Section 5 the SDDES controller is described. The controller administers the 
integration of the simulation modules and offers the user interface. Section 6 concludes this 
paper.  

 
2. Literature Review 

Simulating manufacturing systems has been dominated by DES. Many contributions SD 
can make in this area, especially integrated systems. SD can capture the causal relationships that 
are not captured by other approaches that are based on the flow diagramming approaches; DES 
and other object oriented techniques (An and Jehn, 2005). Further SD offers the ability to model 
qualitative and soft factors (e.g. level of commitment, level of management support, etc.) as was 
showed by Sterman et al. (1997) who modeled the management’s attitude towards various 
departments in the company after implementing a Total Quality Management program.  



Data related to manufacturing activities in manufacturing systems are always available 
and at very detailed levels where as data for the non-manufacturing functions, usually at the 
higher levels of decision making are only available as rough estimates and expert guesses (Zulch 
et al., 2002; Mandal and Sohal, 1998; Anthony et al., 1989). The strategic level is the least 
systematic process. Operational level decision making uses current, detailed, accurate data. The 
tactical level falls in between. This obviously has to do with the expected quality of the 
simulation results that can be obtained if a data demanding technique such as DES is used at the 
higher levels of management. SD also facilitates conducting designed experiments at the 
business level (Ashayeri et al., 1998); something that has been available at the detailed levels 
using DES.  

However, while SD has an advantage at the aggregate levels, it can face problems at the 
operational detailed levels. SD is not believed by many to be suitable for the more detailed 
operational level activities (Lin et al., 1998; Wiendahl and Breithaupt 1998).  Wiendahl and 
Breithaupt (1998) experimented with simulating manufacturing systems using techniques based 
on direct use of the automatic control theory and concluded that such continuous simulation 
approaches (of the control theory) do not lend themselves easily to model the discrete nature of 
the manufacturing functions. Lin et al. (1998) attempted to develop SD-based manufacturing 
system modeling library. For instance, a module in the library is the converting activity module, 
which has inputs (materials), outputs (products) and time (labor). It is used as a process in a 
manufacturing line. Inside the module, a stock variable accumulates time allocated to the process 
while a flow variable represents the passage of the time. Further, this module is a part of a bigger 
system for which a global time is observed and the passage of time is executed at different levels. 
This was applied to a job shop in a test of the addition of new equipment; an application where 
DES has been effectively applied for decades. The manufacturing system was not viewed as a 
whole; to include the aggregate level. Thus SD did not contribute much. In fact this negatively 
affects SD’s intuition, introduces too much details not consistent with SD, and it is an 
approximation of DES capabilities while DES already exists. 

Keenan and Paich (2004) used SD to build a model of GM and the North American auto 
industry, to assist GM senior management assess the existing policies and improvement 
initiatives that had been implemented. The initiatives were considered successful but concerns 
were that the combined impact of them had not met the performance objectives in terms of 
market share and profitability. The model was comprehensive; including macro-economic 
variables, market, dealerships, customer behavior, and processes at the various manufacturing 
facilities located at geographically distant locations. Yet SD as a methodology failed to offer 
desirable levels of details. Particularly the model could not include the customers’ behavior at 
the household level, which is an important aspect of analyzing the auto market given the high 
competition and the many brands and models offered every year. The model also could not reach 
the details of the manufacturing processes and the operations of the dealerships. Only overall 
measures and indicators were collected regarding the potential policy alternatives. The question 
that was raised by the senior managers was about where exactly should they intervene and how 
specifically should the resources be allocated. The trends and the macro level indicators needed 
to be extended to become actionable.  

This has been the case with Godding et al. (2003) who found that the modeling and 
numerical simulation methods of SD did not provide the needed level of granularity to model the 
complex stochastic material flows and associated control algorithms for a semiconductor supply 
network without significant extension. They chose to use DES instead of SD. Bauer et al. (1982) 



also found SD limiting their abilities to model the processes at a semiconductor manufacturer 
and they limited their analysis to localized units. In a different situation, Martin (2001) found 
that SD could model the environment of the software development process, but for modeling the 
process itself DES was more effective. He commented: “… we can not ask a SD model questions 
about the size or complexity of a module of code, because code modules are modeled as 
individual entities … we can not ask a DES model about the behavior of continuous variables 
and feedback loops”.   

On the other hand the challenges facing DES in modeling integrated manufacturing 
systems are serious. Tow main issues face enterprises as they try to exploit the capabilities of 
simulation, as observed by the vendors of Arena software. The first is broadening the use of 
simulation effectively throughout the enterprise in a consistent coordinated way. The second is 
enhancing the value of the simulation initiatives to the enterprise by leveraging investments in 
tools and methodologies (Babat and Sturrock, 2003). Gregoriades and Karakostas (2003) and 
Chang and Makatsoris (2001) suggested limiting the use of DES to certain problem areas; where 
there are few alternative, short range horizons, and where detailed analysis is needed. Huang et 
al. (2003) did not believe a single DES model could be used for all of the three levels of 
management. Lee et al. (2002a) recommended using analytical models for the operational level 
activities, DES for the tactical level activities, while for the strategic levels they recommended 
hybrid discrete/continuous simulation models.  

 
2.1 Hybrid Simulation 

The limitations of DES at the aggregate levels and in approximating continuous behavior 
and the limitations of SD at the detailed levels imply the need to develop hybrid continuous-
discrete models. Approximating continuous behavior by discrete models can not guarantee 
accuracy; overestimates or underestimates will likely be obtained (Lee et al., 2002a). The 
proposed SDDES method is hybrid continuous-discrete approach. There are two approaches to 
develop hybrid simulations: the hybrid state transition machine (Maler et al., 1992; Harel, 1987) 
and the DEVS&DES formalism (Ziegler et al., 2000). Both approaches recognize two ways of 
interactions between discrete and continuous components in a hybrid simulation (See Figure 1).  

 
Discrete event causing sudden 
change in continuous variable

Continuous variable crossing a 
threshold schedules a discrete event

 
Figure 1: Types of interactions between continuous and discrete components 

 
The hybrid state machine is based on the state chart diagram of the Unified Modeling 

Language (UML). It is a directed diagram representing states of the system and the transitions 
between them. Most of its dynamic characteristics were described by Harel (1987). Maler et al. 
(1992) incorporated the continuous behavior into the discrete state diagram. Some system 
variables are to be modeled as continuous by differential/integral equations and then threshold 
values for these variables are defined. During the simulation run when a variable reaches a 
threshold a discrete event is triggered at the state diagram and a transition from a state to a state 
to another may be taken. Only events can update the system state. Also, upon the execution of an 



event in the discrete part, a continuous variable can be assigned a new value regardless of its 
mathematical formulation.  

The DEV&DESS formalism combines Ziegler (1976)’s Discrete Event System 
specification (DEVS) formalism and Differential Equations System Specification (DESS) 
formalism, to describe hybrid systems. DEV&DESS combines the sets of inputs, outputs, states, 
and the transition, output, and rate of change functions of the two original formalisms into a 
unified format to specify the hybrid system. Additionally the DEV&DESS uses the condition 
function to connect the continuous variables to the discrete components of the system. Once a 
threshold is crossed, the condition function is activated to cause an event to be scheduled at the 
discrete part and an update of system state to be executed.  

 
The two approaches are fundamentally similar: 
1. Both were developed based for control situations; a digital (discrete) system 

controlling a continuous environment.  
2. Running a hybrid simulation is a process of alternating between a discrete phase and a 

continuous phase. In the discrete phase the state can change but time cannot advance. 
In the continuous phase the time advances but system state does not change. 

3. Events drive the simulation model and only events update the system state.  
4. Continuous calculations are performed in the continuous phase between the discrete 

events, starting with the new state after the event occurrence. 
5. The impact of the continuous calculation is communicated to the discrete components 

by generating a special type of events (state event) based on the values of the 
continuous variables as compared to predefined threshold values 

6. Both favor the use of small-sized objects for which states can be easily enumerated as 
well as transitions between them.  

 
The behavior of a continuous variable in a hybrid system based on either of the two 

approaches can be as in Figure 2, in which a continuous variable behaves as continues between 
events. The (x, y) indicates an event number and its time stamp. The continuous variables must 
accept abrupt changes in their values by the occurrence of the discrete events. A segment of 
continuous calculations between two events is not a continuation of the previous segment. 
Whenever the continuous variable reaches a threshold level, a state event is triggered at the 
discrete part. Such behavior can be valid in applications such as controlling temperature in an 
industrial furnace, or controlling the movement of a robot arm and the like, where the threshold 
approach is applicable. But it is not realistic to expect all continuous systems to be increasing or 
decreasing until crossing a threshold value. In fact the oscillating behavior of continuous 
parameters such as inventory, productivity, quality, etc. is more expensive and dangerous in a 
manufacturing system than a trend in any of them. A threshold can not be used to control such a 
behavior. Management would work to smooth out oscillations and achieve stability not to 
prevent a certain critical value if a critical value could be defined. Policies have to be changed 
and then time should be allowed before realizing the impact of changes. According to SD, stocks 
can only be influenced by flows over some delay times. 
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Figure 2: Intermittent continuous behavior in control-based hybrid simulation 

 
2.2 Distributed Simulation 

In distributed simulation, loosely coupled simulations interact intensively at certain 
points in time. Distributed simulation, and parallel simulation as well, are concerned with issues 
introduced by distributing the execution of DES programs over multiple processors and 
computing platforms. The technologies were motivated by the needs of the military applications 
to integrate the geographically distributed systems (simulations and others). Currently the High 
Level Architecture (HLA) dominates the field as the framework for developing distributed 
simulations. Still the military uses are main drivers (Bodoh and Wieland, 2003; Borshchev et al., 
2002; Fujimoto, 2001; 2000).  

In industrial applications, distributed simulation usage is very limited (Boer et al., 2006a; 
Lendermann, 2006). A recent survey (Boer et al., 2006a; 2006b) has showed that industry 
practitioners depend heavily on the commercial-of-the-shelf (COTS) simulation packages, which 
offer very limited support for the HLA standard. COTS vendors do not see direct benefits in 
offering HLA support in their packages, given that HLA is still military-directed and too 
complex for industry applications. Unlike military applications, industry wants fast and direct 
results at the lowest expenses, for which HLA as well as the concepts of distributed simulation 
would add too high overhead technically and financially. Vendors also do not see much 
economical benefits in collaborating with each other.  
 Distributed simulation is related to SDDES as SDDES combines two different simulation 
paradigms. This makes it possible for some causality violations to occur during the simulation 
run. Distributed simulation uses the conservative (Chandy and Misra, 1978) or the optimistic 
(Jefferson, 1985) mechanisms for synchronization. Both use events and their time stamps to 
synchronize the participating simulations. The time bucket (TB) approach was introduced by 
Stienman (1991) as a simple synchronization approach for CIM settings. The TB allows 
simulations to advance time in fixed time steps (time buckets) and interact at the end of each 
bucket. This was inspired by the MRP system where a long-range plan is divided in execution 
periods/buckets.  

Although conservative and optimistic mechanisms as well as the TB method use events, 
the TB method offered more flexibility when we considered synchronizing SD and DES. TB is 
consistent with SD as a time driven approach and it is not inconsistent with DES as an event 
driven approach. Several variations of the TB method have been developed. Stienman (1992) 
developed a variable size TB method that used events and their consequences to decide the TB 



size during the simulation run. Fujii at al. (1999) proposed the phased TB method, which used a 
fixed size bucket but allowed simulations to advance in phases such that a set of simulations (e.g. 
processes) advance time to the end of the TB then a central simulation (e.g. transporter or a robot 
system) advance its time while handling data generated by the first set of simulation. Ma et al. 
(2001) used continuous simulation tools and allowed interactions during the TB. However he 
limited such interactions to the on/off timeless type of actions taken by a programmable logic 
controller unit. Bochhima et al. (2005) synchronized continuous and discrete simulations 
following the threshold approach of Ziegler (2000). TB in their approach was the time between 
events in the discrete simulations. The continuous simulations run between the discrete events or 
until crossing a threshold.  

In this work we propose a new synchronization mechanism that uses TB concepts. The 
new mechanism does not need to use events and does not require one simulation paradigm to 
dominate the other. This is described later in this paper. 

 
3 The SDDES simulation approach 

Based on the review of literatures, we argue that: 
1. Integrated manufacturing enterprise systems pose challenges to the available simulation 

tools.  
2. DES suffers several shortfalls in offering holistic models of the integrated enterprise.  
3. SD assumes aggregate management level perspectives in a systemic integrative approach yet 

it falls short in adequately modeling the detailed, short-term decision making level.  
4. Hybrid continuous-discrete simulation approaches offers the ability to accommodate all types 

of behavior in the integrated system but they assume control situations and tend to suppress 
the continuous behavior.  

5. Distributed simulation approaches offer favorable features that could improve and facilitate 
the building of large-scale simulation models of the integrated manufacturing enterprises, but 
are not yet exploited in such areas for technical and economical reasons.  

 
A combination of SD and DES simulation paradigms has the potentials of satisfying the 

needed characteristics in the simulation model of the integrated manufacturing enterprise. The 
integration of SD and DES as proposed in this work offers an inexpensive technique that 
maintains the existing simulation expertise in simulating the manufacturing systems. Legacy 
system models can be utilized and no new programming skills are needed to use SDDES. 
SDDES also does not assume certain situations as do the existing hybrid simulation approaches.  

The following sections describe the components of the SDDES method. Figure 3 depicts 
a roadmap in which the review of current practices in using simulation approaches has indicated 
the potentials of integrating SD and DES. SDDES is a hybrid continuous-discrete method for 
simulating the manufacturing enterprise. The size of the simulation model suggested following a 
modular structure. Modules should be formally described for better model management and 
communication among modelers. The SDDES formalism is proposed for that purpose. And since 
SDDES combines two different simulation paradigms, it should also be viewed from the 
perspective of a distributed simulation arrangement. Specifically, the SDDES synchronization 
mechanism is proposed to coordinate and synchronize the interactions among the SD and DES 
simulation modules. The SDDES controller is the main unit in the SDDES simulation method. It 
manages the integration, implements the synchronization, and offers the user interface. The 
following sections describe SDDES as implied by Figure 3.  
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Figure 3: Roadmap toward SDDES 

 
3.1 Layout of the SDDES System 

SDDES consists of an overall SD model for the manufacturing enterprise system and a 
number of DES models built for selected units in the system as dictated by the analysis needs. 
The models will interact through the SDDES controller. Figure 4 shows the SD model at the top 
(divided internally into a number of modules; 3 in the Figure), the SDDES controller in the 
middle, and a number of DES models (3 in the Figure) at the bottom.  
 

 
Figure 4: Layout of the SDDES system 



Management would use the model for the purposes of testing policies before deciding on 
implementing them, to confirm the estimated behavior based on enterprise-wide feedback. 
Management would use the model to investigate the feasibility and desirability of the various 
programs and initiations in the organization as well as use it to test the resource allocation 
process to decide on the strategic plans. The feedback structure in the model, in addition, helps 
better understand the dynamics of the interactions among the system components.  In addition, 
the model can be used as a comprehensive performance measurement system and this can be 
accomplished by building a balanced scorecard at the top of the model components and 
parameters. Helal and Rabelo (2004) have discussed the potentials of building dynamic balanced 
score cards based on SDDES. 
 
3.2 The SDDES Modules 
 Modules facilitate the model building process, especially when modeling the complex 
structure of the manufacturing enterprise. They also simplify modifying and extending the model 
when desirable. Each module has a well defined function, which should have a set of inputs and 
outputs to be ready to interact with other. The stock management model (Sterman, 1989, 2000) 
offers a good basis to modularize SD models. DES modules are defined based on the functions 
they will perform and built from scratch if do not already exist. 

 
3.2.1 The SD Modules 

If SD models already exist then they can be modularized such that they are based on the 
stock management model. New models can utilize the stock management model. We 
recommend, but it is necessary in SDDES, the use of the stock management model to standardize 
the building of SD models. Sterman (2000) listed and explained numerous examples for using 
the stock management model in business systems and other types of systems. Modularizing is an 
iterative process (Figure 5). The outcome of the process is a set of modules with the inputs and 
outputs that are to be exchanged between them so they function correctly. The defining of 
modules should be simultaneous for all SD modules and the DES modules, if necessary.  

It should be noted that the modularized SD model is still a single SD model. Modules are 
logical for the purposes of integration with the DES models and for communication and model 
management uses. SD modules are treated as sections in the SD model, yet are formalized (using 
the SDDES formalism) and defined at the SDDES controller as separate units. Not actually 
dividing the SD model maintains the integrity of the feedback structure of SD while simplifying 
working with the model in SDDES. 

The module represents a function. The inputs to a module are variables that are not 
normally under the control of the unit manager, or normally included in the core definition of 
that function represented in the module. To recognize the interactions that unit would have with 
other units the definition of it could need to be modified based on the requirements of the other 
modules, following the iterative process of Figure 5.  

 



 
Figure 5: Developing SD modules 

 
The generic SD module can be represented as in Figure 6. Inside the module is a stock 

management model that is a model of the function of the module. Not all details need to be 
shown. Yet the sets of inputs and outputs must be well defined. The xPortIn __  represents the 
input ports of communication where the module receives inputs from other SD or DES modules 
(x represents the number of the port). These are connected to the appropriate variables in the 
model. The xPortOut __  represents the output ports of communication where the module 
offers outputs to other modules. Communications through the ports are managed and 
synchronized by the SDDES controller. Defining the inputs and output is part of the module 
definition and they are used in the formalism of the module.  
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Figure 6: Generic SD module for SDDES 
 



3.2.2 The DES modules 
 The role of the DES modules in the SDDES is to provide the needed detailed analyses. 

SDDES allows the use of small-sized DES models instead of the usual practice of building one 
large DES model of all production functions. This greatly cuts the model development time and 
expenses. The DES modules are built to interact with one or more SD modules or with each 
other. The DES modules are complete discrete simulation models that are of narrow scopes. An 
iterative process to develop DES modules is shown in Figure 7. It starts with a valid DES model 
for the function of concern. Inputs and outputs and modules to interact with are then identified 
then the modules are described using the SDDES formalism. Figure 8 shows a representation of 
a generic DES module. Any DES tool can be used. In this work Arena 
(http://www.arenasimulation.com/) is used in building DES modules while Vensim 
(http://vensim.com/) is used for the SD part. 

 

 
Figure 7: Module development process for DES modules 
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Figure 8: A generic DES module 

 



3.3 The SDDES Formalism 
For better model development, management, and communication, the SDDES formalism 

is proposed to offer a generic description of modules. It offers a standardized structure to build 
and prepare the interactions of the modules. Users and modelers would only need to provide the 
specific information to be plugged in the placeholders in the formalism in order to distinguish 
one module for the others. The formalism is also necessary for the development of a user 
interface (part of the SDDES controller). The formalism dictates what information the user 
should provide to define modules. The data of the inputs and outputs and their ports as stated by 
the formalism are inputted at the controller’s user interface along with the type of formatting 
needed and the timing of the transactions. The functions of the SDDES controller as described 
later in this chapter depend on the accuracy of defining the formalisms for the modules.  

Three sets and two descriptive elements of information are needed in the SDDES 
modules formalism. Unlike the DEV&DESS formalism, states or state transition functions are 
not parts of the SDDES formalism. A module of SDDES is represented as in equation 1 in the 
SDDES formalism terms, where m refers to a SD or DES module.  

 
),,,,( TBPYXm Τ=      (1) 

 
The sets of the SDDES formalism are defined as follows: 

• Τ : type of the module; SD or DES module.  
• TB : time bucket (described later) of the module; it indicates the run segment length of a 

DES module. In case of a SD module it is set toCONTINUOUS .  
• P : set of all variables in the current module. Any variable can be requested by any other 

module. The same variable can be sent to more than one module.  
• X : set of module inputs; variables received from other modules. X is specified as 

follows:  
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In Equation 2: 

o m indicates the current module  
o v is the input variable 
o mP  is the set of variables of current module 
o aP is the set of all variables in all other modules less the current module. For any 

module j , U
M

jii
ij PaP

≠=

=
,1

   

o M is the set of all modules in the SDDES model 
o s indicates the source module from which v is obtained.  
o sop is an output port in the source module through which v is obtained 
o mU is the set of variables in the current module that use the input value. It is 

defined by Equation 3. 
 

( ){ }mmm PuInPortsipftuipU ∈∈= ,|,,,    (3) 
In Equation 3: 



o ip is an input port in current module 
o mInPorts is the set of input ports of current module 
o u is the variable in current module that uses the input variable. 
o t represents the timing of reading the input variable to be used by u .  
o f  indicates the data preparation action that the controller has to perform before 

sending the input data to the requesting module. There are two types of actions: 
Aggregate and Disaggregate that are specified by the user when defining the 
modules.   

• Y is the set of outputs. It is described by Equation 4. 
 

{ }{ }mMDPvOutPortsopMmDvopmY mm −⊂∈∈∈= ,,,|),,,(   (4) 
 
In Equation 4: 

o op is an output port in the current module 
o mOutPorts is the set of all output ports in the current module 
o v is the output variable leaving at the current output port 
o D is the set of modules that receive the current output variable from current 

module m . Several modules can receive an output variable and several variables 
in each can use the received value. D  is given as in Equation (5) 

 
{ }{ }mddddd PVmMmVmD ⊂−∈= ,|),(      (5) 

 
In Equation 5: 

o dm is a module that is receiving an output of module m  
o dV  is the set of variables in dm that use the received value 
o mdP  is the set of all variables in the receiving module 

 
Each element in dV consists of the identification number of the input port through which 

the received value is received, the name of the using variable, the timing of reading the received 
value, and the necessary formatting. The whole SDDES model is described as the set of all 
modules interacting through the controller. The SDDES model is described by Equation 6.  

 
{ }MmmSDDES ∈= |     (6) 

3.4 The SDDES Synchronization Mechanism 

We propose the SDDES synchronization method to synchronize separate SD and DES 
simulation models. The proposed method makes use of the concepts of the TB synchronization 
approach. The conservative simulation approaches depend on using a lookahead interval to 
determine the safe time advancement step. The optimistic approaches use messages of the 
timestamps of the events to control the advancement of time and perform rollbacks when needed. 
They both assume discrete simulations, or a system that is dominated by discrete behavior. 
Continuous simulation does not generate events and does not have states that can be defined 



practically, if can be defined at all. Synchronization of the continuous simulations with each 
other or with discrete models can be approached using TB-based approaches. TB approaches are 
consistent with advancing time in steps in SD and by following events in DES.  The optimistic 
and conservative approaches depend on the use of events that does not make them fit the 
synchronization function in SDDES. 

TB in this work is related to the DES modules and will be used to define the length of the 
run for each DES module. The choice of the bucket size will remain an important decision that 
should be made considering the desirable levels of accuracy and efficiency as well as the nature 
of the system unit being modeled in DES. An iterative approach to deciding on the TB size is 
described in Figure 9. A short and large bucket sizes compare to each other as in Table 1.   

 

 
Figure 9: Process of deciding on the TB size 

 

Table 1: Characteristics of large and small bucket sizes 

Large Bucket Size Small Bucket Size 
Lower accuracy Higher accuracy 
Low fidelity Higher fidelity 
Fast simulation run Slow simulation run 
Optimistic synchronization in nature Conservative synchronization 
Less flexibility in fitting other systems and 
estimating costs and performance measures 
(lateness, lead times, rates, etc) 

More flexibility in fitting other systems and 
estimating costs and performance measures 
(lateness, lead times, rates, etc) 

 



In SDDES we avoid having one simulation paradigm dominating the other. If discrete 
models are to be dominant then control situations (e.g. discrete/digital control of a continuous 
process) will be the case. Control situations can not be applicable to all business or social 
phenomena that are fundamentally continuous and do not normally change abruptly. And in 
addition the continuous units; mainly at the top levels of decision making, are usually generating 
the guidelines for the discrete units at the operational or detailed levels. 

SDDES is basically a time-driven simulation. This is because the SD unit represents the 
total enterprise system while the DES units are parts in that system. This is close to real practices 
where plans set at higher management levels are executed at the lower management levels. The 
TB is the time advancement step for the SDDES model. It is of fixed size for the SDDES model 
as a whole but each DES module can have its own TB size. TB is not the same as the time step in 
the SD technique. The integration calculations in SD are preformed with the appropriate time 
step while TB is the step for advancing time for the simulation as whole. This allows the 
accuracy of SD to be set without restrictions from the DES units.  

The simulation run length of the SDDES model is defined in the SD part as the planning 
horizon for the enterprise. Each DES module’s run is broken into several run segments. Each 
segment is a complete discrete simulation run with sufficient number of replications. Each 
segment is initialized with the status of the DES module at the end of the previous segment in 
addition to any adjustment received from SD modules at the end of the previous run (TB). Run 
segments for the same module have the same length but each DES module has a different run 
segment length (TB). TB of the whole SDDES model is the minimum run segment length among 
all DES modules. This will be called the base TB for the whole SDDES run and termed L . The 
run segment length for any DES is nL ,where n is nonzero positive integer. Check points among 
SD and DES models is at the end of each TB for each DES module. It is also allowable for the 
modules to send a receive data values during the runs to keep going. These values are planned to 
be sent or received before the run starts and are needed to maintain logical simulation results. L ; 
the base TB is determined based on operational, managerial, and computational considerations to 
achieve the best balance between accuracy and efficiency. 

Figure 10 describes the SDDES synchronization mechanism, assuming three DES 
modules interacting with a SD model (which has several modules in it). All interactions in the 
SDDES model are made through the SDDES controller, which is also indicated in the Figure. 
The TB sizes for the DES modules are L , L2 , and L5 respectively. The numbers on the arrows 
in Figure 10 indicate the sequence of actions.  The SD part sends the initialization data for all the 
DES modules at the beginning of the run such that the system starts at steady state. DES modules 
advance time toward the TB of each. At the end of a TB the modules that have finished a run 
would send and receive data to each other and to SD; all via the SDDES controller. All 
formatting is done at the controller side.   

All data exchange transactions are defined at the controller with the appropriate user 
interfaces it provides and with the specification of the SDDES formalism. The controller 
monitors and records the simulation time for the DES modules as they don’t run to the end of the 
SDDES simulation run, but in separate segments. Functions of the controller are explained in the 
next section.  
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Figure 10: Interactions among SD and the DES models 



Interactions among SD and DES as well as among the DES modules are also allowable 
during the run segments. For instance to release orders and raw materials in DES periodically, 
SD must send the relevant data at the specified times to DES. This should be done for each 
replication by saving the SD values to be used in each replication on the right time indicated by 
SDDES controller. The interaction ports are defined in the controller and this includes the timing 
of data exchanges.  
 
3.5 The SDDES Controller 

SDDES uses the existing SD and DES modeling techniques as they are normally used. 
The integration of the modules and what it entails are all managed by the SDDES controller. The 
SDDES controller is the manager of synchronization of the SD and DES simulation modules in 
the SDDES framework. The controller is a separate unit that interacts with the simulation 
modules to integrate them and facilitate the interactions between them according to the 
specifications included in the SDDES formalism. In fact the formalism information is stored in 
the controller model database. The controller also implements the synchronization mechanism to 
control the running and stopping of the modules. It is also the user interface to perform I/O 
operations and to define/modify/replace the modules. Specifically, the SDDES controller acts in 
the following areas: 

1. Data management: The controller ensures that the information indicated in the 
definition of the SD and DES modules (in their formalism specifications) are executed 
properly, in relation to the formatting of the data.  

2. Time management: The controller implements the synchronization mechanism to 
control the running of the modules. It monitors the simulation time. The DES modules do 
not run for the entire SDDES simulation horizon in a single run, and the simulation times 
from them are not usable directly. The controller estimates the time for each with respect 
to the overall SD model such that the user can observe the correct time. 

3. Participation management: The controller offers the functionality needed to add new 
modules to the SDDES model as well as to modify or replace already functioning 
modules.  This is achieved through a user interface through which the modeler inputs the 
necessary data by the SDDES formalism to specify a module.  

 
All functions the controller does are based on the user interactions with its user interfaces. An 
IDEF0 of the SDDES controller functions and details about how they are performed are 
presented in the following section.   
 
3.5.1 Functional model of the SDDES controller 

The IDEF0 method offers a hierarchal representation of a system that depicts the 
functions done within the system along with relevant inputs needed to perform the functions, 
outputs generated upon perfuming the functions, the controls that guide and constrain the 
functions, and the mechanisms needed in that. The basic model is shown in Figure 11 presented 
from the point of view of the modeler/the user of the SDDES. The A-0 IDEF0 model is the most 
abstract representation. A single box is used to indicate the function of the controller, namely 
Execute SDDES. The SDDES controller fundamentally executes the simulation run that the 
SDDES model is built to make. The sets of inputs, controls, outputs, and mechanisms (the 
ICOMs) used in the A-0 model are described in Table 2. 

 



 
Figure 11: A-0 IDEF0 functional model of the SDDES controller 

 

Table 2: ICOMs for the A-0 IDEF0 model of the SDDES controller 

Inputs I1 Operational 
settings 

Characteristic information representing the current status 
of the system. They are elements of the management 
policies that will be tested and evaluated with the 
simulation model. The module variables are assigned 
values in this action. These values are provided by the 
modeler or obtained from the active information system in 
the company (M2). 

 I2 Modules 
settings 

The inputting of the data required by the SDDES 
formalism. Modules can be modified, deleted, or added to 
the model.   

 I3 Run settings Specifying the planning horizon, number of replications for 
the DES modules, as well as the time units and needed 
parameters that will be monitored. Also the outputs that are 
of interest are specified here 

Controls C1 SDDES 
formalism 

This guides the addition, modification, or deletion of 
modules. Also specifies the data needed to set the model 
and the run. 

 C2 SDDES 
synchronizati
on 

This is SDDES synchronization algorithm. It guides the 
simulation run and the data exchange transactions. 

Output O1 Performance 
indicators 

This is the regular outputs of a simulation model 

Mechanisms M1 Modeler Represents the user of the simulation model in general. The 
modeler performs all I/O operations 



 M2 Info system This is the existing information system of the company 
(e.g. ERP or MRP). Module variables are linked to data 
provided by the information system. Outputs can also be 
added to the information system. 

 M3 GUI the graphical user interface is an integrated unit of the 
controller. It offers several user interfaces through which 
the modeler interacts with the controller and the model. 

 M4 Modules These are the module information saved in their files (e.g. 
the Arena and Vensim files in the current work). They are 
called to be used as necessary by the modeler and during 
the run for sure. 

 
The controller executes the SDDES simulation model using these sets of inputs, controls, 

outputs, and mechanisms. The modeler uses the appropriate user interface to input module data 
or the simulation data. The modeler also observes the outputs during the simulation run and can 
pause the model to modify some settings or stop the simulation for a new experiment. The inputs 
provided by the modeler are specified by the two controls; the formalism and the synchronization 
algorithm. The controller contains a database to store the input data and the ongoing outputs 
during the run. To set the modules, the controller extracts the parameters of the modules (via 
calling M4) such that the modeler would assign values to them or link their values to the 
appropriate data in the information system. The decision on the TB for the DES modules can 
also use inputs from the information system.  

The A-0 diagram is decomposed into more detailed definition of the controller functions. 
The A0 diagram of the IDEF0 model is the first level of details of the function described in the 
A-0 model. A0 for the SDDES controller models the three basic functions of the controller as 
described in the previous section; described however in more practical terms. In the IDEF0 terms 
these functions are the A1, A2, and A3 in Figure 12. Each of these functions is decomposed 
further as necessary to offer a complete description of the controller role in the SDDES model, 
prior to its implementation.  The A0 model is describe in Figure 12 and explained afterward.  

 



 
Figure 12 : The A0 IDEF0 model of the SDDES controller 

 
The Interact With User function (A1) allows the user (the Modeler in the above model) to 

perform I/O operations as well as defining the modules. The appropriate GUI is initiated for the 
Modeler to input the necessary settings. These inputs are communicated to A2 and A3 for the 
models to be defined and the run to be ready to be executed. The GUI is developed to meet all 
use cases of the system and these use cases are controlled by the SDDES formalism (adding or 
deleting modules), by the current contents of the saved modules (coming from A3 to modify 
modules, assign input values to their variables, etc.), and by the performance indicators (coming 
from A2 for the user to observe outputs and do necessary adjustments when desirable).  

The Manage Model function works to accept changes in the existing modules and add 
new ones to the SDDES model as inputted by the modeler in A1. The modules are saved in their 
simulation software files and the files are called as necessary (M4). The current contents of the 
modules are the outputs of A3 that are fed back to A2 so that the controller reads the TB setting 
for the modules and the defined data exchange transactions that will be executed during the run 
in the A2 function. The synchronization algorithm (C2) controls A2 along with the relevant 
information from the formalism (C1). The current module contents from A3 are also fed back 
into A1 for the Modeler to correctly assign the operational and run settings.  

The output of A2 is the output of the simulation run, which is offered as the overall 
output of SDDES and is fed back to A1 for the modeler to analyze the performance with the 
appropriate GUI. It is noted that the A2 function is internal; no direct user interactions are 
needed with it. During the run, the behavior of the system is feedback to A1 for the user to 
perform any adjustment if desirable.   

The output of A1 is the simulation run info representing the settings needed to start the 
simulation run at A2. These ongoing outputs are saved in the run database. They are updated all 



the time during the run. Of particular importance, the results of the run segments of the DES 
modules are saved to be used in the following segments.    

 
4.0 Summary and Future Work 

We propose a new hybrid simulation methodology that combines the SD and DES 
simulation paradigm to simulate the manufacturing enterprise system. We described the modular 
structure of the methodology, the formalism to describe and communicate the modules, the 
synchronization mechanism, and the controller unit that manages the interactions. The proposed 
SDDES methodology has the potentials to bridge the simulation gap identified in simulating the 
integrated manufacturing enterprise system. The proposed methodology can cover all types of 
behavior in the enterprise system and can accommodate the differences between the management 
levels in terms of scope and frequency in decision making and the levels of details in data at each 
level.  

The SDDES maintains the integrity of the two simulation paradigms and does not allow 
one to dominate the other as do the existing hybrid simulation frameworks. SDDES can extend 
the applicability of SD in the manufacturing system applications as well as enhance the usability 
of DES in simulating large scale complex systems. Modelers need not learn new simulation 
skills and existing/legacy SD and DES simulation models can be used in SDDES.  

Currently we are working to implement the design described in this paper. Data has been 
collected from a real manufacturing company, and a comprehensive SD as well as two DES 
models have been built. The objectives of the experimentation are to validate the usefulness and 
effectiveness of the proposed synchronization mechanism in particular and the SDDES 
simulation approach in general. 
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